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Stochastic dynamics beyond the weak coupling limit: Thermalization
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We discuss the structure and asymptotic long-time properties of coupled equations for the moments of a
Brownian particle’s momentum 〈pn(t)〉 derived microscopically beyond the lowest approximation in the weak
coupling parameter λ. Generalized fluctuation-dissipation relations are derived and shown to ensure convergence
to thermal equilibrium to any order in λ.
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I. INTRODUCTION

Many popular results of nonequilibrium statistical mechan-
ics, such as exponential decay of correlations, hold only on
a time scale much longer than the characteristic relaxation
time τb for a thermal bath and are thus applicable only
for sufficiently slow systems with relaxation time τs � τb.
Such results may be obtained microscopically in the lowest
order of the perturbation theory with the ratio λ ∼ τb/τs as a
small parameter and, additionally, with a coarse-grained time
resolution much larger than τb. This approximation is referred
to as the weak coupling limit and can be concisely formulated
as a combination of three conditions λ → 0, t → ∞, with λt

finite.
There are, of course, many situations of physical interest

when the weak coupling approximation does not suffice [1–3].
Van Kampen developed a highly successful theory which
allows us to take into account terms of higher orders in λ,
but still using as a prerequisite the time coarse graining in a
form of the assumption that the system interacts with the bath
via “instantaneous” binary collisions [4]. The relaxing of this
rather artificial limit leads, in general, to non-Markovian mas-
ter or Langevin equations which are more difficult to handle
than their Markovian counterparts. Beyond the weak coupling
limit, these equations have a rather complicated structure [5,6],
and not much is known about their properties. In particular,
while van Kampen’s theory is consistent with equilibrium
statistical mechanics [7], the relaxation to Maxwell-Boltzmann
equilibrium within a more general approach, which takes
into account multiple collisions and non-Markovian effects,
is not entirely obvious and was questioned in several studies
(see [6,8] and references therein).

One purpose of this paper is to put the equations of
stochastic dynamics into a form convenient for the evaluation
of stationary solutions to any order in the weak coupling
parameter λ. Most previous works in this direction seek to
generalize the Fokker-Planck equation for the distribution
function f (a,t) for a targeted dynamical variable a. One
difficulty with this approach is that beyond the lowest order
in λ generalized Fokker-Planck equations involve derivatives
∂nf/∂an of orders higher than two and do not guarantee
positive definiteness of the solution. Also, and perhaps more
importantly, within this approach it is not clear how to, in a
systematic perturbative way, take into account non-Markovian
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effects. The same perturbation technique which justifies results
in the weak coupling limit may not work well in higher orders
in λ, leading to stationary distributions for the system with
an equilibrium temperature different than that of the bath
[6]. Neither real [9] nor numerical [10] experiments suggest
such a possibility. Some other troubles with non-Markovian
Fokker-Planck equations were reported in [11]. In this paper
we show that some of these difficulties can be avoided if one
works with microscopically derived Langevin equations for
the powers an of a targeted variable. These equations can be
readily used to derive equations for the moments 〈an(t)〉 which
are linear and not difficult to work with even in non-Markovian
form, at least as far as stationary solutions are concerned.

Although the discussion can be carried on a very general
level, we choose to consider, for the sake of better visualization,
the archetype example of a Brownian particle of mass M

immersed in a infinitely large bath at temperature T = 1/β

and composed of molecules with mass m � M . We will
employ the method by Albers et al. [12] to derive equations of
motion for the moments 〈pn(t)〉 of the Brownian particle’s
(scaled) momentum. It is shown that to any order in the
weak coupling parameter λ = (m/M)1/2 the moments relax
to the equilibrium values prescribed by equilibrium statistical
mechanics. Convergence to thermal equilibrium is guided by
generalized fluctuation-dissipation relations, which can hardly
be derived by any other method but microscopically. On
the other hand, thermalization is found to be insensitive to
particular relations between involved microscopic correlation
functions. This leads to the optimistic conclusion that a
consistent theory need not be totally microscopic.

II. EXACT EQUATIONS

Consider a system of N bath molecules of mass m

interacting with each other and with a Brownian particle of
mass M via short range potential U . The Hamiltonian of the
system is H = P 2/2M + H0(x), where P is the momentum
of the particle and H0(x) is the Hamiltonian of bath molecules
in the field of the particle fixed at the position x. Introducing
as usual the scaled momentum of the particle p = λP with
λ = (m/M)1/2, the Liouville operator of the systems can be
written as

L = L0 + λL1, (1)
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where the operator L1 acts on the particle’s variables only

L1 = p

m

∂

∂x
+ F

∂

∂p
, (2)

while L0 governs the dynamics of the bath in the field of the
fixed particle,

L0 =
N∑

i=1

{
pi

m

∂

∂xi

+ Fi

∂

∂pi

}
, (3)

and thus satisfies the relation L0H0 = 0. In these equations xi

and pi are coordinates and momenta of bath molecules and
Fi = −∂U/∂xi and F = −∂U/∂x are the forces on the ith
molecules and on the particle, respectively.

We wish to decompose the exact equation

d

dt
pn(t) = eLtLpn, (4)

where pn = pn(0), into a form convenient to derive the
Langevin equation for pn using an expansion in the small
parameter λ. Using the operator identity

eAt = e(A+B)t −
∫ t

0
dτeA(t−τ )Be(A+B)τ , (5)

with A = L, B = −PL, and Q = 1 − P one gets

eLt = eQt +
∫ t

0
dτeL(t−τ )PLeQLτ . (6)

The operatorP is convenient to chose to be a projector operator
(P2 = P) that averages over initial values of bath variables

PA = 〈A〉 =
∫

ρ Adx1 · · · dxNdp1 · · · dpN (7)

with the canonical distribution

ρ = 1

Z
e−βH0 . (8)

Such defined projection operator P and its complement Q =
1 − P satisfy the relations

PL0 = 0, QL0 = L0. (9)

With (6) and (9), the right-hand side of (4) can be written as

eLt (Lpn) = eQt (Lpn) + λ

∫ t

0
dτeL(t−τ )PL1e

QLτ (Lpn).

Then (4) takes the desirable pre-Langevin form

d

dt
pn(t) = λKn(t) + λ2

∫ t

0
dτ eL(t−τ )PL1Kn(τ ), (10)

where

Kn(t) = λ−1eQtLpn (11)

plays the role of a “random” (rapidly fluctuating) force.
Notice that the above expression for Kn(t) can be alterna-

tively written with an additional factor Q = 1 − P:

Kn(t) = λ−1eQtQLpn. (12)

This is because

PLpn = λPL1p
n = λnpn−1PF = λnpn−1〈F 〉 = 0.

The form (12) makes it obvious that the fluctuating term K(t)
is zero centered

〈Kn(t)〉 = PKn(t) ∼ P Q = 0. (13)

Another useful identity involving Kn(t), which can be readily
proved by integrating by parts, reads

〈
∂

∂x
Kn(t)

〉
= P ∂

∂x
Kn(t) = −β〈FKn(t)〉. (14)

Equipped with these relations, one eventually write Eq. (10)
in the form

d

dt
pn(t) = λKn(t) + λ2

∫ t

0
dτ eL(t−τ )

×
(

∂

∂p
− β p

m

)
〈F Kn(τ )〉 (15)

with the fluctuating force

Kn(t) = n eQLt F pn−1. (16)

The procedure outlined above is generic and can be
easily generalized to derive exact Langevin-like equation of
motion for an arbitrary dynamical variable or distribution
function [12].

III. LOWEST ORDER PERTURBATION

As it is, the exact equation (15) is of little help because it
contains the variables of interest pn implicitly in the operator
eQLt . In order to make this dependence explicit one can expand
eQLt = eL0t+λQL1t in powers of λ iteratively using the relation
(5) with A = L0 and B = λQL1:

eQLt = eL0t + λ

∫ t

0
dτeL0(t−τ )QL1e

L0τ

+ λ2
∫ t

0
dτ1

∫ τ1

0
dτ2 eL0(t−τ1)QL1e

L0(τ1−τ2)QL1e
L0τ2

+ · · · . (17)

Substitution of this into Eq. (16) for the random force Kn(t)
leads to the expansion

Kn(t) =
∞∑
i=0

λi K (i)
n (t). (18)

The lowest order term reads

K (0)
n (t) = npn−1F0(t), (19)

where F0(t) = eL0tF is the force exerted by the bath on the
fixed particle, which can be called the pressure force. As
follows from (16) and (17), the higher order terms Ki can
be obtained recurrently as follows:

K (i)
n (t) =

∫ t

0
dτeL0(t−τ )QL1 K (i−1)

n (τ ). (20)

Note that each term in the expansion of the random force is
zero centered, 〈K (i)

n (t)〉 = 0.
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In the lowest order in λ the exact equation of motion (15)
takes the form of the generalized Langevin equation

d

dt
pn(t) = λnpn−1F0(t)

− λ2 β

m

∫ t

0
dτ c0(t − τ ) pn(τ )

+ λ2(n − 1)
∫ t

0
dτ c0(t − τ ) pn−2(τ ), (21)

where the memory kernel c0(t) is given by the correlation
function of the pressure force,

c0(t) = n〈FF0(t)〉. (22)

Taking the average of Eq. (21) one obtains for the moments

An(t) = 〈pn(t)〉 = Ppn(t) (23)

the following equation:

d

dt
An(t) = −λ2 β

m

∫ t

0
dτ c0(t − τ )An(τ )

+ λ2(n − 1)
∫ t

0
dτ c0(t − τ )An−2(τ ). (24)

In Markovian limit it takes the familiar form [13]
d

dt
An(t) = −λ2 n γ0An(t) + λ2n(n − 1)

m

β
γ0An−2(t) (25)

with the damping coefficient

γ0 = β

nm

∫ ∞

0
dt c0(t) = β

m

∫ ∞

0
dt 〈FF0(t)〉. (26)

Of course, Eq. (25) can be derived more easily from the
phenomenological Langevin equation

ṗ(t) = −λ2γ0 p(t) + λF0(t) (27)

under the assumption that F0(t) is Gaussian noise [13]. An
important outcome of the above microscopic derivation is that
it shows that the assumption of Gaussian random force is in
fact unnecessary. Another advantage of the non-Markovian
equation (24) is that it holds for any time, while its Markovian
counterpart (25) applies only on a time scale longer than the
characteristic time for the decay of the correlation function
c0(t).

It is easy to show that both Markovian (25) and non-
Markovian (24) equations describe relaxation of the moments
to equilibrium values Ae

n prescribed by equilibrium statistical
mechanics, in particular

Ae
2 = m

β
, Ae

4 = 3

(
m

β

)2

, Ae
6 = 15

(
m

β

)3

, (28)

and in general for even n

Ae
n = (n − 1)

m

β
Ae

n−2 (29)

(equilibrium odd moments Ae
2n+1 vanish due to symmetry). For

non-Markovian equation (24), thermalization can be proved
using Laplace transformation Ãn(s) = ∫ ∞

0 dte−stAn(t),

Ãn(s) = An(0)

s + λ2(β/m) c̃0(s)
+ λ2(n − 1) c̃0(s)

s + λ2(β/m) c̃0(s)
Ãn−2(s),

(30)

where Ã0(s) = 1/s. For asymptotic long-time values

Ae
n = lim

t→∞ An(t) = lim
s→0

sÃn(s) (31)

Eq. (30) gives the thermal equilibrium result (29).
It also can be seen from from (30) that relaxation to thermal

equilibrium does not occur if

c̃0(s) ∼ sδ, δ � 1, as s → 0. (32)

In this case the damping coefficient γ0 vanishes

γ0 = β

nm

∫ ∞

0
dt c0(t) = β

nm
c̃0(0) = 0, (33)

which corresponds to superdiffusion of the particle [14].
Relation (32) as a condition of nonergodic relaxation of the
second moment A2(t) was discussed in [15]. As we see, in the
lowest order in λ the same condition holds for higher moments
as well.

IV. HIGHER ORDER RESULTS

As follows from (15), higher order terms in the λ expansion
of the fluctuating force

Kn(t) = K (0)
n (t) + λ K (1)

n (t) + λ2 K (2)
n (t) + · · · (34)

appear in the equation for the moments An in the form of
correlations 〈FK (i)

n (t)〉. Evaluation of these correlations may
be discouragingly complicated even for simplified models
[16]. However, as we show in this section, a detailed evaluation
of microscopic correlations is unnecessary to demonstrate
convergence to thermal equilibrium to any perturbation order.
All one actually needs is to find the explicit dependence of
correlations 〈FK (i)

n (t)〉 on the particle’s momentum p, which
is a much easier task.

First, recall that in the lowest order K0(t) = npn−1F0(t), so〈
FK (0)

n (t)
〉 = c0(t) pn−1, (35)

with c0(t) = n〈FF0(t)〉. Substitution of this into the exact
equation (15) and taking the average leads to an equation for
the moments in the form (24).

Next, it follows from the recurrence relation (20) that
K (i+1)

n ∼ L1K
(i)
n = [(m−1∂/∂x) p + F ∂/∂p] K (i)

n . Therefore
the correlations 〈FK (i)

n (t)〉 as functions of p can be obtained
recurrently as follows:〈

FK (i+1)
n (t)

〉 ∼ (p + ∂/∂p)
〈
FK (i)

n (t)
〉
. (36)

From (35) and (36) one obtains〈
FK (1)

n (t)
〉 = c10(t) pn + c11(t) pn−2. (37)

Explicit evaluation of the functions c10(t) and c11(t) (see
Appendix) immediately reveals that for a homogeneous bath
both functions vanish identically. More generally, it can be
proved with the standard symmetry argument [17] that〈

FK (i)
n (t)

〉 = 0 for odd i. (38)

Then the first nonvanishing correction to the kernel 〈FK (0)
n (t)〉

is λ2〈FK (2)
n (t)〉. From (37) and (36) one gets

〈
FK (2)

n (t)
〉 = c20(t) pn+1 + c21(t) pn−1 + c22(t) pn−3. (39)
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Explicit expressions for the functions c2i(t) are not needed for
our purposes, yet for the sake of completeness they are given in
the Appendix. It is helpful, however, to notice that the function
c22(t) involves the factor (n − 1)(n − 2), which makes it vanish
for n < 3, so that the above expression involves only positive
powers of p. The same is true for higher order corrections.
The next nonzero term has the form〈

FK (4)
n (t)

〉 = c40(t) pn+3 + c41(t) pn+1 + c42(t) pn−1

+ c43(t) pn−3 + c44(t) pn−5, (40)

which can be obtained by applying twice the recurrence
relation (36) to the correlation 〈FK (2)

n (t)〉 given by (39).
The functions cij (t) also depend on n. One can show that
the above expression involves only positive powers of p, since
c43 ∼ ∏3

k=1(n − k) and c44 ∼ ∏5
k=1(n − k).

With the pattern given by the above relations, the general
expression can be written in the form

〈
FK (i)

n (t)
〉 = pn−1

i∑
j=0

cij (t) pi−2j , (41)

where cij (t) vanish identically for odd i due to symmetry, and
c00(t) ≡ c0(t). We see that the higher the order of perturbation
i, the larger the number of powers pi to which the variable of
interest pn is coupled to.

Equipped with the above relations, one can write the
equation for the moments An(t) = 〈pn(t)〉 to any order in λ.
As an example, let us consider the equations for the second
moment A2. In order to get the first nonzero correction to the
lowest order results discussed in the previous section, we need
to expand the fluctuating force K2(t) up to order λ2,

K2(t) = K
(0)
2 (t) + λ K

(1)
2 (t) + λ2 K

(2)
2 (t). (42)

Then from (35), (38), and (39) we get

〈FK2(t)〉 = c0(t) p + λ2{c20(t) p3 + c21(t) p}. (43)

Substituting this into the exact equation (15) one obtains the
following equation:

d

dt
A2(t) = λ2[1 − (β/m) A2] ◦ c0

+ λ4{[3 c20 − (β/m) c21] ◦ A2

− (β/m) c20 ◦ A4 + c21 ◦ 1}. (44)

Here and below we adopt the shorthand notation f ◦ g for the
convolution integral

∫ t

0 dτf (τ )g(t − τ ). One observes that to
the given order A2 is coupled to A4, which is in contrast with
the lowest order approximation where the equation for A2 is
closed.

Applying Laplace transformation one can write the long-
time stationary value for A2 as a fraction

lim
t→∞ A2(t) = lim

s→0
sÃ2(s) = N

D
(45)

with the denominator

D = λ2(β/m) c̃0(0) + λ4(β/m) c̃21(0) − 3λ4 c̃20(0)

and the numerator

N = λ2c̃0(0) + λ4c̃21(0) − λ4 (β/m) c̃20(0) lim
s→0

sÃ4(s).

The stationary value for the fourth moment lims→0 sÃ4(s) =
limt→∞ A4(t) appears here multiplied by λ4, and therefore the
value 3(m/β)2 found in the lowest order limit Eq. (28) should
be assigned to it. Then (45) gives for the second moment the
same equilibrium value as in the lowest perturbation order
A2(t) → Ae

2 = m/β.
Higher moments can be handled in a similar way. For

instance, as follows from (35), (38), and (39), for the fourth
moment A4 = 〈p4〉 the kernel 〈FK4(t)〉 to order λ2 takes the
form

〈FK4(t)〉 = c0 p3 + λ2{c20 p5 + c21 p3 + c22 p}. (46)

Substitution of this into (15) gives the equation

d

dt
A4(t) = λ2[3c0 ◦ A2 − (β/m) c0 ◦ A4]

+ λ4{[3 c21 − (β/m) c22] ◦ A2

+ [5 c20 − (β/m) c21] ◦ A4

− (β/m) c20 ◦ A6 + c22 ◦ 1}. (47)

Applying Laplace transform and recalling that in the lowest
order lims→0 sÃ6(s) = Ae

6 = 15 (m/β)3, one finds

lim
t→∞ A4(t) = lim

s→0
sÃ4(s) = Ae

4 = 3 (m/β)2, (48)

which is again the equilibrium result which we already
obtained in the lowest order.

No new features appear as one extends the technique
to higher perturbation orders. The next nonzero correction
corresponds to the expansion of the fluctuating force to order
λ4, Kn(t) = ∑4

i=0 λi K (i)
n (t). The correlations 〈FK (i)

n (t)〉 for
i = 0, 2, 4 are given by Eqs. (35), (39), and (40), respectively.
For example, for the second moment A2 one obtains

〈FK2(t)〉 = c0 p + λ2{c20 p3 + c21 p}
+ λ4{c40 p5 + c41 p3 + c42 p}. (49)

Then substitution into (15) leads to an equation which differs
from Eq. (44) by the presence of terms of order λ6,

d

dt
A2(t) = λ2[1 − (β/m) A2] ◦ c0

+ λ4{[3 c20 − (β/m) c21] ◦ A2

− (β/m) c20 ◦ A4 + c21 ◦ 1}
+ λ6{[3 c41 − (β/m) c42] ◦ A2

+ [5 c40 − (β/m) c41] ◦ A4

− (β/m) c40 ◦ A6 + c42 ◦ 1}. (50)

Applying Laplace transformation and assigning equilibrium
values found to lower perturbation orders for long-time limits
of A4 and A6, one again obtains A2(t) → Ae

2 = m/β.

V. CONCLUSION

In the weak coupling limit, the equations for the first
two moments A1 = 〈p〉 and A2 = 〈p2〉 of the Brownian
particle’s momentum are closed, while higher moments An

are coupled to An−2 only, see Eq. (25). To higher orders in the
weak-coupling parameter λ, a larger number of moments are
coupled. The higher perturbation order, the larger the number
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of different moments appear in the equation for An. In a
Markovian limit the equations coincide with those obtained by
van Kampen within the instantaneous binary collision model,
but contain parameters expressed in a totally microscopic way.
For example, according to (44), to order λ4 the equation for
A2 is not closed but involves coupling to A4:

d

dt
A2(t) = −γ1A2(t) − γ2A4 + γ3. (51)

Dissipative coefficients γi are given by fluctuation-dissipation
relations

γ1 = λ2(β/m) α0 − 3λ4 α20 + λ4(β/m) α21,

γ2 = λ4(β/m) α20, (52)

γ3 = λ2 α0 + λ4 α21,

Here, coefficients α0 = ∫ ∞
0 c0(t) dt and α2i = ∫ ∞

0 c2i(t) dt are
system-dependent parameters, given by integrals of micro-
scopic correlations.

Since more than one microscopic parameters α are involved
in (52), it appears natural to ask whether any constraints on
their relations do exist which ensure relaxation of the system
to thermal equilibrium with the bath. The present paper shows
that the system’s thermalization is guaranteed by fluctuation-
dissipation relations alone and no additional relations between
microscopic parameters are required. Convergence to thermal
equilibrium with the bath occurs to any order in λ, in both
Markovian and non-Markovian regimes. For instance, given
the asymptotic result A4(t) → Ae

4 = 3(m/β)2 found in the
weak coupling limit, Eqs. (51) and (52) give for A2 in the long-
time limit the equilibrium value A2(t) → (γ3 − γ2 Ae

4)/γ1 =
m/β.

That thermalization puts no constraints on microscopic
parameters α opens an attractive avenue for phenomenological
modeling. One cannot use, say, Eq. (51) with arbitrary
postulated values for coefficients γi since such an equation
in general would disagree with equilibrium statistics. On the
other hand, Eq. (51) supplemented with fluctuation-dissipation
relations (52) for γi with arbitrary α is thermodynamically
consistent.

Although our attention here was focused on the issue of
thermalization and consistency with equilibrium statistical
mechanics, most interesting applications of the developed
formalism are expected, of course, for time-dependent phe-
nomena. The coupling of a larger number of moments may
result in much richer dynamics compared to that in the weak
coupling limit. For a Markovian limit this was illustrated
in [1–3], but results from these studies may be obtained
(and in fact, most of them were) within the framework
of more simple van Kampen theory. For future studies, it
would be interesting to identify situations where the non-
Markovian form of the equations obtained in this paper would
be essential and responsible for qualitatively new features.
Application to Kramers’ activated escape problem seems
particularly promising, considering the recent demonstration

that non-linear corrections to the dissipative force, which are
of higher orders in λ, may be important in the underdamped
regime [2].

There are several limitations of the presented study. One
inevitable loophole is the tacit assumption that each term in

the λ expansion is bounded for all time. To the best of our
knowledge a general proof of this is still lacking. Also, we
have assumed that the relative smallness of terms is determined
solely by their dependence on λ. For instance, in (52) γ2 ∼ λ4

is assumed to be smaller than γ1 ∼ λ2. This is not necessarily
true since γ1 involves factors which are integrated correlation
functions and may vanish identically or be very small. In
such situations the system may exhibit nonergodic behavior
(does not thermilize to the bath temperature) as discussed
elsewhere [15]. A more exotic condition of ergodicity breaking
is considered in [18].
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APPENDIX

Exact explicit expressions for the functions cij (t) in
Eqs. (37) and (39) can be written respectively as

c1j (t) =
∫ t

0
dτ C1j (t,τ ),

c2j (t) =
∫ t

0
dτ1

∫ τ1

0
dτ2 C2j (t,τ1,τ2),

where correlation functions Cij read

C10 = 1

m

{〈
FeL0(t−τ ) ∂F0(τ )

∂x

〉
− 〈F 〉

〈
∂F0(τ )

∂x

〉}
,

C11 = (n − 1) {〈FF0(t − τ )F0(t)〉 − 〈F 〉〈FF0(τ )〉} ,

C20 = 1

m2

〈
FeL0(t−τ1) ∂

∂x
eL0(τ1−τ2) ∂

∂x
F0(τ2)

〉
,

C21 = n − 1

m

〈
FeL0(t−τ1) ∂

∂x
[F0(τ1 − τ2)F0(τ1)]

〉

+ n

m

〈
FF0(t − τ1)eL0(t−τ2) ∂

∂x
F0(τ2)

〉

+ β

m
〈FF0(t − τ1)〉 〈FF0(τ2)〉 ,

C22 = (n − 1)(n − 2){〈FF0(t − τ1)F0(t − τ2)F0(t)〉
− 〈FF0(t − τ1)〉〈FF0(τ2)〉}.

Here F = F (0) = F0(0). For a homogeneous bath C10 =
C11 = 0 by symmetry. The identity (14) was used for the
derivation of the last term of C21. Explicit evaluation of these
and similar functions for a particular model is discussed in [16].
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