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Multiplication law and S transform for non-Hermitian random matrices

Z. Burda,* R. A. Janik,† and M. A. Nowak‡

Marian Smoluchowski Institute of Physics and Mark Kac Complex Systems Research Center, Jagiellonian University,
Reymonta 4, PL-30-059 Kraków, Poland

(Received 28 April 2011; revised manuscript received 9 September 2011; published 14 December 2011)

We derive a multiplication law for free non-Hermitian random matrices allowing for an easy reconstruction
of the two-dimensional eigenvalue distribution of the product ensemble from the characteristics of the individual
ensembles. We define the corresponding non-Hermitian S transform being a natural generalization of the
Voiculescu S transform. In addition, we extend the classical Hermitian S transform approach to deal with
the situation when the random matrix ensemble factors have vanishing mean including the case when both of
them are centered. We use planar diagrammatic techniques to derive these results.
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I. INTRODUCTION

Free random variables [1,2] play an increasingly important
role in mathematics, physics, multivariate statistics, and
interdisciplinary research [3–10]. The cornerstones of this
success are the so-called R and S transforms. The R transform
allows one to infer the spectral properties of the sum of
random operators, provided the individual spectral measures
are known for each of them and they are independent in the
noncommutative sense also known as free. The S transform
plays a similar role for the multiplication of free random
operators. These constructions allow for fast decomposition
of several problems for complicated random operators into
simple ingredients. Since free random operators have an
explicit realization in terms of infinitely large random matrices,
the techniques based on the R and S transforms provide a
powerful tool to solve technically involved problems in random
matrix theory in an easy way when traditional methods break
down.

Historically, the R transform was devised for Hermitian
operators and the S transform for unitary operators. The issue
of the generalization of these constructions to other classes of
operators was a subject of intensive research during the last two
decades. In particular, one of the most challenging problems
was the question of the possibility of an extension of the R and
S transforms to strictly non-Hermitian matrices, which find
nowadays vast applications in many fields of research. This
problem is also especially interesting as traditional techniques
developed for Hermitian random matrices generally fail in the
non-Hermitian case. Some time ago, two of the present authors
have extended the additiveR transform for the non-Hermitian
ensembles [11,12]. Similar constructions were also proposed
independently in [13,14] and were soon generalized [15,16].
The question of defining the multiplicative S transform for
non-Hermitian matrices was, however, open and frequently
doubts were expressed whether such a construction is possible
at all. On the other hand, several complicated problems
involving products of large matrices have been solved using
other methods and results were sometimes surprisingly simple
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[17–22], hinting at the possibility of a hidden mathematical
structure.

In this work we demonstrate that such a structure—the
non-Hermitian S transform—exists and can be used as a
powerful algorithm for solving the spectral problems of
various products of random matrices. As a byproduct we also
generalize the ordinary “Hermitian” multiplicative technique
to matrix ensembles with vanishing mean, which has never
been done before.

Throughout this paper we shall use methods based on
Feynman diagrams, Dyson-Schwinger equations, ’t Hooft’s
planar expansion, and electrostatic equations, which are deeply
rooted in theoretical physics. We see that the physical intuition
behind these methods, in particular behind the application of
planar Feynman diagrammatic techniques to large random
matrices, provides a natural interpretation of the R and
S transforms known from free probability theory. Random
matrices have already proven to be very useful to tackle
physical problems in fundamental physics, as for instance in
many-body quantum systems, localization theory, quantum
transport, quantum information, quantum chromodynamics,
and quantum gravity, and in practical applications of physics as
for instance in econophysics, biophysics, or wireless telecom-
munications (see, for instance, [23]). Multiplication of random
matrices is naturally encountered in matricial random walk
(vicious walkers), the composition rule of transfer matrices,
random operators, or MIMO (multiple input multiple output)
links known from wireless telecommunication.

In Sec. II we outline main results of the paper. In particular,
we give the multiplication law for free non-Hermitian matrices.

In the next two sections, in order to make the paper self-
contained, we introduce diagrammatic techniques which will
be the main tool for deriving the key results of this paper.

In Sec. III we very briefly recall the formalism to calculate
the eigenvalue densities of large random Hermitian matrices
in the limit of matrix dimensions N → ∞. We recall the
connection to planar diagrams and use the diagrammatic
technique to give a simple proof of the addition law.

In Sec. IV we repeat the discussion for non-Hermitian
matrices. We show that the Green’s function and the R

transform are given by 2 × 2 matrices and recall the formalism
to handle this case.

In Sec. V, which is the main section of this paper, we
first rederive the multiplication law for Hermitian matrices
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using diagrammatic arguments and then we generalize the
construction to non-Hermitian matrices. We discuss the S

transform for this case and show that, similarly to the
non-Hermitian versions of the R transform and the Green’s
function, it has a form of a 2 × 2 matrix.

Finally in Sec. VI we give examples of application of this
law to practical calculations of the eigenvalue density for a
product of free matrices. We conclude the paper with a short
summary.

II. MAIN RESULTS

In this section we briefly summarize the main results of this
paper. The key quantity of interest in random matrix theory is
the eigenvalue density, which may be equivalently expressed
through the Green’s function. The R and S transforms satisfy
functional relations with the Green’s function and hence
their knowledge is equivalent (in the Hermitian case) to the
knowledge of the eigenvalue density (or more precisely of its
moments).

Explicitly, the standard form of the multiplication law
of free large Hermitian matrices is given in terms of the S

transform [1] just through an ordinary product,

SAB(z) = SA(z)SB(z). (1)

The S transform is a complex function of a complex variable
and it is related to the R transform as follows:

S(z) = 1

R[zS(z)]
. (2)

The two relations given above hold only if matrices A and
B are not centered: 〈trA〉 �= 0 and 〈trB〉 �= 0. This means the
corresponding R transforms may not vanish at the origin of the
complex plane RA(z = 0) �= 0 and RB(z = 0) �= 0. If either
RA(0) = 0 or RB(0) = 0 but not both, the corresponding S

transforms do not exist, but one can still save the multiplication
law [18]. The prescription [18] breaks down when both means
(i.e., for A and B) vanish. One of our main new results is
that one can still write a multiplication law in terms of the R

transform in that case, using the following set of equations:

RAB(z) = RA(w)RB(v), v = zRA(w), w = zRB(v), (3)

which involves three complex variables z,w,v. One can
eliminate w and v for given RA and RB to obtain RAB(z).
This set is equivalent to the standard equation (1) when the
matrices A and B are not centered but it is also valid when
either of the two matrices, or even both, are centered, making
this a more general formulation. This set of equations is quite
handy in practical calculations, too. One can use it to directly
calculate the R transform of the free product avoiding the
determination of all auxiliary functions and the S transform in
particular. Another advantage of these equations is that they
can be generalized in a natural manner to the case of free
multiplication of non-Hermitian operators and thus they can
be used to determine the eigenvalue distribution of products
of non-Hermitian matrices taken from independent random
ensembles in the large N limit.

Before we write the corresponding set of equations, let
us first recall that the Green’s functions for non-Hermitian
matrices are conveniently expressed as 2 × 2 matrices with

complex elements [11,12]. This is explained in detail in the
paper. The R transform in this case is a map of a space
of 2 × 2 complex matrices onto a space of 2 × 2 complex
matrices G → R(G). In order to distinguish this situation from
the Hermitian case (3), where functions and their arguments
were complex numbers, we use calligraphic letters to denote
the corresponding 2 × 2 complex matrices. The law of free
multiplication for non-Hermitian matrices reads

RAB(G) = [RA(GB)]L · [RB(GA)]R,
(4)

[GA]R = G · [RA(GB)]L, [GB]L = [RB(GA)]R · G.

It has almost an identical algebraic structure as (3), except
that now all objects are 2 × 2 matrices and thus the order of
multiplications matters. The superscripts R and L outside the
square brackets, which were absent in (3), stand for right or left
rotations, respectively, of a matrix X in the brackets: [X]L =
UXU † and [X]R = U †XU . The matrix U is a unitary diagonal
matrix U = diag(eiφ/4,e−iφ/4) that depends on the phase φ

of the complex number z = |z|eiφ being the argument of the
Green’s functionG = G(z,z̄) containing the information on the
spectral distribution of complex eigenvalues on the complex
plane z. Although this set of equations is more complicated
than for Hermitian matrices (3), it also gives a direct, practical
way of determining the Green’s function G of the product
of random matrices A and B. We illustrate this with explicit
examples toward the end of the paper. We also introduce the
S transform for non-Hermitian matrices and use it to rewrite
the set of Eqs. (4); however, we think that from the operational
point of view Eqs. (4) are more convenient.

III. HERMITIAN MATRICES

A. Preliminaries

We are interested in finding the distribution of eigenvalues
λi , in the limit when N (the size of the matrix H ) is infinite.
The average spectral distribution reads

ρ(λ) = lim
N→∞

1

N

〈
N∑

i=1

δ(λ − λi)

〉
, (5)

where λi are eigenvalues of a random Hermitian matrix H and
brakets 〈· · ·〉 denote averaging over a given ensemble of N ×
N random Hermitian matrices generated with the probability

P (H ) ∝ e−NTrV (H ). (6)

For Hermitian matrices eigenvalues λi’s lie on the real axis. It is
convenient to introduce a complex-valued resolvent (Green’s
function)

G(z) = lim
N→∞

1

N

〈
Tr

1

z1 − H

〉
, (7)

from which one can reconstruct the spectral density
function (5)

ρ(λ) = 1

2πi
lim

ε→0+
[G(λ − iε) − G(λ + iε)] , (8)

using the well-known formula 1
λ±i0+ = (PV) 1

λ
∓ iπδ(λ). The

symbol 1 is used throughout the paper to denote identity
matrices of different size. Here it was an N × N identity
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matrix. The Green’s function is a generating function for
spectral moments μn = limN→∞ 1

N
〈TrHn〉

G(z) =
∞∑

n=0

μn

zn+1
, (9)

with μ0 = 1, as follows from the 1/z expansion of (7). Another
fundamental quantity is the “self-energy” � = �(z) defined
as

G(z) = 1

z − �(z)
. (10)

It is related to the Green’s function by an independent equation

�(z) = R[G(z)], (11)

where the function

R(z) =
∞∑

n=1

κnz
n−1 (12)

is the generating function for planar connected moments
κn = limN→∞ 1

N
〈〈TrHn〉〉 called free cumulants and denoted

by double brackets. This function is usually referred to as the
R transform. Its form can be deduced from the integration
measure (6). The difference between the planar connected
moments (free cumulants) κn in (12) and the spectral moments
μn (9) is explained in the next section, where a diagrammatic
interpretation of these equations is discussed.

The relation between the generating function for spectral
moments G(z) and the generating function for connected
moments R(z) can be made explicit if one eliminates � from
(10) and (11). This yields a relation

G(z) = 1

z − R[G(z)]
, (13)

which is equivalent to

G

(
R(z) + 1

z

)
= z. (14)

One can use these relations to determine G(z) for given R(z) or
vice versa. To give an example, consider the simplest case of a
random matrix from the Gaussian unitary ensemble (GUE). In
this case the only nonvanishing cumulant is κ2. Without loss
of generality, we can choose κ2 = 1, so that R(z) = z. Using
(13) we have G(z) = 1/[z − G(z)]. The last equation can be
easily solved for G(z) and the solution can be used to calculate
the spectral density (8). One recovers the Wigner’s semicircle
ρ(λ) = 1

2π

√
4 − λ2 [24].

B. Planar diagrams

One can calculate (9) by Gaussian perturbation theory. One
does it by splitting the integration measure (6) into a Gaussian
part and a residual part,

P (H ) = N−1e−N
g2
2 TrH 2

e−N
∑

n �=2
gn
n

TrHn

= P0(H )e−N
∑

n �=2
gn
n

TrHn

. (15)

The Gaussian part P0(H ) is then used to calculate averages
〈· · ·〉0 while the remaining expression is left inside the brackets
and is averaged with respect to P0. The constant N is an
overall normalization. This non-Gaussian part is perturbatively

(a) (b)

G(z)

FIG. 1. (a) An example of a diagram contributing to the gener-
ating function Gij (z). Two end points should be labeled by indices
ij . Each horizontal dashed line corresponds to 1

z
δab while a double

line represents the expectation value (the propagator) 〈HabHcd〉0 =
1

Ng2
δadδbc. Since all lines in the diagram are proportional to the δ

function this equation reduces to a scalar equation for G(z). Each
horizontal dashed line corresponds after this reduction to 1

z
, each

double line to 1
g2

, each vertex to gn. The diagram has eight horizontal
lines so it contributes to the term μ7

z8 in the series expansion (9). The
diagram contains seven cubic vertices g7

3 and one quartic vertex g4

that are generated by the perturbative expansion of the residual part
of (15). Each pair of dots on the horizontal line corresponds to a
factor Hab inside the average 〈TrH 7〉0. (b) The graphical notation for
the generating function G(z). It generates diagrams having two end
points which include, for example, the one shown on the left.

expanded in gn so effectively one has to calculate averages of
various powers of H with respect to the Gaussian measure.
Each term in this expansion has a graphical representation,
similar to Feynman diagrams known from quantum field
theory (see Fig. 1).

For example, single horizontal lines represent contributions
from the factors 1

z
1 in (9). In the large N limit only planar

diagrams contribute to G(z), since all others are suppressed
by O(1/N ) factors (note that each closed line generates a
factor N coming from contraction of indices δii = N ). Thus,
the calculation of G(z) amounts to summing all (infinitely
many) contributions from planar diagrams with two end points
as shown in Fig. 1. Actually in the most general case one
should rather consider a matrix form of the Green’s function
G = [Gij (z)], where i and j are indices of two end points
i = 1, . . . ,N , j = 1, . . . ,N (see Fig. 1) and calculate the
scalar function (7) afterward as the normalized trace G(z) =
1
N

TrG(z). Also the self-energy equation (10) should formally
be written in a matrix form. However, in our case all generating
matrices are proportional to Kronecker δ functions zij = zδij ,
Gij (z) = G(z)δij , �ij (z) = �(z)δij , 〈HijHkl〉0 ∼ δilδjk , so all
equations like (10) and (11) reduce to scalar equations for the
coefficients multiplying the δ functions.

A graphical interpretation of Eq. (10) becomes clear if one
rewrites it as an infinite geometric series,

G(z) = 1

z
+ 1

z
�(z)

1

z
+ 1

z
�(z)

1

z
�(z)

1

z
+ · · · , (16)

which can be seen in Fig. 2. This figure tells us that all diagrams
in G(z) can be constructed by lining up one-line-irreducible
diagrams one after another.

+= ++Σ Σ ΣG

FIG. 2. Diagrams G(z) can be obtained from one-line-irreducible
diagrams �(z) (see Fig. 3) by joining them one after another.
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(a)

(z)
(b)

Σ

FIG. 3. (a) An example of a one-line-irreducible diagram.
(b) The graphical notation for the generating function �(z) of
one-line-irreducible diagrams.

An example of such a one-line-irreducible diagram con-
tributing to �(z) is shown in Fig. 3.

Such diagrams are characterized by the property that they
cannot be disconnected by cutting one line as opposed to
diagrams generated by G(z). Indeed, as one can see in Fig. 2(a)
diagram in G(z) can be disconnected by cutting any horizontal
line like that between two consecutive �’s. The diagrammatic
equation in Fig. 2 can be interpreted as a definition of the
generating function �(z) of one-line-irreducible diagrams.

It turns out that one can write down an independent equation
relating �(z) to G(z). Namely, one can observe that any
one-line-irreducible diagram can be obtained from diagrams
generated by G(z) as shown in Fig. 4 by adding a spider
structure making them one-line-irreducible. Each bubble κn

of the spider with n double legs corresponds to a connected
moment (free cumulant) of order n.

This equation tells us that

�(z) = 1

N
〈〈TrH 〉〉 + 1

N
〈〈TrH 2〉〉G(z)

+ 1

N
〈〈TrH 3〉〉G2(z) + · · · = R[G(z)]. (17)

The diagrammatic equations in Figs. 2 and 4 belong to the
category of Dyson-Schwinger equations known from quantum
field theory. They are equivalent to Eqs. (10) and (11) discussed
in the previous section.

C. Addition law: R transform

The R transform [1] is important because it allows one to
concisely write down a law of addition of (free) independent
large matrices. Consider first a factorized measure for two
large matrices A,B in the limit N → ∞,

P (A,B) = PA(A)PB(B), (18)

+++=

κ1 κ

G

κ2 3

G
Σ

G

FIG. 4. A one-line-irreducible diagram can be obtained from a
one-line-reducible diagram by adding to it a minimal diagrammatic
structure complying with the measure (15), which makes it one-
line-irreducible. Such a minimal structure is provided by diagrams
corresponding to planar connected moments κk (free cumulants)
(see Fig. 5), which we indicated by bubbles surrounded by double
circles in the figure. This double ring around the bubble is chosen
to make it similar to double brackets used in our notation for
connected averages. Diagrams in such a bubble are connected.
The difference between diagrams corresponding to planar connected
moments (cumulants) and spectral moments is explained in Fig. 5.

κ5

(a)

5μ

κ

κ
3

2

(b)

FIG. 5. (a) An example of a diagram generated by fifth free
cumulant κ5 = 1

N
〈〈TrH 5〉〉. All diagrams in the bubble must be

connected, in contrast to the diagrams generated by spectral moments.
(b) An example of the decomposition of some diagrams generated
by the fifth spectral moment μ5 = 1

N
〈TrH 5〉 into two connected

moments κ2κ3. Some other diagrams in μ5 can be decomposed into
κ1κ2κ2 or any other combination of cumulants as long as the number of
external legs is five. Only a small subset of diagrams in μ5 corresponds
to those of κ5.

where PA(A) ∼ exp −NTrVA(A) and PB(B) ∼ exp −NTr
VB(B). Then consider a matrix H = A + B. The law of
addition tells us how to calculate the spectral density of H

for given spectral densities of A and B.
The idea is based on the observation that connected planar

moments (free cumulants) of the sum H = A + B split into
two independent parts,

1

N
〈〈Tr(A + B)k〉〉 = 1

N
〈〈TrAk〉〉 + 1

N
〈〈TrBk〉〉. (19)

The reason for this separation of connected moments can be
easily understood in terms of Feynman diagrams. All mixed
connected moments 〈〈TrAaBbAcBd...〉〉 disappear just because
there is no direct line in a connected diagram between a vertex
of type A and one of type B since the AB propagator is zero
〈AijBkl〉0 = 0. The crossed pairs of double lines corresponding
to A and B vanish in the large N limit, since they represent
nonplanar contribution. So all external lines of a bubble
generated by kth cumulant correspond to either A or B. In
other words, free cumulants fulfill a simple equation,

κA+B,n = κA,n + κB,n, (20)

and thus,

RA+B(z) = RA(z) + RB(z). (21)

The argument given above is equivalent to a reasoning based
on noncrossing partitions used to prove this law in [2]. The
law of free addition (21) is also sufficient to calculate spectral
moments of the free sum μn = 1

N
〈TrHn〉 = 1

N
〈Tr(A + B)n〉

if one knows the spectral moments of A and B. The recipe
follows from the relations (13) and (14).

(1) Using (14) calculate RA(z) for given GA(z) and RB(z)
for GB(z).

(2) Construct the R transform RA+B(z) for the sum using
the addition law (21).

(3) Calculate GA+B(z) for RA+B(z) using (14) and calculate
spectral moments 〈Tr(A + B)n〉 and the spectral density of
A + B using (8).
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IV. NON-HERMITIAN RANDOM MATRICES

A. Preliminaries

We now briefly recall how to calculate the spectral density
of non-Hermitian random matrices using generalized Green’s
functions [12]. The crucial difference between the Hermitian
and non-Hermitian case comes from the fact that in non-
Hermitian random matrix models eigenvalues do not lie on
the real axis. In the large N limit they may accumulate
in two-dimensional domains in the complex plane, and the
corresponding eigenvalue density

ρ(z,z̄) = lim
N→∞

1

N

〈
N∑

i=1

δ(2)(z − λi)

〉
(22)

may become a continuous function with an extended support
in the complex plane. In particular, in stark contrast to
the Hermitian case, the moments μn = 1

N
〈TrXn〉 no longer

determine the eigenvalue density. If one wants to apply
the Green’s function formalism for (22) one has to find a
representation of the two-dimensional δ function rather than
one-dimensional one (5) that was discussed in the previous
section.

δ(2)(z − λi) = 1

π
lim
ε→0

ε2

(ε2 + |z − λi |2)2
. (23)

With help of this representation, one can write

ρ(z,z̄) = lim
ε→0

lim
N→∞

〈
1

N

N∑
i=1

ε2

(ε2 + |z − λi |2)2

〉
(24)

or

ρ(z,z̄) = 1

π

∂2F (z,z̄)

∂z∂z̄
, (25)

where

F (z,z̄) = lim
ε→0

lim
N→∞

〈
1

N

N∑
i=1

ln(|z − λi |2 + ε2)

〉
, (26)

or, equivalently,

F (z,z̄) = lim
ε→0

lim
N→∞

〈
1

N
Tr ln[(z1 − X)(z̄1 − X†) + ε21]

〉
.

(27)

One can interpret (25) as a Poisson equation for electrostatics,
where ρ(z,z̄) is a two-dimensional charge distribution and
F (z,z̄) is an electrostatic potential [25–27]. One can further
exploit the electrostatic analogy by introducing the corre-
sponding electric field which is equal to the Green’s function

G(z,z̄) ≡ ∂F

∂z
= lim

ε→0
lim

N→∞

〈
1

N
Tr

z̄1 − X†

(z̄1 − X†)(z1 − X) + ε21)

〉
(28)

up to a coefficient. F is a real function on the complex plane,
so it is a scalar field from the point of view of two-dimensional
electrodynamics while G is a complex function and a vector
field, respectively. The Poisson equation can be rewritten as a
Gauss law in two-dimensions,

ρ(z,z̄) = 1

π
∂z̄G(z,z̄). (29)

In the large N limit when the eigenvalues λi of the random
matrix coalesce in a certain region of the complex plane, the
Green’s function G(z,z̄) is no longer holomorphic. Actually,
as one can see from the Gauss law (29), the eigenvalue
distribution ρ(z,z̄) is related to the nonholomorphic behavior
of the Green’s function.

Let us make a few general remarks about the way we use this
electrostatic interpretation. In electrostatics one usually applies
the Gauss law to determine the electric field for a given charge
density. In our problem we proceed in the opposite direction.
We first calculate the Green’s function (electric field) and then
we use it to determine the eigenvalue density. Second, in order
to calculate the average (28) one has to take a double limit. It
is important to take it in the correct order: first to send N to
infinity and only then ε to zero, since if one took this limit in the
opposite order by first setting ε = 0 for a finite matrix, then the
expression in the brackets in (28) would reduce to 1/NTr(z1 −
X)−1. Finally, whenever we apply generating functions for
planar diagrams we can automatically take the limit ε → 0,
which trivially amounts to setting ε = 0, since the large N limit
(N → ∞) has already been taken by the planar approximation
used to write relations between generating functions for planar
diagrams.

Note that the Green’s function (28) is a complicated
object which does not resemble its Hermitian counterpart; in
particular, we cannot just apply the geometric series expansion
that was crucial for calculations in the Hermitian case (9). We
can, however, use a trick, invented in [12], which allows us
to apply the geometric series expansion but for an extended
2N × 2N matrix:

G(z,z̄) =
(G11 G11̄

G1̄1 G1̄1̄

)

=
〈

1

N
Trb2

(
z1 − X iε1

iε1 z̄1 − X†

)−1〉
, (30)

where we have introduced the block-trace operation

Trb2

(
X Y

Z V

)
2N×2N

≡
(

Tr X Tr Y

Tr Z Tr V

)
2×2

. (31)

which reduces 2N × 2N matrices to 2 × 2 ones. The elements
of G read explicitly

G11(z,z̄) =
〈

1

N
Tr

z̄1 − X†

(z̄1 − X†)(z1 − X) + ε21

〉
,

G11̄(z,z̄) =
〈

1

N
Tr

−iε1

(z1 − X)(z̄1 − X†) + ε21

〉
,

(32)

G1̄1(z,z̄) =
〈

1

N
Tr

−iε1

(z̄1 − X†)(z1 − X) + ε21

〉
,

G1̄1̄(z,z̄) =
〈

1

N
Tr

z1 − X

(z1 − X)(z̄1 − X†) + ε21

〉
.

In all these equations we tacitly assume the averages in the
right-hand side to be calculated in the double limit: first N →
∞ and then ε → 0. The indices 11, 11̄, 1̄1, and 1̄1̄ merely
reflect positions of blocks in the 2 × 2 matrix G. We see that
the upper-right G11 is equal to the Green’s function G(z,z̄) =
G11(z,z̄) (28). On the other hand, the main advantage of using

061125-5



Z. BURDA, R. A. JANIK, AND M. A. NOWAK PHYSICAL REVIEW E 84, 061125 (2011)

the matrix G is that it can be calculated using simple geometric
series expansion. Indeed, defining 2N × 2N matrices

Zε =
(

z1 iε1

iε1 z̄1

)
(33)

and

H =
(

X 0

0 X†

)
, (34)

we can see that the generalized Green’s function is given
formally by the same definition as the usual Green’s function
G but in the space of doubled dimensions

G(z,z̄) = lim
ε→0

lim
N→∞

1

N

〈
Trb2

1

Zε − H

〉
. (35)

For the sake of the argument we have written now the double
limit explicitly. As in the Hermitian case, the Green’s function
is completely determined by the knowledge of “generalized”
moments. They are now, however, matrix-valued,

lim
ε→0

lim
N→∞

1

N

〈
Trb2 Z−1

ε HZ−1
ε H . . .Z−1

ε

〉
, (36)

and are not easily related to the eigenvalue density. As before,
we now proceed by applying the diagrammatic techniques to
determine the non-Hermitian Green’s function. We begin by
writing equations for generating functions for planar diagrams.
In analogy to (10), we introduce the self-energy � but now as
a matrix-valued function

�(z,z̄) ≡
(

�11(z,z̄) �11̄(z,z̄)

�1̄1(z,z̄) �1̄1̄(z,z̄)

)
. (37)

As in the Hermitian case � is a generating function for one-line
irreducible diagrams. In general it is not diagonal. Formally, it
is related to the Green’s function as

G(z,z̄) = [Z − �(z,z̄)]−1, (38)

where Z is a diagonal 2 × 2 matrix,

Z =
(

z 0

0 z̄

)
, (39)

obtained from Zε by taking block trace and setting ε = 0. This
may be done since Eq. (38) is already in the limit N → ∞.
From here on we set ε = 0 in all equations.

An explicit solution for the Green’s function G(z,z̄) =
G11(z,z̄) takes therefore the following form:

G(z,z̄) = z̄ − �1̄1̄

(z − �11)(z̄ − �1̄1̄) − �11̄�1̄1
. (40)

We skipped arguments (z,z̄) of �’s on the right-hand side
to shorten the notation. The nondiagonal terms in (30) also
contain an interesting information [28]; namely, their product
is equal to the correlator between left (〈Li |) and right (|Ri〉)
eigenvectors of X, introduced originally in [29]

C(z,z̄) ≡ −G11̄G1̄1 = π

N

〈
N∑

i=1

〈Li |Li〉〈Ri |Ri〉δ(2)(z − λi)

〉
.

(41)

Since C(z,z̄) vanishes outside the eigenvalue support, and
for typical non-Hermitian ensembles is nonzero, the con-
dition C(z,z̄) = 0 often provides a convenient equation for
the boundary separating holomorphic and nonholomorphic
solutions of the spectral problem. Indeed, when off-diagonal
terms of � vanish, Eq. (40) simplifies to that for Hermitian
matrices G = 1/(z − �11).

As in the Hermitian case we can write an independent
equation relating G and �, a counterpart of (11). The R

transform, however, is now a more complicated object since it
maps a 2 × 2 matrix G onto a 2 × 2 matrix �,

�(z,z̄) = R(G(z,z̄)), (42)

or in an explicit notation(
�11(z,z̄) �11̄(z,z̄)

�1̄1(z,z̄) �1̄1̄(z,z̄)

)
=
(R11 (G(z,z̄)) R11̄ (G(z,z̄))

R1̄1 (G(z,z̄)) R1̄1̄ (G(z,z̄))

)
.

(43)

In order to complete the analogy to the Hermitian case we now
provide a diagrammatic interpretation of the last relation.

B. Planar Feynman diagrams for non-Hermitian matrices

We now discuss the diagrammatic method of calculat-
ing eigenvalue densities for non-Hermitian random matrices
generated by probability measures of the type P (X) ∼
exp[−NTrV (X,X†)] in the limit N → ∞, which as before
corresponds to the limit of planar diagrams. We consider
potentials given by sums of terms being alternating sequences
of powers of X and X† like XX†X2X† . . .. Such a potential
must be Hermitian [V (X,X†)]† = V (X,X†) to ensure that the
expression in the exponent is a real number. The first step
of the diagrammatic construction is to split the measure into
the Gaussian part and the residual one P (X) = P0(X)Pr (X)
and use P0(X) to calculate averages 〈· · ·〉0, which can be
represented as Feynman diagrams, exactly as for Hermitian
matrices (15). The Gaussian measure P0(X) ∼ e−NTrV0(X) is
constructed from a quadratic potential. The most general form
of a quadratic potential being a real number is TrV0(X) =
aTrXX† + bTr(X2 + X†2), with some real coefficients a,b.
The coefficients must be appropriately chosen to ensure the
potential be positive. The expression is manifestly positive
when expressed in new parameters σ,τ ∈ (−1,1),

P0(X) ∼ exp

{
− N

1

σ 2

1

1 − τ 2

×
[

TrXX† − τ
1

2
Tr(XX + X†X†)

]}
, (44)

as one can see, for example, by writing the corresponding
two-point correlation functions (propagators)

〈XabX
†
cd〉0 = 〈X†

abXcd〉0 = σ 2

N
δadδbc,

(45)

〈XabXcd〉0 = 〈X†
abX

†
cd〉0 = τ · σ 2

N
δadδbc.

The propagators represent elementary building blocks of
Feynman diagrams. As for Hermitian matrices the propagators
are proportional to δ functions, so after taking the block trace
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(c)

1 1 1 1 1 1 1 1 1 1 1 1

X X X X X X

(b)(a)

FIG. 6. Propagators for non-Hermitian models generated by
the Gaussian part of the measure (44). They are obtained by
identification X ↔ H11 and X† ↔ H1̄1̄ (34). This identification
induces the indexing of the end points marked as dots in the fig-
ure: (a) 〈XX†〉0 = 〈H11H1̄1̄〉0 = σ 2; (b) 〈XX〉0 = 〈H11H11〉0 = τσ 2;
(c) 〈X†X†〉0 = 〈H1̄1̄H1̄1̄〉0 = τσ 2.

we can reduce the problem to a 2 × 2 one with propagators
corresponding to XX†, X†X, XX, X†X†. The crucial step
in inferring the index structure of equations relating 2 × 2
matrices G and � is to use the correspondence between
X ↔ H11 and X† ↔ H1̄1̄, which follows from Eq. (34). Let
us do that. The two-point functions (45) reduce to propagators
represented by double arcs shown in Fig. 6.

The matrix Z−1 (39) generates lines between 11 vertices
which contribute 1/z and lines between 1̄1̄ which contribute
1/z̄, while there are no lines between mixed vertices. Using
these elementary blocks we can draw graphical equations as
those in Figs. 2 and 4. The only difference as compared to
the Hermitian case is that they are written for 2 × 2 matrices.
Each black dot in the diagrams in these figures is ascribed to an
index which may assume two values: either 1 or 1̄. Each pair of
neighboring dots on the horizontal line in Fig. 4 corresponds
to X or X† or to H11 or H1̄1̄, as follows from the assignment
(34). As an example, consider a spider diagram of order five
generated in the expansion shown in Fig. 4. Each leg of the
spider may be attached to X or X†, so on the horizontal line we
have a sequence of these symbols, for instance, XX†XXX†,
or equivalently, H11H1̄1̄H11H11H1̄1̄ (34). The corresponding
diagram is shown in Fig. 7.

In a shorthand notation the diagram is determined by a
sequence of pairs 11,1̄1̄,11,11,1̄1̄ on the horizontal line which
begins with 1 and ends with 1̄ so it contributes to �11̄, since the
corresponding diagram is one-line irreducible. As one can see
from the figure its contribution is proportional toG11̄G1̄1G11G11̄.
The indices of G bubbles are enforced by indices of the spider
legs; they must match the sequence on the horizontal line.

All such contributions are captured by a matrix valued func-
tion R(G), in this particular case by its element R11̄(G), which
contains contributions generated by sequences beginning with
1 and ending with 1̄. Each element of the matrix R(G) may
depend on all elements of the matrix G so this function maps

11
11 11 11GG G11

11 1 1 1 1 11
G

FIG. 7. Connected diagrams generated by the fifth-order planar
cumulant 〈〈XX†XXX†〉〉 (the head of the spider). These diagrams
contribute a factor G11̄G1̄1G11G11̄ to �11̄ = R11̄(G).

2 × 2 matrices onto 2 × 2 matrices and in general is highly
nontrivial (42). The exception is the Gaussian case for which
the map is linear.

For the purpose of this paper let us study the Gaussian case
in more detail. The most general Gaussian ensemble (44) leads
through (45) to (see Fig. 6)

R(G) =
(

�11 �11̄

�1̄1 �1̄1̄

)
=
(

τσ 2G11 σ 2G11̄

σ 2G1̄1 τσ 2G1̄1̄

)
. (46)

Let us now constrain ourselves to the so-called Ginibre-Girko
ensemble which corresponds to the case τ = 0 and σ = 1 in
(6), so the matrix � reads

R(G) =
(

�11 �11̄

�1̄1 �1̄1̄

)
=
(

0 G11̄

G1̄1 0

)
, (47)

where the off-diagonal contributions are analogous to the
relation R(G) = G for the Hermitian Gaussian ensemble.
Solving (38)–(47) determines the spectral problem for the
Ginibre-Girko ensemble. Inserting (47) into (38) we get(G11 G11̄

G1̄1 G1̄1̄

)
= 1

|z|2 − G11̄G1̄1

(
z̄ G11̄

G1̄1 z

)
. (48)

The equation for off-diagonal element reads

G11̄ = G11̄

|z|2 − G11̄G1̄1
. (49)

It has two solutions: one with G11̄ = 0 and the another one
with G11̄ �= 0. The first one leads to a holomorphic Green’s
function G = G11,

G(z) = 1

z
, (50)

while the second one leads to a nonholomorphic [see the upper
diagonal component of equation G ≡ G11 (48)],

G(z,z̄) = z̄, (51)

which gives the following eigenvalue density:

ρ(x,y) = 1

π

∂

∂z̄
G11(z,z̄) = 1

π
. (52)

Both solutions match at the boundary |z|2 = 1. So we have
recovered a known result that the complex eigenvalues of the
Ginibre-Girko ensemble are uniformly distributed on the unit
disk.

C. Addition law for non-Hermitian matrices

One can actually use exactly the same arguments as for
Hermitian matrices to deduce the law of free addition for non-
Hermitian matrices. It has a simple form given in terms of
matrix-valued R transforms:

RA+B(G) = RA(G) + RB(G), (53)

which follows from the fact that all mixed AB propagators
vanish and therefore all mixed connected diagrams having
a line between A and B vanish too. Since such diagrams
represent connected moments (free cumulants), for example,
1
N

〈〈AB2A†AB†〉〉 = 0, we see that the only nonzero contribu-
tions come from connected diagrams (moments) which either

061125-7



Z. BURDA, R. A. JANIK, AND M. A. NOWAK PHYSICAL REVIEW E 84, 061125 (2011)

have all A’s or all B’s. For applications and more details of
this generalized addition law we refer to [12–14].

V. MULTIPLICATION LAW

A. Preliminaries

The S transform plays the same role for matrix multipli-
cation as the R transform for addition. Assume that A and
B are large independent (free) random matrices given by a
product measure (18). The multiplication law tells us how
to calculate spectral moments 1

N
〈Tr(AB)n〉 of the product

H = AB provided we know the spectral moments of A and
B or equivalently that we know the corresponding Green’s
functions GA(z) and GB(z). The multiplication law, expressed
in terms of the S transform, reads [1]

SA·B(z) = SA(z)SB(z), (54)

and the S transform is defined by

S(z) = 1 + z

z
χ (z), where χ [zG(z) − 1] = 1

z
. (55)

The algorithm for “multiplication” is similar to that for
“addition”:

(i) calculate SA(z) and SB(z) using (55);
(ii) use the multiplication law (54);

(iii) use again (55) to derive GAB(z) for the product of AB.
Let us first derive some useful relations between the R and

the S transforms. Changing variables z = yG(y) − 1 in (55),
we get

S[yG(y) − 1] = 1

y − 1
G(y)

. (56)

Using (10) we can rewrite the last equation as

S[G(y)�(y)] = 1

�(y)
. (57)

Setting �(z) = R[G(z)] and taking the reciprocals of both
sides we arrive at

1

S{G(y)R[G(y)]} = R[G(y)]. (58)

Changing variables once again to z = G(y) we obtain the
equation

R(z) = 1

S[zR(z)]
, (59)

which gives an explicit relation between the R and the
S transforms. The S transform can be defined only if the
R transform does not vanish at the origin: R(0) �= 0. This
corresponds to random matrices with a nonvanishing first
moment (cumulant) 1

N
〈TrH 〉 = 1

N
〈〈TrH 〉〉 �= 0. Otherwise, the

S transform cannot be defined as a power series and all the
manipulations presented above break down. The last equation
can be inverted. Let us introduce a new variable y = zR(z).
Now (59) reads

S(y) = 1

R
(

y

R(z)

) = 1

R

(
y

R

(
y

R(z)

)) = 1

R

(
y

R

(
y

R(...)

)) , (60)

where z can be recursively eliminated by repeating the
substitution z = y

R(z) ad infinitum. This leads to a function
which is nested infinitely many times, forming a sort of
continued fraction. The last equation can alternatively be
written as

S(z) = 1

R[zS(z)]
, (61)

which is an inverse formula to (59). The two equations can
written in a symmetric way as mutually inverse maps

z = yS(y) and y = zR(z). (62)

As an example, we consider a shifted Gaussian random
matrix which has only two first nonvanishing cumulants. For
the standardized choice κ1 = κ2 = 1 the R transform reads
R(z) = 1 + z. Using (61) we obtain

S(z) = 1

1 + zS(z)
(63)

and, hence, S(z) = −1+√
1+4z

2z
.

B. Diagrammatic derivation of the multiplication law

We are now ready to diagrammatically derive the S trans-
form and the corresponding multiplication law. The argument
given below will turn out to be crucial for the generalization to
non-Hermitian matrices. The initial point of the construction is
to consider a 2N × 2N block matrix H and its even powers,1

H =
(

0 A

B 0

)
, H2k =

(
(AB)k 0

0 (BA)k

)
. (64)

The upper-left corner of H2k involves solely the powers of
AB, which we are interested in. In order to have an access to
the traces of individual blocks in the matrix we again apply the
block trace operation defined before. The upper-left corner of
the reduced matrix Trb2H2k is equal to Tr(AB)k , while that of
Trb2H2k+1 is equal to zero. So now the idea is to reformulate
the problem of calculating the Green’s function for the product

GAB(z) = 1

N

〈
Tr

1

z1 − AB

〉
(65)

as a problem of calculating the upper-left corner of the Green’s
function G(w) for the matrx H:

G(w) =
(G11(w) G12(w)

G21(w) G22(w)

)
= 1

N

〈
Trb2

1

w1 − H

〉
, (66)

where w is a complex number and 1 is a unity matrix of
dimensions 2N × 2N . One can easily check that

GAB(z = w2) = G11(w)

w
, (67)

since only every second (even) power of G(w) contributes
to the power expansion of G11(w), which is thus a power
expansion in z = w2.

1This should not be confused with the 2N × 2N block matrix
constructed for the non-Hermitian random matrix ensembles in
Sec. IV.
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The next step is to define self-energy �(w). It is a 2 × 2
matrix,

�(w) ≡
(

�11(w) �12(w)

�21(w) �22(w)

)
, (68)

that is related to the Green’s function as

G(w) = [w1 − �(w)]−1, (69)

in analogy to (10). All the matrices in the last equation are of
2 × 2 dimensions. This is the first Dyson-Schwinger equation.
To write down the second one—a counterpart of (11)—it is
convenient to use its diagrammatic representation as that in
Fig. 4. Instead of a scalar equation (11) we have a matrix
equation for 2 × 2 matrices G and � (66) and (68). Since we
now have 2 × 2 matrices it is crucial to work out the index
structure of the corresponding equation. This structure stems
from the correspondence A ↔ H12 and B ↔ H21 that follows
from the position of the blocks in H (64). Note the difference
to the case discussed in the previous section where we had
diagonal blocks (34).

The only nonvanishing cumulants are 1
N

〈〈TrHn
12〉〉 =

1
N

〈〈TrAn〉〉 ≡ κA,n or 1
N

〈〈TrHn
21〉〉 = 1

N
〈〈TrBn〉〉 ≡ κB,n, while

all mixed ones vanish, as we discussed in the previous section.
Due to this, the index structure of nonvanishing one-line-
irreducible diagrams is restricted to that shown in Fig. 8 and its
counterpart that is obtained by exchanging 1 ↔ 2 and A ↔ B.

The diagrammatic equations discussed in Fig. 8 can be
summarized as

�(w) =
(

0 RA[G21(w)]

RB[G12(w)] 0

)
. (70)

Inserting this into (69) yields(G11(w) G12(w)

G21(w) G22(w)

)

=
(

w −RA [G21(w)]

−RB [G12(w)] w

)−1

, (71)

which gives a direct relation between the Green’s function
G(w) and the R transform.

We now rewrite this equation in a way which explicitly
exhibits multiplicative structure. Note that in the following

+++=
Σ12

G21
G2121

21 1 2 1 2 2 2 2 211 11

κ κA1 A3A2 κ

G

FIG. 8. The spider diagrams correspond to free cumulants gen-
erated by the matrix A = H12 and therefore the double dots on the
horizontal line are indexed by 12. So on the horizontal line we have
alternating indices 1212 . . . 12 and this enforces all the G bubbles
to have indices 21 as one can see in the figure. Therefore, there
are only G21 bubbles in the diagram and the corresponding equation
is �12(w) = RA(G21). The analogous equation for B cumulants is
�21(w) = RB (G12). Similarly, one can see that �11(w) = �22(w) =
0, since one of the double dots on the horizontal line would need to
have identical indices, for which, as we know from (64), the double
line is equal zero.

manipulations we do not need to assume anything about the
first moment, that is, whether the ensemble is centered or not.
Inverting the matrix on the right-hand side, we obtain

G12(w) = 1

Det
RA[G21(w)], G21(w) = 1

Det
RB[G12(w)],

(72)

G11(w) = G22(w) = w

Det
, (73)

where Det is the determinant of the matrix, w1 − �(w), on
the right-hand side of (71):

Det = w2 − RA[G21(w)]RB[G12(w)]. (74)

Inserting two last equations into (67) we obtain

GAB(z) = G11(w)

w
= 1

Det
= 1

z − RA[G21(w)]RB[G12(w)]
,

(75)

where z = w2. Comparing the denominator in this equation to
that of the standard equation GAB(z) = 1/[z − RAB(GAB(z))]
(13), we get

RAB[GAB(z)] = RA[G21(w)]RB[G12(w)]. (76)

At this stage we see the first hint of a multiplicative structure
emergence. In order to complete this equation we also need
(72). Let us set g = GAB(z), gA = G12(w), and gB = G21(w)
to simplify arguments in the R transforms in the last equation.
Using this substitution we can write (76) and (72) in a compact
form as a closed set of equations for the R transform of the
product

RAB(g) = RA(gB)RB(gA) (77)

and

gA = gRA(gB), gB = gRB(gA), (78)

which is equivalent to (3) presented at the beginning of the
paper. This is the multiplication law formulated in terms of
the R transform. Its main advantage in comparision to the S

transform is that it can be applied even to centered ensembles
(i.e., having vanishing mean), including the case when both
are centered (see the examples in Secs. VI A and VI B).

The difference with respect to the conventional multipli-
cation law SAB(z) = SA(z)SB(z) is that the individual factors
appearing in (77) are not expressed uniquely in terms of the
properties of a single random matrix ensemble; for example,
the factor RA(·) is evaluated on gB which is related to the
ensemble B. However, it is straightforward to obtain from (77)
and (78) the conventional multiplication law, as we illustrate
below.

Let us introduce a new variable y = gRAB(g). We can
now express gB—the argument of RA—purely in terms of RA

and y:

gB = gRB(gA) = g
RAB(g)

RA(gB)
= y

RA(gB)
= y

RA

(
y

RA(···)
) . (79)
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Similarly we can express gA being an argument of RB in (77)
by RB and y. We may do the same also on the left-hand side,
which becomes (60)

RAB

(
y

RAB(g)

)
= RAB

(
y

RAB

(
y

RAB (···)
)) = 1

SAB(y)
. (80)

Putting these formulas together, we can finally write (77) using
only the variable y [30],

RAB

(
y

RAB

(
y

RAB (···)
)
)

= RA

(
y

RA

(
y

RA(···)
)
)

RB

(
y

RB

(
y

RB (···)
)
)
,

(81)

which amounts to the standard formulation for the multiplica-
tion law [1], as follows from (60)

SAB(y) = SA(y)SB(y). (82)

The necessity of assuming noncentered distributions comes
from the fact that the implicit continued fractions appearing
in (60) make sense only for R(z) = κ0 + κ1z + . . . (12), with
nonzero constant term κ0 �= 0 [31].

C. Multiplication law for non-Hermitian matrices

In order to derive the multiplication law for non-Hermitian
matrices we combine the two formalisms outlined in previous
sections. First we define a 2N × 2N matrix D in analogy to
(64),

D =
(

0 A

B 0

)
2N×2N

, (83)

and then duplicate it using (34) to obtain an extended Green’s
function for non-Hermitian matrices. This technique has been
introduced in [21] and used for specific ensembles [19,21]. In
this paper we use it to obtain a multiplication law for arbitrary
(free) non-Hermitian matrices.2

This procedure leads to a fourfold matricial structure
(“double doubling”) where the primary object is a 4N × 4N

matrix,

H =
(D 0

0 D†

)
=

⎛
⎜⎜⎜⎝

0 A 0 0

B 0 0 0

0 0 0 B†

0 0 A† 0

⎞
⎟⎟⎟⎠

4N×4N

, (84)

and the corresponding Green’s function

G(w,w̄) =

$⎡
⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎝

w1 0 0 0

0 w1 0 0

0 0 w̄1 0

0 0 0 w̄1

⎞
⎟⎟⎟⎠

2To remind the reader, “free” means essentially that the probability
distributions of the two ensembles are independent and that we take
the N → ∞ limit.

−

⎛
⎜⎜⎜⎝

0 A 0 0

B 0 0 0

0 0 0 B†

0 0 A† 0

⎞
⎟⎟⎟⎠
⎤
⎥⎥⎥⎦

−1
%

. (85)

Using the block-trace operation tr b4, we reduce the problem
to calculations for 4 × 4 matrices,

G(W) ≡

⎛
⎜⎜⎜⎜⎝
G11 G12 G11̄ G12̄

G21 G22 G21̄ G22̄

G1̄1 G1̄2 G1̄1̄ G1̄2̄

G2̄1 G2̄2 G2̄1̄ G2̄2̄

⎞
⎟⎟⎟⎟⎠

4×4

= 1

N
tr b4G(w,w̄),

(86)

where W = diag(w,w,w̄,w̄). The labeling of the matrix
elements follows the convention adopted in the previous
sections. Similarly, we define a self-energy �(W) as a 4 × 4
matrix:

G(W ) = [W − �(W)]−1, (87)

which is related to a 4 × 4 matrix representing the generalized
R transform:

�(W) = R[G(W)]. (88)

The elements of � and R are indexed in the same way as the
elements of G (86).

We exploit these 4 × 4 matrices as auxiliary objects to
derive relations between 2 × 2 Green’s functions GA(Z),
GB(Z), and GM (Z) for A, B and the product M = AB. The
naming convention for elements of 2 × 2 matrices,

GA(Z) =
(G(A)11 G(A)11̄

G(A)1̄1 G(A)1̄1̄

)
, (89)

is a bit inconvenient since it requires three subscripts for each
element. To avoid multiple subscripts like (A)11̄ we introduce
a shorthand notation substituting multiple indices like (A)11̄
by AĀ, etc. In this new notation a double subscript identifies
both the matrix for which the generating function is calculated
and the position of the element. Using this convention we have

GA(Z) =
(GAA GAĀ

GĀA GĀĀ

)
(90)

and similarly for two remaining generating functions,

�A(Z) =
(

�AA �AĀ

�ĀA �ĀĀ

)
, RA(G) =

(RAA RAĀ

RĀA RĀĀ

)
.

(91)

We use the same convention for all matrices, including B

and M . For brevity we skipped the arguments of the matrix
elements on the right-hand side of the equations above. We
tacitly assumed that they are identical to those on the left-hand
side. We frequently use this shorthand notation below.

To summarize the notation, RM denotes a 2 × 2 matrix
of the R transform for M while RMM denotes its upper-left
element, etc. For 4 × 4 matrices like G(W), �(W), and R(G)
we instead use the indexing as in (86) which uniquely identifies
the positions of elements in such 4 × 4 matrices. The link
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between the two conventions emerges from Eq. (84)

H ≡

⎛
⎜⎜⎜⎜⎝
H11 H12 H11̄ H12̄

H21 H22 H21̄ H22̄

H1̄1 H1̄2 H1̄1̄ H1̄2̄

H2̄1 H2̄2 H2̄1̄ H2̄2̄

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

0 A 0 0

B 0 0 0

0 0 0 B†

0 0 A† 0

⎞
⎟⎟⎟⎠
(92)

that allows us to identify A ↔ H12, A† ↔ H2̄1̄ and B ↔ H21,
B† ↔ H1̄2̄. We use this identification below to rewrite Eq. (88)
in terms of 2 × 2 matrices. We begin by noting that even
powers H2k of H (92) generate powers Mk of the product
M = AB in the upper-left corner of the block matrices,

H2k =

⎛
⎜⎜⎜⎜⎝

(AB)k 0 0 0

0 (BA)k 0 0

0 0 (AB)†k 0

0 0 0 (BA)†k

⎞
⎟⎟⎟⎟⎠ . (93)

These moments are generated by the element G11(W) of the
4 × 4 Green’s function G(W) (86) or alternatively by the
element GMM (Z) of the 2 × 2 Green’s function GM (Z), so
we have

GAB(z,z̄) = GMM (Z) = G11(W)

w
, (94)

where Z = diag(z,z̄), W = diag(w,w,w̄,w̄), and z = w2,
analogously to (67). This equation allows us to determine
Green’s function GAB(z,z̄) and additionally provides a link
betweenGM andGA andGB since elements of the 4 × 4 Green’s
function G can be explicitly expressed in terms of GA and GB ,
as we see below using planar Feynman diagrams.

First, we recall that all mixed connected diagrams vanish
since AB propagators are equal to zero. The last statement
means that there are no direct lines in the diagram connecting
A and B vertices. All nonvanishing connected diagrams
are either of A type, like 〈〈 1

N
trAA†AA . . .〉〉, or B type,

like 〈〈 1
N

trBB†BB . . .〉〉. They are generated by alternating
sequences of either A and A† or B and B†, but not mixed ones.
In other words, there are only A-spider or B-spider diagrams.
In the H notation the first type is generated by sequences of
H12 and H2̄1̄, while the second type is generated by sequences
of H21 and H1̄2̄, as follows from the correspondence (92). We
show in Fig. 9 an example of a diagram contributing to the
left-hand side of Eq. (88).

More generally, diagrams with an A spider have on the hor-
izontal line alternating sequences like H12H2̄1̄H2̄1̄H12H12 . . .,
which are sandwiched by G22̄, G1̄2̄, G1̄1, G21, . . ., which match
the index sequence. The leftmost index in the sequence of H’s
may be equal to 1 or 2̄ and the rightmost may be equal to 2
or 1̄, so the corresponding diagrams contribute to �12, �11̄,
�2̄2, or �2̄1̄. Diagrams with a B spider have sequences like
H21H1̄2̄ . . .H21, etc., whose leftmost index is either 2 or 1̄
and the rightmost index is either 1 or 2̄, so the corresponding
diagrams contribute to �21, �22̄, �1̄1, or �1̄2̄. All others �’s
must be equal zero,

�11 = �22 = �1̄1̄ = �2̄2̄ = 0,
(95)

�12̄ = �21̄ = �1̄2 = �2̄1 = 0,

A

12 21GG GG22 11

2 121 2 1 1 1 22

FIG. 9. An example of an A-spider connected diagram. Such
diagrams are generated by sequences of A and A† which, due to the
correspondence (92) A ↔ H12, A† ↔ H2̄1̄, generate sequences of
pairs 12 and 2̄1̄. In this example we have a sequence 12,2̄1̄,2̄1̄,12,12
which begins with the index 1 and ends with 2. It contributes to
�12 = R12(G), a product of G22̄, G1̄2̄, G1̄1, G21, which can be read off
from the picture by matching the indices on the horizontal line.

since there are no mixed AB spiders. Coming back to the
equations for �12, �11̄, �2̄2, �2̄1̄ generated by the A spider
we notice that the indices of the G bubbles which enter the
sandwich between the spider legs have complementary indices
G22̄, G1̄2̄, G1̄1, G21 as compared to those of �’s. The same holds
for equations for indices of G’s and �’s generated by the B

spider. Moreover, if we compare indices of �’s for A spiders
to G’s for B spiders we see they are identical, and the same
holds for �’s for B spiders and G’s for A spiders. All these
observations can be concisely summarized by the following
equation:

� =

⎛
⎜⎜⎜⎜⎝

0 �AA �AĀ 0

�BB 0 0 �BB̄

�B̄B 0 0 �B̄B̄

0 �ĀA �ĀĀ 0

⎞
⎟⎟⎟⎟⎠ . (96)

The matrix has eight zeros, which correspond to (95). The
remaining eight elements can be grouped in two groups of
four elements, each of which can be mapped into a 2 × 2
matrix. More precisely, the matrix � of dimensions 4 × 4 is
expressed in terms of 2 × 2 generating functions R and G for
A and B:

�A =
(

�AA �AĀ

�ĀA �ĀĀ

)

=
(RAA(GB) RAĀ(GB)

RĀA(GB) RĀĀ(GB)

)
= RA(GB) (97)

and

�B =
(

�BB �BB̄

�B̄B �B̄B̄

)

=
(RBB(GA) RBB̄(GA)

RB̄B(GA) RB̄B̄(GA)

)
= RB(GA). (98)

The argument of RA in �A = RA(GB) is GB , while the
argument of RB in �B = RB(GA) is GA, as argued above,
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where

GA =
(G12 G11̄

G2̄2 G2̄1̄

)
, GB =

(G21 G22̄

G1̄1 G1̄2̄

)
. (99)

So far we have used diagrammatic properties of Eq. (88). Now
we can also exploit the second equation (87). Inverting the
matrix on the left-hand side of this equation for the particular
form (96) we can find elements of G as functions of �’s. In
particular, the equation for G11 is

G11 = ww̄2 − w̄�ĀA�BB̄ − w�ĀĀ�B̄B̄

det(W − �)
, (100)

where

det(W − �) = w2w̄2 − w2�ĀĀ�B̄B̄ − w̄2�AA�BB

+ (�AĀ�ĀA − �AA�ĀĀ)

× (�BB̄�B̄B − �BB�B̄B̄)

−w̄w(�AĀ�B̄B + �ĀA�BB̄). (101)

Now we can use (94) to compare G11/w that follows from
(100) to GMM

GMM = z̄ − �M̄M̄

det(Z − �M )
, (102)

where

�M = (z − �MM )(z̄ − � ¯MM ) − �MM̄�M̄M (103)

and z = w2. From this comparison we can deduce relations
between �M and �A and �B . The numerators of expressions
for G11/w and of GMM are equal if

�M̄M̄ = w̄

w
�ĀA�BB̄ + �ĀĀ�B̄B̄ (104)

and the denominators (101) and (103) if

(w2 − �MM )(w̄2 − �M̄M̄ ) − �MM̄�M̄M

= w2w̄2 − w2�ĀĀ�B̄B̄ − w̄2�AA�BB

+ (�AĀ�ĀA − �AA�ĀĀ)(�BB̄�B̄B − �BB�B̄B̄)

− w̄w(�AĀ�B̄B + �ĀA�BB̄). (105)

One can check that the two equations are simultaneously
fulfilled if

�MM = �AA�BB + w

w̄
�AĀ�B̄B,

�MM̄ =
√

w̄

w
�AA�BB̄ +

√
w

w̄
�AĀ�B̄B̄,

(106)

�M̄M =
√

w̄

w
�ĀA�BB +

√
w

w̄
�ĀĀ�B̄B,

�M̄M̄ = �ĀĀ�B̄B̄ + w̄

w
�ĀA�BB̄.

Remarkably, these equalities can be written in a factorizable
matrix form as

�M ≡
(

�MM �MM̄

�M̄M �M̄M̄

)

=
⎛
⎝�AA

√
w
w̄
�AĀ√

w̄
w
�ĀA �ĀĀ

⎞
⎠ ·

(
�BB

√
w̄
w
�BB̄√

w
w̄
�B̄B �B̄B̄

)

≡ �L
A�R

B . (107)

In order to simplify the notation it is convenient to introduce a
2 × 2 unitary diagonal matrix U ,

U ≡
((

w
w̄

)1/4
0

0
(

w̄
w

)1/4

)
=
(

e+i
ψ

2 0

0 e−i
ψ

2

)
, (108)

where the angle ψ is the phase of w: w = |w|eiψ . Note that
w is related to the original variable z as z = w2, so Arg z = 2
Arg w. Using this matrix we can associate with any matrix X

two similar matrices XL and XR obtained by “left and right U

rotations” of the matrix in question

XL ≡ [X]L = UXU †, XR ≡ [X]R = U †XU. (109)

In particular,

�L
A ≡ [�A]L = U�AU †, �R

A ≡ [�B]R = U †�BU. (110)

The operations [· · ·]L and [· · ·]R obey simple rules, such as

[XY ]L = [X]L[Y ]L = XLYL,
(111)

[X−1]L = ([X]L)−1, X = [[X]L]R,

which we frequently use below.
Now we come to the main result of the paper. Recalling

that �A = RA(GB) and �A = RA(GB), we have (107)

RM (GM ) = [RA(GB)]L · [RB(GA)]R. (112)

This equation is a cornerstone of the matrix multiplication
for non-Hermitian matrices. Let us note the similarity with
the corresponding equation for the Hermitian case (77), albeit
with two key differences. First, the objects appearing in (112)
are generically noncommuting 2 × 2 matrices and hence the
ordering is crucial. Second, the left and right U rotations have
no analog in the scalar Hermitian case.

In fact, to arrive at this point we have only taken advantage
of the equations for the element G11 of the 4 × 4 Green’s
function. Inverting the matrix on the right-hand side of (87)
for � given by (96) we can relate remaining elements of G
to the elements of 2 × 2 �’s and R’s. In particular, we can
write equations for elements G12, G11̄, G2̄2, and G2̄1̄ which,
as we know (99), form a 2 × 2 matrix corresponding to the
Green’s function GA and similarly for G21, G22̄, G1̄1, and G1̄2̄
corresponding to GB . This allows us to express GA and GB in
terms of �A and �B . After some straightforward but tedious
algebra we arrive at remarkably simple equations which again
are analogous to the Hermitian equations (78) but with specific
ordering and appropriate U rotations,

GA = [GM · [RA(GB)]L]L, GB = [[RB(GA)]R · GM ]R.

(113)
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The set of Eqs. (112) and (113) gives the multiplication law for
non-Hermitian matrices and constitutes one of the main results
of this work, as mentioned at the beginning of the paper (4).

These equations are in one-to-one correspondence to (77)
and (78), except that now, instead of complex numbers gM ,
gA, and gB , we have 2 × 2 matrices GM , GA, and GB and the
additional U rotations. The logic of the method to calculate the
Green’s function for the product M = AB is the same as for
Hermitian matrices; that is, for givenGA andGB one determines
the matricial R transforms RA and RB and then applies (112)
and (113) to derive the Green’s function for M . We present
examples in the next section. Before doing that let us show
how these equations can be reformulated in terms of a non-
Hermitian generalization of the S transform.

D. S transform for non-Hermitian matrices

It is natural to anticipate that the S transform for non-
Hermitian matrices has a form of a 2 × 2 matrix. It will, how-
ever, appear in two different “left” and “right” versions, since
2 × 2 matrices do not commute in general. To demonstrate
this, we repeat the arguments which have guided us from (77)
and (78) to (82), but now we adapt the reasoning to the case
of 2 × 2 matrix-valued transforms.

The first step is to eliminate GB and GA from the right-
hand side of (112) and substitute them by GM in order to
have the same argument on both sides of the equation. To
make the following equations slightly more readable we skip
the subscript M of GM , writing G ≡ GM , and we denote the
inverse matrix of a matrix X as 1

X
rather than X−1 to avoid too

many superscripts. Using (113) and (112) we have

GB = [RR
B(GA)G

]R =
[

1

RL
A(GB)

RM (G)G
]R

. (114)

This is an equation for GB , but GB is also present on the
right-hand side. We can, however, eliminate GB by replacing
it recursively with the right-hand side and repeating this
infinitely many times. In this way, we obtain a nested
expression (denoted below by dots),

GB =
[

1

RL
A(· · ·)RM (G)G

]R

, (115)

that depends on G and not on GB . Thus, we can write the first
factor, RL

A(GB), on the right-hand side of (112) as a function
of G:

RL
A(GB) = RL

A

([
1

RL
A(· · ·)RM (G)G

]R)
= 1

S (L)
A [RM (G)G]

,

(116)

where S (L) is a left S transform defined as

S (L)(Y) = 1

RL
([

1
RL(···)Y

]R) . (117)

Let us make two further remarks concerning the notation. In
the last equation we skipped the subscript A of S and R since
the relation is valid for any matrix. The superscript (L) of S is
used on purpose in parentheses to distinguish it from L and to

emphasize that the left S transform is not a left rotation of the
S transform S (L) �= [S]L ≡ USU †, in contrast to the notation
RL = [R]L. The function S(L) is just defined by the equation
above. This equation is equivalent to

S (L)(Y) = 1

RL([S (L)(Y)Y]R)
(118)

and

RL(Y) = 1

S (L)([R(Y)Y]L)
, (119)

in analogy to the Hermitian case discussed in Sec. V A. Now
we can repeat all the steps for the second factor on the right-
hand side of (112). The result can be written using a right
S transform, which is given by two equivalent, reciprocal,
equations analogous to those of the left S transform above:

S (R)(Y) = 1

RR([YS (R)(Y)]L)
(120)

or

RR(Y) = 1

S (R)([YR(Y)]R)
. (121)

Using the left and right S transforms, we can write (112) in a
concise form,

1

RM (G)
= S (R)

B [GRM (G)] · S (L)
A [RM (G)G], (122)

that depends on G on both sides. This is an equation for the R

transform RM (G), which, in turn, determines the generalized
Green’s function giving the eigenvalue density.

Let us rewrite now the left-hand side using either Eq. (119)
or Eq. (121),[

S (L)
M ([R(G)G]L)

]R = [S (R)
M ([GR(G)]R)

]L
= S (R)

B [GRM (G)] · S (L)
A [RM (G)G],

(123)

which now (almost) takes the form of a multiplication law forS
transforms with the only subtlety being the noncommutativity
of the arguments.

In the special case when G and R(G) commute,

[G,RM (G)] = 0, (124)

we get a direct analog of the Hermitian multiplication law
for S transforms since all functions are evaluated on the same
argument Y = GR(G) = R(G)G. In this case it would make
sense to introduce yet another S transform,

R(Y) = 1

S[R(Y)Y]
, (125)

which does not involve any left or right U rotation. It is easy
to see that in this case Eq. (122) can be rewritten as

S(Y) = S (R)
B (Y) · S (L)

A (Y). (126)

One should note that the 2 × 2 formalism, which has been
developed here for non-Hermitian random matrix ensembles,
contains also the standard Hermitian case. For Hermitian
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matrices, namely, the Green’s functions and the R transforms
reduce to diagonal matrices

G(Z) =
(
G(z) 0

0 Ḡ(z)

)
, R(G) =

(
R(G) 0

0 R̄(G)

)
. (127)

Moreover, G = GL = GR , R = RL = RR because the matrix
U that defines the left and right rotations (109) is diagonal
too and the product of the diagonal elements gives one. It
follows also that S = S (R) = S (L) and that the S transform is
diagonal S(Z) = diag[S(z),S̄(z)] too. Therefore, in this case
(122) takes a diagonal from,(

SM (z) 0

0 S̄M (z)

)
=
(

SA(z)SB(z) 0

0 S̄A(z)S̄B(z)

)
, (128)

that is equivalent to (82).

VI. EXAMPLES

In this section we illustrate our methods by presenting
three examples. We start from two examples which cannot
be treated, even in the Hermitian case, by the conventional S

transform treatment as both of the random matrix factors of
the product are centered. Finally, we treat a more complicated
example of obtaining a nontrivial two-dimensional eigenvalue
distribution for a product of two simple factors.

A. Product of two free Ginibre-Girko matrices

Let us first consider the product M = AB of two identically
distributed free Ginibre-Girko matrices: A and B. Throughout
this section we parametrize matrix elements of the 2 × 2
Green’s functions (30) with two complex functions a = a(z,z̄)
and b = b(z,z̄),

G =
(G11 G11̄

G1̄1 G1̄1̄

)
=
(

a ib

ib̄ ā

)
. (129)

The R transform for a Ginibre-Girko matrix reads (47)

R(G) = R
((

a ib

ib̄ ā

))
=
(

0 ib

ib̄ 0

)
(130)

and its left and right versions

RL(G) =
(

0
√

w̄
w
ib√

w
w̄
ib̄ 0

)
,

(131)

RR(G) =
⎛
⎝0

√
w
w̄
ib√

w̄
w
ib̄ 0

⎞
⎠ ,

respectively. We recall that w is related to z as z = w2. Let us
now apply the multiplication law for M = AB, where A and
B are Ginibre-Girko matrices with unit variance. Using (112)
we have

RM =
⎛
⎝ 0

√
w
w̄
ibB√

w̄
w
ib̄B 0

⎞
⎠(0

√
w̄
w
ibA√

w
w̄
ib̄A 0

)

=
(

−w
w̄
bBb̄A 0

0 − w̄
w
b̄BbA

)
. (132)

Since both A and B are identically distributed they have
identical Green’s function, we can thus reduce the problem
by introducing a single function b = bA = bB :

RM =
(

−w
w̄
|b|2 0

0 − w̄
w
|b|2
)

. (133)

We can now use the two remaining equations of the multipli-
cation law (113), which can be conveniently written as

G−1
M [GA]R = [RA(GB)]L, [GB]LG−1

M = [RB(GA)]R. (134)

In case of identically distributed A and B one of the two
equations is redundant and thus it is sufficient to use only one
of them, for instance, the first one. We first eliminate GM from
this equation by using the relation G−1

M = Z − RM with RM

given by (133):

(Z − RM )[GA]R = [RA(GB)]L. (135)

This is an explicit equation for a and b,(
w2 + w

w̄
|b|2 0

0 w̄2 + w̄
w
|b|2
)(

a

√
w̄
w
ib√

w
w̄
ib̄ ā

)

=
⎛
⎝ 0

√
w
w̄
ib√

w̄
w
ib̄ 0

⎞
⎠ . (136)

It can be easily solved. It has two solutions: a trivial and
a = b = 0 and a nontrivial one a = 0, |b|2 = 1 − ww̄. The
latter one is equivalent to a = 0 and |b|2 = 1 − √

zz̄ when
expressed in the variable z = w2. This solution holds inside
the unit circle: zz̄ � 1 on the z complex plane while the trivial
one holds outside. The boundary of the eigenvalue distribution
in the z plane is given by the condition b = 0 for the nontrivial
solution, which leads to the unit circle. Inserting these solutions
to (133) and calculating GM we find

GM (z,z̄) =
⎛
⎝
√

z̄
z

0

0
√

z
z̄

⎞
⎠ , for |z| � 1, (137)

or

GM (z,z̄) =
(

z−1 0

0 z̄−1

)
, for |z| � 1, (138)

from which we obtain a rotationally symmetric eigenvalue
density for |z| < 1,

ρ(x,y) = 1

π

∂

∂z̄
G(z,z̄) = 1

2π

1

|z| , (139)

inside the unit circle and ρ(x,y) = 0 outside. We remind the
reader that G(z,z̄) is equal to the upper-left element GMM

of GM .

B. Product of two free GUE matrices

We would like to discuss a simple but very interesting case
of the product M = AB of two matrices from the GUEs.
Both A and B are Hermitian but their product is not. Since
both matrices have a vanishing mean the traditional use of S

transform leads to contradiction, as shown in [18]. However,
our algorithm works in this case without any problems.
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Before we apply the full non-Hermitian version of the
multiplication law, let us check what happens if one applies its
Hermitian version given by Eqs. (77) and (78). One can do this
since A and B are Hermitian. However, the result for GM (z)
can be interpreted only as a moments’ generating function but
not as a full Green’s function. In particular, one cannot use it
to reconstruct the eigenvalue density (8) since the eigenvalues
are not constrained to the real axis.

For a standardized GUE matrix we have R(z) = z and thus
the multiplication law (77) and (78) simplifies to

RM (g) = gBgA, gA = ggB, gB = ggA. (140)

The two latter relations yield an equation gA = g2gA. Its
solution is gA = 0 giving RM (g) = 0 and, hence,

GM (z) = 1

z
. (141)

The moments mk are given by coefficients at 1/zk+1 of the 1/z

expansion of GM (z). We see that they all vanish except the
trivial one m0 = 1

N
〈trM0〉 = 1. Of course, it does not mean

that all eigenvalues of M vanish. In order to determine the
eigenvalue density of M one has to apply the full multiplication
law in the domain of non-Hermitian matrices (112) and (113).
The calculation goes along the same lines as in the previous
example except that now instead of (130) the R transform is

R(G) = R
((

a ib

ib̄ ā

))
=
(

a ib

ib̄ ā

)
= G, (142)

as follows from (46) for τ = 1. It is easy to see that the solution
is exactly the same as in the previous example since for a = 0
(which was a solution) all equations reduce to those for the
previous case. This result is in agreement with the recent works
[19,20,22]. Actually, one can see that the same holds for any
elliptic ensemble with

R(G) = R
((

τa ib

ib̄ τ ā

))
=
(

τa ib

ib̄ τ ā

)
= G, (143)

since again for a = 0 the equations are identical as before.
Again, this is in agreement with [19], where it was shown
that even for A and B being from different elliptic ensembles
(τA �= τB or τA = τB) one obtains the same circular law (139).

C. Pascal limaçon

We shall calculate now the eigenvalue distribution of the
product of two shifted Ginibre-Girko matrices M = AB =
(1 + XA)(1 + XB), where XA and XB are free Ginibre-Girko
complex matrices. The main difference to the cases discussed
before is that the multiplied matrices A and B are not centered;
〈 1

N
trA〉 = 1 and 〈 1

N
trB〉 = 1, so their first moments (cumulant)

are not zero:

RA(GB) = RA

((
aB ibB

ib̄B āB

))
=
(

1 ibB

ib̄B 1

)
,

(144)

RB(GA) = RB

((
aA ibA

ib̄A āA

))
=
(

1 ibA

ib̄A 1

)
.

Since A and B are identically distributed we set b = bA = bB

as in the previous examples. Using (112) we have

RM =
⎛
⎝ 1 − w

w̄
|b|2 ib

(√
w̄
w

+√w
w̄

)
ib̄
(√

w̄
w

+√w
w̄

)
1 − w̄

w
|b|2

⎞
⎠ . (145)

Inserting this to (135) we obtain an explicit equation⎛
⎝w2 − 1 + w

w̄
|b|2 −ib

(√
w̄
w

+√w
w̄

)
−ib̄

(√
w̄
w

+√w
w̄

)
w̄2 − 1 + w̄

w
|b|2

⎞
⎠

×
(

a

√
w̄
w
ib√

w
w̄
ib̄ ā

)
=
⎛
⎝ 1

√
w
w̄
ib√

w̄
w
ib̄ 1

⎞
⎠ , (146)

which reduces to two equations for a and |b|2:

a

(
w2 − 1 + |b|2 w

w̄

)
+ |b|2

(
1 + w

w̄

)
= 1

(147)

−a

(
1 + w

w̄

)
+ w

w̄
(w̄2 − 1) + |b|2 = 1.

This set of equations has a trivial solution: b = 0 and
a = 1/(w2 − 1) and a nontrivial one that can be found by
eliminating a from the last set of equations. This gives an
equation for C = |b|2 (41):

C2 + C(1 + 2|w|2) + |w|4 − |w|2 − w̄2 − w2 = 0. (148)

The borderline between the two solutions can be found by
setting C = 0 in the last equation [21]:

w̄2w2 − w̄w = w2 + w̄2. (149)

It represents a curve on the z plane called Pascal’s limaçon,
after Etienne Pascal (1588–1651), the father of Blaise Pascal.

FIG. 10. (Color online) The eigenvalue density of the product of
two shifted Ginibre-Girko matrices. It is nonzero in the region r �
1 + 2 cos φ. The density is peaked around the origin. The maximum of
the function is located at the origin: ρ(x = 0,y = 0) = 6

π
≈ 1.909 86,

while the minimum at the point x = 3,y = 0: ρ(x = 3,y = 0) =
9π

56 ≈ 0.051 156 9.
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FIG. 11. (Color online) (a) The contour of the Pascal’s limaçon r = 1 + 2 cos φ (150) (solid line) and the scattered plot of eigenvalues
obtained by diagonalization of 100 matrices of dimensions 100 × 100. One should note that the boundary of the support is formed only by
the external part of the Pascal’s limaçon, which corresponds to φ ∈ [−2π/3,2π/3]. The remaining part of the limaçon lies inside the support.
(b) A numerical histogram (solid line) constructed from almost real eigenvalues (whose imaginary part is less than ε = 10−2) obtained by the
diagonalization of 20 000 matrices of size 100 × 100. It is compared to the section of the analytic eigenvalue density ρ along the real axis
(dashed line). The deviations between the numerical histogram and the theoretical curve are caused by finite size effects.

It has a more familiar form in polar coordinates on the z plane:
w2 ≡ z = r exp iφ:

r = 1 + 2 cos φ. (150)

It is a particular case of the trisectrix. The trivial solution holds
outside the Pascal’s limaçon while the nontrivial holds inside.
For the trivial solution the Green’s function is G = GMM = 1/

(z − 1) and thus ρ(x,y) = 0. The nontrivial solution can be
found by inverting GM = (Z − RM )−1 for RM (145). The
Green’s function is given by the upper-left element of GM ,

G = GMM

= w̄2 − 1 + w̄
w
C(

w2 − 1 + w
w̄
C)(w̄2 − 1 + w̄

w
C
)+ C

(
w̄
w

+ 2 + w
w̄

) ,
(151)

with C being a solution of (148), and again agrees with [21].
One can write the solution in polar coordinates on the z plane:
z = reiφ as

G ≡ Gx − iGy = (r + C) cos φ − 1

D
− i

(r + C) sin φ

D
,

(152)

where C and D are real non-negative functions

C = 1
2 (−1 − 2r + √

1 + 8r(1 + cos φ)) (153)

and

D= [(r + C) cos φ − 1]2 + (r + C)2 sin2 φ + 2C(1 + cos φ).

(154)

The first one corresponds to (148) and the second one to the
denominator in (151). One can explicitly see that C is positive

inside the Pascal limaçon r < 1 + 2 cos φ. Using the Gauss
law we find the eigenvalue density

ρ = 1

π

∂G

∂z̄
= 1

2π

(
∂Gx

∂x
+ ∂Gy

∂y

)
= 1

2π
div �G. (155)

The imaginary part of ∂z̄G is proportional to the rotation
rot �G = ∂xGy − ∂yGx that vanishes by construction. This
fact can be used as a test of correctness of calculations.
The density calculated from this formula is shown in
Fig. 10.

Finally, we perform some numerical checks. We gener-
ate numerically matrices M = AB = (1 + XA)(1 + XB) of
dimensions 100 × 100 and compare obtained eigenvalue
histograms with the exact solution for infinite dimensions.
In Fig. 11 we show a scattered plot of eigenvalues and the
histogram of real eigenvalues compared to the section of the
analytic solution along the real axis. The results show a good
agreement between numerical data and the analytic result.
The small remaining deviations can be attributed to finite size
effects.

VII. SUMMARY

We have introduced a natural generalization of the concept
of S transform for the product of non-Hermitian ensembles.
This construction puts on the same footing addition and multi-
plication laws for Hermitian and non-Hermitian ensembles.
We have also found a more general reformulation of the
multiplication law which allows us to calculate free products
of random matrices having vanishing mean, including the case
when both factors in the product are centered. This case is
especially interesting as it cannot be addressed using ordinary
S transform techniques.
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Our construction relies on the insights from diagram-
matic techniques and in particular assumes the finiteness
of the moments. We are, however, convinced, that these
conditions are neither restrictive nor mandatory for a
general proof, based on purely algebraic structures, such
as amalgamation of free random variables and a careful
treatment of regularization of ensembles with unbounded
moments.
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