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Signal-to-noise ratio in parametrically driven oscillators
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We report a theoretical model based on Green’s functions and averaging techniques that gives analytical
estimates to the signal-to-noise ratio (SNR) near the first parametric instability zone in parametrically driven
oscillators in the presence of added ac drive and added thermal noise. The signal term is given by the response of
the parametrically driven oscillator to the added ac drive, while the noise term has two different measures: one is
dc and the other is ac. The dc measure of noise is given by a time average of the statistically averaged fluctuations
of the displacement from equilibrium in the parametric oscillator due to thermal noise. The ac measure of noise
is given by the amplitude of the statistically averaged fluctuations at the frequency of the parametric pump. We
observe a strong dependence of the SNR on the phase between the external drive and the parametric pump. For
some range of the phase there is a high SNR, while for other values of phase the SNR remains flat or decreases
with increasing pump amplitude. Very good agreement between analytical estimates and numerical results is
achieved.
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I. INTRODUCTION

Parametrically driven systems and parametric resonance
occur in many different physical systems, ranging from
Faraday waves [1], inverted pendulum stabilization, stability of
boats, balloons, and parachutes [2]. More recent applications
in microsystems and nanosystems include quadrupole ion
guides and ion traps [3], linear ion crystals in linear Paul
traps designed as prototype systems for quantum comput-
ing [4–6], optomechanical cavities [7], magnetic resonance
force microscopy [8], tapping-mode force microscopy [9],
axially loaded microelectromechanical systems (MEMS) [10],
and torsional MEMS [11], just to mention a few relevant
applications.

Parametric pumping has had many applications in the field
of MEMS, which have been used primarily for measuring
small forces and as ultrasensitive mass detectors since the
mid 1980s [12]. An enhancement to the detection techniques
in MEMS developed in the early 1990s uses mechanical
parametric amplification (before transduction) to improve
the sensitivity of measurements. This amplification method
works by driving the parametrically driven resonator on
the verge of parametric unstable zones. Rugar and Grütter
[13] have shown ways, using this method, to obtain linear
parametric gain. Furthermore, while they were looking for
a way to reduce noise and increase precision in a detector
for gravitational waves, they experimentally found classi-
cal thermomechanical quadrature squeezing, a phenomenon
that is reminiscent of quantum squeezed states. Further
experimental studies of parametric amplification appeared
in Ref. [14], where a linear response around a limit cycle
due to noise yielded noise squeezing in a driven Duffing
oscillator. Implementations of parametric oscillators in elec-
tronic circuits can be found in Refs. [15,16]. Parametric
amplification started being studied in electronic systems in
the late 1950s and early 1960s by Tien [17], Landauer
[18], and Louisell [19]. It has been used for its desirable
characteristics of high gain and low noise. Recent applications
of parametric amplification in electronics can be found in
Ref. [20].

The limits of parametric amplification due to thermome-
chanical noise on parametric sensing of small masses in
nanomechanical oscillators have been studied in Ref. [21].
Although this work is quite broad, the author does not
provide estimates for the signal-to-noise ratio (SNR) as one
approaches the first-instability zone (e.g., by increasing the
pump amplitude). Here, we study the effect of adding thermal
noise to a parametrically driven oscillator with the objective of
studying the effectiveness of parametric amplification in the
presence of noise. This one-degree-of-freedom model may be
applied, for instance, to the fundamental mode of a doubly
clamped beam resonator that is axially loaded, in which case
the one degree of freedom represents the amount of deflection
of the middle of the beam from the equilibrium position. The
present model can also be applied to the linear response of
driven nonlinear oscillators to noise (such as transversally
loaded beam resonators); see, for example, Ref. [14]. One of
us (A.A.B.) recently obtained analytical quantitative estimates
of the amount of quadrature noise squeezing, heating, or
cooling in a parametrically driven oscillator [22]. We now use
the Green’s function approach, previously developed to solve
the Langevin equation, aligned with averaging techniques, to
obtain analytical estimates of the SNR in the parametrically
driven oscillator in the presence of both added noise and
external sinusoidal drive. Here we show that for some values
of phase (between the pumping and external drives), the signal
grows faster than the fluctuations due to added noise, while
for some other values of phase, the SNR is flat or decreases
as the pumping amplitude grows when one gets close to the
first-instability zone of parametric resonance.

II. THEORETICAL MODEL

The equation for the parametrically driven oscillator (in
dimensionless format) is given by the damped Matthieu
equation,

ẍ + ω2
0x = −γ ẋ + Fp cos(2ωt) x, (1)

in which γ and Fp ∼ O(ε), where ε � 1. Since we want
to apply the averaging method (AM) [23,24] to situations in
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which we have detuning, it is convenient to rewrite Eq. (1) in a
more appropriate form with the notation � = ω2

0 − ω2, where
we also have � ∼ O(ε). With this substitution, we obtain
ẍ + ω2x = −�x − γ ẋ + Fp cos(2ωt) x. We then rewrite this
equation in the form ẋ = y, ẏ = −ω2x + f (x,y,t), where
f (x,y,t) = −�x + Fp cos(2ωt) x − γy. We now set the
above equation in slowly varying form with the transformation
to a slowly varying frame,(

x

y

)
=

(
cos ωt − sin ωt

−ω sin ωt −ω cos ωt

) (
U
V

)
, (2)

and obtain( U̇
V̇

)
=

(
cos ωt − 1

ω
sin ωt

− sin ωt − 1
ω

cos ωt

) (
0

f (x,y,t)

)

= − 1

ω

(
sin ωtf (x,y,t)
cos ωtf (x,y,t)

)
.

After an application of the AM (in which, basically, we filter
out oscillating terms at and near 2ω in the above equation), we
obtain

˙̃u = −1

2ω

[
γωũ +

(
� + Fp

2

)
ṽ

]
,

˙̃v = −1

2ω

[(
−� + Fp

2

)
ũ + γωṽ

]
,

where the functions U(t) and V(t) were replaced by their
slowly varying averages ũ(t) and ṽ(t), respectively. The
averaging theorem [24] asserts that these two sets of functions
will be close to each other to order O(ε) during a time scale of
O(1/ε) if they have initial conditions within an initial distance
of O(ε). So by studying the simpler averaged system, one
may obtain very accurate information about the corresponding
more complex nonautonomous original system. With the
transformations ũ(t) = e−γ t/2u(t) and ṽ(t) = e−γ t/2v(t), we
obtain

u̇ = −1

2ω

(
� + Fp

2

)
v, v̇ = −1

2ω

(
−� + Fp

2

)
u. (3)

Upon integration of Eq. (3), one finds the solution

ũ(t) = e−γ t/2

[
u0 cosh(κt) + β − δ

κ
v0 sinh(κt)

]
,

(4)

ṽ(t) = e−γ t/2

[
v0 cosh(κt) + β + δ

κ
u0 sinh(κt)

]
,

where κ =
√

β2 − δ2, β = −Fp/4ω, and δ = �/2ω. Hence,
we find that the first parametric resonance, i.e., the boundary
between the stable and unstable responses, is given by

(γω)2 = (Fp/2)2 − �2. (5)

This result is valid for ω ≈ ω0 even in the presence of
added noise. In Fig. 1, we find very good agreement between
results obtained from numerical integration of Eq. (1) and the
boundary given by the averaging technique.

We will now investigate the effect of added thermal noise
on the parametric amplification mechanism [13,14,25,26]. We
start by adding noise to Eq. (1) and obtain

ẍ = −ω2
0x − γ ẋ + Fp cos(2ωt) x + R(t), (6)
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FIG. 1. (Color online) Comparison between numerical and first-
order averaging method predictions for the boundary of the first-
instability zone of the damped parametrically driven oscillator of
Eq. (1). In the unstable region, the fixed point x = ẋ = 0 is unstable,
while in the stable region this fixed point is stable. The dashed blue
line is the boundary between these two regions obtained numerically,
while the solid line is the analytical boundary curve given by
Eq. (5). The numerical results are obtained by calculating the Floquet
multipliers. In the stable region, both multipliers’ moduli are less
than 1, while in the unstable region at least one of them has modulus
larger than 1. The fixed parameters of the equations of motion are
γ = 0.1,ω0 = 1.0. These parameters were also used to obtain the
results portrayed in the remaining figures.

where R(t) is a random function that satisfies the statis-
tical averages 〈R(t)〉 = 0 and 〈R(t)R(t ′)〉 = 2T γ δ(t − t ′),
according to the fluctuation-dissipation theorem [27]. T is
the temperature of the heat bath in which the oscillator (or
resonator) is embedded. Once we integrate these equations
of motion, we can show how classical mechanical noise
squeezing, heating, and cooling occur. We now summarize
the method developed in Ref. [22] to analytically study the
parametrically driven oscillator with added noise, as given by
Eq. (6).

A. Green’s function method

The equation for the Green’s function of the parametrically
driven oscillator is given by

[
∂2

∂t2
+ ω2

0 + γ
∂

∂t
− Fp cos(2ωt)

]
G(t,t ′) = δ(t − t ′). (7)

Since we are interested in the stable zones of the parametric
oscillator, for t < t ′ G(t,t ′) = 0 and by integrating the above
equation near t = t ′, we obtain the initial conditions when t =
t ′ + 0+, G(t,t ′) = 0, and ∂

∂t
G(t,t ′) = 1.0. Using the Green’s

function, we obtain the solution x(t) of Eq. (6) in the presence
of noise R(t),

x(t) = xh(t) +
∫ ∞

−∞
dt ′ G(t,t ′)R(t ′), (8)

ẋ(t) = v(t) = vh(t) +
∫ ∞

−∞
dt ′

∂

∂t
G(t,t ′)R(t ′), (9)
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where xh(t) is the homogeneous solution, which in the stable zone decays exponentially with time; since we assume
the pump has been turned on for a long time, xh(t) = 0. By statistically averaging the fluctuations as a function of time, we
obtain

〈x2(t)〉 =
∫ ∫ ∞

−∞
dt ′ dt ′′G(t,t ′)G(t,t ′′)〈R(t ′)R(t ′′)〉 = 2T γ

∫ ∞

0
dτ G(t,t − τ )2, (10)

〈v2(t)〉 = 2T γ

∫ t

−∞
dt ′

[
∂

∂t
G(t,t ′)

]2

= ω2
0〈x2(t)〉 − 2Fpγ T

∫ ∞

0
dτ cos[2ω(t − τ )]G(t − τ,t)2, (11)

where τ = t − t ′.
Although Eq. (6) may be solved exactly by using Floquet theory and Green’s functions methods [28], one obtains very

complex solutions. Instead, we find fairly simple analytical approximations to the Green’s functions and, subsequently, to the
statistical averages of fluctuations using the averaging method. We then use the solution of the system of coupled differential
equations (4), where the initial conditions at t = t ′ are given by u(t ′) = − sin(ωt ′)/ω and v(t ′) = − cos(ωt ′)/ω, and we obtain
the approximate Green’s function as

G(t,t ′) ≈ −e−γ (t−t ′)/2

ω

[
cos(ωt)

(
cosh[κ (t − t ′)] sin(ωt ′) + β − δ

κ
sinh[κ (t − t ′)] cos(ωt ′)

)

− sin(ωt)

(
β + δ

κ
sinh[κ (t − t ′)] sin(ωt ′) + cosh[κ (t − t ′)] cos(ωt ′)

)]
(12)

for t > t ′ and G(t,t ′) = 0 for t < t ′. In the stable zone of the parametrically driven oscillator, when |β| > |δ|, we can rewrite
the Green’s function replacing the initial conditions and using simplifying trigonometrical identities. The change of variables
t ′ = t − τ leads to

G(t,t − τ ) ≈ e−γ τ/2

ω

{
cosh(κ τ ) sin(ωτ ) + δ

κ
sinh(κ τ ) cos(ωτ ) − β

κ
sinh(κ τ ) [cos(ωτ ) cos(2ωt) + sin(ωτ ) sin(2ωt)]

}
. (13)

We notice that by varying the pump amplitude Fp and the detuning �, we can create a continuous family of classical
thermomechanical squeezed states, generalizing the experimental results of Rugar and Grütter [13]. An estimate of the time
average of the thermal fluctuations of x(t), when |β| > |δ|, is given by

〈x2(t)〉 = 2T γ

ω2

∫ ∞

0
e−γ τ

{[
cosh(κτ ) sin(ωτ ) + δ

κ
sinh(κτ ) cos(ωτ )

]2

+ β2

2κ2
sinh2(κτ )

}
dτ = 2T γ

ω2
[I1 + I2 + δ2I3 + δI4],

(14)

where the integrals are given by

I1 = β2

2κ2

∫ ∞

0
e−γ τ sinh2(κτ )dτ = β2

γ (γ 2 − 4κ2)
,

I2 =
∫ ∞

0
e−γ τ cosh2(κτ ) sin2(ωτ )dτ

= 1

2

{
1

2γ
− γ

2(γ 2 + 4ω2)
+ γ

2(γ 2 − 4κ2)
− 1

4
Re

[
1

γ − 2κ − 2iω
+ 1

γ + 2κ − 2iω

]}
,

I3 = 1

κ2

∫ ∞

0
e−γ τ sinh2(κτ ) cos2(ωτ )dτ

= 1

κ2

{
κ2

γ (γ 2 − 4κ2)
+ 1

8
Re

[
1

γ − 2κ − 2iω
+ 1

γ + 2κ − 2iω

]
− γ

4(γ 2 + 4ω2)

}
,

I4 = 1

2κ

∫ ∞

0
e−γ τ sinh(2κτ ) sin(2ωτ )dτ = 1

4
Im

[
1

κ(γ − 2κ − 2iω)
− 1

κ(γ + 2κ − 2iω)

]
.

A time-averaged estimate of the statistically averaged thermal fluctuations in velocity, when |β| > |δ|, is given by

〈v2(t)〉 = ω2
0〈x2(t)〉 + 4FpTβ

κ

∫ ∞

0
dτ e−γ τ sinh(κ τ )

[
cosh(κ τ ) sin(ωτ ) + δ

κ
sinh(κ τ ) cos(ωτ )

]

× cos[2ω(t − τ )] {cos[2ω(t − τ )] cos(ωτ ) + sin[2ω(t − τ )] sin(ωτ )} = ω2
0〈x2(t)〉 − 8ωTβ2(δI3 + I4). (15)
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Hence, we find that the deviation from the equipartition theorem is of the order O(ε2), being thus negligible for
small ε.

An estimate of the statistically averaged thermal fluctuations of x(t), when |β| > |δ|, is given by

〈x2(t)〉 ≈ 〈x2(t)〉 + A2ω cos(2ωt) + B2ω sin(2ωt) + A4ω cos(4ωt) + B4ω sin(4ωt), (16)

where

A2ω = −4βT γ

ω2
(K1 + K2), B2ω = −4βT γ

ω2
(K3 + K4),

with

K1 = 1

8
Im

[
1

κ(γ − 2κ − 2iω)
− 1

κ(γ + 2κ − 2iω)

]
,

K2 = δ

κ2

{
κ2

γ (γ 2 − 4κ2)
− γ

4(γ 2 + 4ω2)
+ 1

8
Re

[
1

γ − 2κ − 2iω
+ 1

γ + 2κ − 2iω

]}
,

K3 = 1

8κ

[
4κ

(γ 2 − 4κ2)
+ Re

(
1

γ − 2κ − 2iω
− 1

γ + 2κ − 2iω

)]
,

K4 = δ

8κ2
Im

[
1

γ − 2κ − 2iω
+ 1

γ + 2κ − 2iω
− 2

γ − 2iω

]
= δω

4κ2

[
1

(γ + 2κ)2 + 4ω2
+ 1

(γ − 2κ)2 + 4ω2
− 2

γ 2 + 4ω2

]
.

The remaining coefficients of Eq. (16) are given by

A4ω = β2T γ

4ω2κ2
Re

[
1

γ − 2κ − 2iω
+ 1

γ + 2κ − 2iω
− 2

γ − 2iω

]
,

B4ω = β2T γ

4ωκ2
Im

[
1

γ − 2κ − 2iω
+ 1

γ + 2κ − 2iω
− 2

γ − 2iω

]
.

Notice that when one gets close to the zone of instability, one obtains a far simpler expression for the average fluctuations. It is
given approximately by

〈x2(t)〉 ≈ 2T

ω2

[
β2 + γ 2

4
+ δ2

]
1

γ 2 − 4κ2
− 4βT γ

ω2(γ 2 − 4κ2)

[
δ

γ
cos(2ωt) + 1

2
sin(2ωt)

]
. (17)

III. LINEAR PARAMETRIC AMPLIFICATION

In this section, we study the parametric amplification of an added ac signal near the onset of the first-instability zone of Matthieu’s
equation. The equation is given by

ẍ + ω2x = −�x − γ ẋ + Fp cos(2ωt) x + F0 cos(ωt + φ).

(18)

After doing averaging, we obtain(
u̇

v̇

)
=− 1

2ω

[
γω � + Fp

2

−� + Fp

2 γω

] (
u

v

)
+ F0

2ω

(
sin φ

− cos φ

)
.

(19)

The fixed points are given by(
u∗
v∗

)
= F0

γ 2ω2 + �2 − F 2
p

/
4

[
γω −(

� + Fp

2

)
� − Fp

2 γω

](
sin φ

− cos φ

)
,

(20)(
u∗
v∗

)
= F0

γ 2ω2 + �2 − F 2
p

/
4

(
γω sin φ + (� + Fp/2) cos φ

(� − Fp/2) sin φ − γω cos φ

)
.

The gain of the amplifier is defined in Ref. [29] as

G(φ) = 20 log

∣∣∣∣ Xpump-on

Xpump-off

∣∣∣∣ = 10 log

{{
(γω)2 + �2 + F 2

p

/
4 + Fp [� cos(2φ) + γω sin(2φ)]

}
(γ 2ω2 + �2)(

γ 2ω2 + �2 − F 2
p

/
4
)2

}
, (21)
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t
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FIG. 2. (Color online) In the frames above, we show several
Green’s functions with equally spaced in time initial conditions in
one given period of the parametric driving. They are vertically spaced
for clarity, since all asymptotes are zero. In each frame, we have a
comparison between numerical results (dashed green lines) given by
the numerical integration of Eq. (7) and the analytical approximate
results (solid lines) given by Eq. (12) or (13). We have (a) ω = 0.9 ω0,
(b) ω = 1.0 ω0, and (c) ω = 1.1 ω0. The initial values of the Green’s
functions are G(t,t ′) = 0 and ∂

∂t
G(t,t ′) = 1.0 when t = t ′ + 0+. The

pump amplitude used was Fp = 0.15.

where |X| = √
u∗2 + v∗2 and the pump-off means Fp = 0.

Rugar and Grütter [13] have studied this amplification process
experimentally and also analytically via a perturbative method

described by Louisell [19]. Although their results agreed well
with their experimental data, we believe that we can increase
the applicability of mechanical parametric amplification of
small signals by applying the averaging method and allowing
for detuning. We also compare our analytical estimates of
gain to the gain obtained from a full numerical integration
of the equations of motion (18). The numerical gain is given
by the expression in Eq. (21) with the analytical fixed-point
values replaced by the numerical fixed points of the first-return
Poincaré map obtained from the integration of Eq. (18) after
transients died out, i.e., x(nT )2 + y(nT )2/ω2, where T = π/ω

and n � 1.

IV. SIGNAL-TO-NOISE RATIO

Following the previous definition of gain, we define a
measure of SNR as

R0 = 10 log

(
u∗2 + v∗2

〈x2〉

)
, (22)

where the fixed points u∗ and v∗ are given by Eq. (20) and 〈x2〉
is the time-averaged thermal fluctuations given by Eq. (14).
Near the first-instability zone boundary, we can write down
this expression, with the help of Eq. (17), approximately as

R0 ≈ 10 log

{
2F 2

0 ω2

T
(
γ 2ω2 + �2 − F 2

p

/
4
)

×
[

1 + Fp [� cos(2φ) + γω sin(2φ)]

(γω)2 + �2 + F 2
p

/
4

]}
. (23)

Another measure of SNR is given by comparing the signal
intensity with the noise level at the same frequency, that is, at
2ω. This is given by the expression

R2ω = 10 log

(
u∗2 + v∗2√

|A2ω|2 + |B2ω|2

)
, (24)

where the coefficients A2ω and B2ω are defined in Eq. (16).
By dimensional analysis, one notices that A2ω and B2ω have
the same dimensional units as u∗2 and v∗2. Near the first-
instability zone, we obtain a simple estimate for this SNR
measure, namely

R2ω ≈ 10 log

{
F 2

0 ω2

2|Fp|T (
γ 2ω2 + �2 − F 2

p

/
4
)

[
(γω)2 + �2 + F 2

p

/
4 + Fp [� cos(2φ) + γω sin(2φ)]√

�2 + γ 2ω2

]}
. (25)

V. RESULTS AND DISCUSSION

In Fig. 2, we plot the Green’s functions obtained di-
rectly from the numerical integration of Eq. (7) alongside
analytical approximation results given by Eq. (12). We
obtain excellent agreement between the two methods, which
implies that our analytical estimates of 〈x2(t)〉 are accurate.
The numerical integration was performed using an RK4

denotes Runge-Kutta-4 algorithm with a time step given by
π/(512ω).

In Fig. 3, we obtain excellent fitting between analytical
results for gain obtained by the averaging method in Eq. (21)
and numerical results given by the fixed point of the first-return
Poincaré map of Eq. (18) obtained from the integration after
transients died out.
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FIG. 3. (Color online) Comparison between numerical and ana-
lytical estimates of gain as a function of phase. The analytical gain is
given by Eq. (21). The numerical values are given by the expression
in Eq. (21) with the analytical fixed-point values replaced by the
numerical fixed points of the first-return Poincaré map obtained
from the integration of Eq. (18) after transients died out and in
accordance with the transformation in Eq. (2). Observe that both
gain and absorption are reduced with detuning.

In Fig. 4, a comparison between numerical and analytical
estimates of gain as a function of pump amplitude Fp is shown.
Two different values of phase are depicted for each frame. One
observes a very strong dependence on phase between the pump
and the external additive drive. One should obtain a divergence
in gain as the boundary between stable and unstable response
is reached. Again, very good estimates are obtained.

In Fig. 5, we show a logarithmic plot of the dc component of
the mean-square displacement over the heat bath temperature.
The steep rise of the curve as the pump amplitude is increased
indicates that the noise is also amplified by the parametric
oscillator.

In Fig. 6, we show logarithmic plots of the amplitude of the
signal (amplitude of response of the parametric oscillator due
to the external ac drive) over the noise (here the dc component
of the mean-square displacement). Note that the simple
estimates given by Eq. (23) yield a very good approximation as
one gets close to the first-instability zone in parameter space.

In Fig. 7, we show logarithmic plots of the amplitude of
the signal (amplitude of response of the parametric oscillator
due to the external ac drive) over the average fluctuations
amplitude of oscillation at frequency 2ω (here the ac compo-
nent of the mean-square displacement).

The SNR’s proposed here decay monotonically with the
increase in temperature, as can be seen in Eqs. (23) and (25),
unlike what happens in stochastic resonance (SR) [30]. In order
to obtain SR, one would have to add nonlinear terms to our
equations. Nonetheless, in the present form of our system it is
possible in some situations for a signal (F0 cos[ωt + φ(t)]) to
be detected more easily by a parametric oscillator receiver. In
general, if the signal has some randomness in phase, that is,
φ(t) = φ0 + r(t), where r(t) could be a Wiener or an Ornstein-
Uhlenbeck random process, we would sample a phase interval
in Fig. 3, thus increasing the gain on average. On the other
hand, a constant phase could render, in some cases, a negative
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FIG. 4. (Color online) Comparison between numerical and an-
alytical estimates of gain as a function of pump amplitude Fp .
The analytical gain is given by Eq. (21). The numerical values are
given by the expression in Eq. (21) with the analytical fixed-point
values replaced by the numerical fixed points of the first-return
Poincaré map obtained from the integration of Eq. (18) after
transients died out and in accordance with the transformation in
Eq. (2).
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FIG. 6. (Color online) Plot of signal-to-noise ratio R0 as defined
in Eq. (22) along with corresponding approximations given by
Eq. (23).

gain, as can be seen in Fig. 3. In this sense then, we could
have an increase in the SNR if one adds some small amount of
noise in the signal phase, reminiscent of SR. Too much noise,
though, would wash away any signal.

It is important to point out that we have investigated an
example of an oscillator bichromatically driven (parametri-
cally at 2ω and externally driven at ω) with added noise.
Bichromatically driven overdamped nonlinear systems have
been studied by Kurths et al. [31,32], in which vibrational
resonance (VR) has occurred, a phenomenon similar to SR,
with the high-frequency pump replacing the noise. In VR,
an optimal amplitude of a high-frequency drive amplifies
the response of the nonlinear system to a low-frequency
signal. We believe our approach (averaging method plus
Green’s functions) could be applied to the linear response
of such systems, allowing corrections in the dynamics due to
acceleration in overdamped oscillators and the study of VR
in underdamped systems as well. Our analytical approach can
be easily extended to allow the signal (added ac driving) to
have high frequencies or low frequencies as occurs in VR. The
response to the signal can be enhanced significantly by the
parametric pump as one gets close to the first-instability region.

VI. CONCLUSION

The ability to reduce the influence of thermal noise in para-
metric amplifiers (which includes the linear regime of MEMS
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FIG. 7. (Color online) Plots of the signal-to-noise ratio R2ω as
defined in Eq. (24), in which the signal is given by u∗2 + v∗2 and the
noise is given by the amplitude of squeezing at 2ω of the mean-square
displacement 〈x2(t)〉 as given by

√
|A2ω|2 + |B2ω|2, in which A2ω and

B2ω are defined in Eq. (16). Very precise approximations are also
plotted, given by Eq. (25).

devices and optomechanical cavities) can greatly improve the
accuracy and precision of measuring small masses and weak
forces. Here we extended the theoretical work related to the
seminal experimental research by Rugar and Grütter [13].
For a long time since its publication, there has not appeared
in the literature a sound explanation based on stochastic
dynamics of the essential features of the classical thermal
noise squeezing phenomena observed there. Recently, though,
one of the authors (A.A.B.) proposed a stochastic dynamics
model [22] obtained by approximating the Green’s functions
of the parametric oscillator using averaging techniques to
account for the observed experimental effects. Here we extend
this work and give analytical approximate results for SNR in
parametric amplification. We propose two different kinds of
SNR (R0 and R2ω). These estimates of SNR give a measure of
the effectiveness of the parametric amplifiers in the presence of
additive noise. The analytical results presented here confirm
that in both measures of SNR, the parametric amplifier is
indeed a very good amplifier, with sensitive amplification
dependent on frequency, on phase, and with low noise.

Further refinement of our results may be achieved by
including more details about the noise model, such as memory
effects [33–35], by taking into account the coupling to a heat
bath that could be made out of photons, as in radiation-pressure
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cooling, or via coupling to phonons. Further improvements
in the accuracy of the predictions should be achieved by
taking nonlinear terms into account, especially when one gets
close, in parameter space, to the first zone of instability. It is
noteworthy to observe that our method may be applied to the
linear response of nonlinear oscillators in the presence of both
an ac drive and thermal noise.

Finally, we note that this model can also be applied to the
dynamics of ions in quadrupole ion guides or traps [3] or
traps for neutral particles with magnetic dipole moments [36].
The presence of noise would indicate that the vacuum is not

complete. One would obtain an estimate of the limits of mass
spectroscopy in quadrupole ion guides, where the spectral limit
is bounded by the ion guide length and the amount of noise
present in the system.
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