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Brownian motion in shear flow: Direct observation of anomalous diffusion
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Brownian motion in a simple shear flow has been experimentally investigated by using a different method
for observation and analysis. A number of polystyrene spheres dispersed in sheared water were tracked with a
confocal scanning laser microscope, and the time dependences of their coordinates were obtained. Since in the
usual mean-square displacement in the flow direction the contribution from the Brownian motion is overwhelmed
by that due to the convection, we considered an alternative displacement for which the convection effect could
be removed. We found that the new mean-square displacement consists of the normal Einstein diffusion term,
which is linear in t , and an anomalous t3 term arising from the coupling between the diffusion along the velocity
gradient and the convection.
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I. INTRODUCTION

Taylor dispersion is a well-known case in which the
coupling between diffusion and convection plays an important
role in a sheared fluid [1]. When a soluble substance is
introduced into a fluid flowing slowly through a narrow tube, it
spreads along the tube under the combined action of molecular
diffusion and the variation of velocity over the cross section.
Taylor verified, both experimentally and theoretically, that
the spreading of the cross-sectionally averaged concentration
followed an ordinary diffusion equation with an effective
diffusion constant depending on the Poiseuille velocity pro-
file and the molecular diffusion constant. For a Brownian
particle undergoing shear, a similar effect is also expected.
The Brownian dynamics has been theoretically studied on the
basis of a convective diffusion equation [2–5], which was used
by Taylor, and a Langevin equation [5–8]. Both give the same
mean-square displacement (MSD) in the flow direction x for
a simple shear flow [4–7]:

〈(x(t) − x(0) − γ̇ z(0)t)2〉 = 2Dt
[
1 + 1

3 (γ̇ t)2
]
, (1)

where 〈· · ·〉 denotes the ensemble average, the z axis is taken
to be along the velocity gradient, and D and γ̇ are the
diffusion constant and shear rate, respectively. Note that the
displacement due to the shear flow along a stream line, γ̇ z(0)t ,
where it is assumed that the flow velocity is zero at z = 0,
is subtracted in the left-hand side of Eq. (1). The t3 term in
Eq. (1) is the most important characteristic of a free Brownian
particle in simple shear flow, which becomes greater than the
Einstein term 2Dt for large γ̇ t . The origin of the anomalous
diffusion is as follows: the Brownian motion of a particle along
the velocity gradient (the z direction) causes a velocity change
along the flow direction (the x direction) and consequently
a change in the displacement as well. Despite its importance
and simple form, Eq. (1) has not been experimentally verified,
although dynamic light scattering experiments related to this
issue have been made [9–11]. The MSDs along y (the vorticity
direction) and z obey the usual Einstein diffusion even in shear
flow: 〈[y(t) − y(0)]2〉 = 〈[z(t) − z(0)]2〉 = 2Dt .
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Recently, the coupling between diffusion and convection
has been experimentally investigated through cross correla-
tions of displacements along the x and z directions, 〈x(t)z(0)〉
and 〈x(0)z(t)〉, where a particle was trapped with an optical
tweezer in a linear shear flow [12]. A strong time asymmetry
was observed in the cross correlations as predicted theoreti-
cally [13]. This should disappear in the absence of flow, i.e.,
in the equilibrium state. Although the coupling was clearly
shown, the t3 anomaly for a free particle remains an open
question. Experimentally, it may be difficult to trace a free
particle in shear flow for a long enough time to calculate
the MSD with sufficient statistical accuracy. Furthermore, the
subtraction of the displacement due to flow as in Eq. (1) may
be difficult because of the need to measure z(0), although
these can be done by simulations [14]. Here, it should be
stressed that we can experimentally obtain 〈[x(t) − x(0)]2〉
but this has a term [γ̇ z(0)t]2 which would overwhelm the
other two terms under available experimental conditions. In
this paper, we describe how to overcome the above difficulties
and experimentally verify the t3 anomaly.

II. EXPERIMENTAL AND ANALYSIS METHODS

For tracing Brownian particles in shear flow, we used a
system combining a cone-plate rheometer and a confocal
scanning laser microscope (CSLM), as shown in Fig. 1 [15].
The diameter of the cone plate was 25 mm. Observations
of fluorescence beads dispersed in distilled water were made
through the bottom glass plate of the rheometer with the CSLM
[Fig. 1(a)]. The observations were taken 3 mm in from the
edge of the rotating plate, where the gap was 170 μm. The
focal plane of the CSLM was fixed at 10 μm above the glass
surface and two-dimensional images (400 μm × 400 μm) were
captured with a frame rate of 60 fps for about 2 min. We used a
low numerical aperture (NA) object lens (20× and NA = 0.50)
so that we could observe particles in a layer with a thickness of
about 10 μm between z1 = 5 μm and z2 = 15 μm [Fig. 1(b)]
by adjusting the threshold used for image thresholding. Under
our experimental conditions, the diffusion length along the
z axis is smaller than z1 so that the boundary effect can be
neglected. All the particles in this layer were tracked and the
time dependences of the x and y coordinates were obtained.
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FIG. 1. (Color online) (a) Schematic illustration of system com-
bining a rheometer and CSLM. (b) Details of the sample space.
The observed region is a thin layer between z = z1 (5 μm) and z2

(15 μm).

We had about 700 traces with a length greater than 2.5 s for
one run. The data analyses were performed as follows.

We start with a Langevin equation for a particle subjected
to simple shear flow [5]:

ζ (ẋ − γ̇ z) = Rx(t), (2a)

ζ ż = Rz(t), (2b)

where γ̇ is the shear rate, ζ = 6πaη with a the particle
radius and η the shear viscosity, Rα is a random force, and
the dots denote the time derivatives. The inertia terms have
been dropped, as they are negligible in our experiment. The
equation of motion for y is similar to that for z. The random
forces satisfy 〈Rα(t)〉 = 0 and

〈Rα(t)Rβ(t ′)〉 = 2ζkBT δαβδ(t − t ′). (3)

The diffusion constant in Eq. (1) is given by D = kBT /ζ

(Einstein-Stokes relation). The solution of Eq. (2) can be
written as

x(t) = x(0) + γ̇ z(0)t + xB(t), (4a)

z(t) = z(0) + zB(t), (4b)

where x(0) and z(0) are the initial coordinates at t = 0, and
xB(t) and zB(t) are the stochastic parts, which satisfy Eq. (2)
with initial conditions of xB(0) = zB(0) = 0. The MSD of
xB(t) is given by Eq. (1). As was mentioned above, it is
experimentally difficult to obtain xB(t). Instead, we introduce
a new variable:

x̃(t) ≡ {[x(2t) − x(t)] − [x(t) − x(0)]}/
√

2

= [xB(2t) − 2xB(t)]/
√

2, (5)

where we have used Eq. (4a). Note that x̃ depends only on
xB , and is independent of either the initial position or the flow
velocity. The MSD of x̃(t) can be calculated to be the same
as that of xB(t), i.e., 〈̃x(t)2〉 = 〈xB (t)2〉. This will be derived
later. Furthermore, defining

x̃m,n(t) ≡ [{x(nt) − x[(n − 1)t]}
−{x(mt) − x[(m − 1)t]}]/

√
2, (6)

we can obtain

〈̃x1,3(t )̃x2,4(t)〉 = 〈̃x1,4(t )̃x2,3(t)〉 = Dt(γ̇ t)2, (7)

indicating that only the t3 term can be extracted. In addition,
〈̃x1,2(t )̃x3,4(t)〉 = 0.

When we calculated 〈̃x(t)2〉 and 〈̃x1,3(t )̃x2,4(t)〉 from the
experimentally obtained x(t), we used the difference 	xij (t) ≡
[xi(t) − xj (t)]/

√
2 for the ith and j th particles rather than x(t)

itself, because the captured images suffered small spatially
uniform oscillations for some reason, which affected the
results. It can be shown that both x(t) and 	xij (t) give the same
averaged quantities unless there is any correlation between
the ith and j th particles. We chose suitable pairs of particles,
calculated 〈̃x(t)2〉 and 〈̃x1,3(t )̃x2,4(t)〉 of the difference for each
pair, and then averaged them over all the pairs. Furthermore,
they were averaged over four runs to reduce statistical errors.

III. RESULTS AND DISCUSSION

In the measurements, fluorescence polystyrene spheres with
diameters of 0.5 and 1 μm (Fluospheres, Invitrogen) were
used. They were dilutely dispersed in distilled water so that
interactions between particles were negligible. Measurements
were made at shear rates of 0, 2, and 4 s−1 at 25 ◦C. The
MSD of x̃(t) [	xij (t) was actually used for calculation] at
each shear rate is shown in Fig. 2. The MSD of ỹ(t), which
is defined in a way similar to Eq. (5), is also shown. Also
shown are the MSDs for a dispersion of 0.5 μm particles in
glycerine, which has almost no Brownian motion because of
its large viscosity (0.42 Pa s). These confirm the absence of
extrinsic fluctuations. Without shear flow [Fig. 2(a)], 〈̃x(t)2〉
and 〈ỹ(t)2〉 are the same for each particle diameter, and they are
proportional to time. The slopes give diffusion constants for
0.5 and 1 μm particles as 0.91 and 0.45 μm2 s−1, respectively,
which are in good agreement with those calculated from the
Einstein-Stokes relation, 0.94 and 0.47 μ m2 s−1.

In the presence of shear flows, 〈̃x(t)2〉 deviates from 〈ỹ(t)2〉,
which is independent of shear rate. They coincide at initial
times for each particle, while 〈̃x(t)2〉 increases more than
〈ỹ(t)2〉 at later times, indicating the existence of the anomalous
diffusion. As can be seen from Figs. 2(b) and 2(c), the
anomalous diffusion increases as the shear rate is raised,
which coincides with the prediction of Eq. (1). In the inset
of Fig. 2(c), we show a log-log plot of 〈̃x(t)2〉 − 〈ỹ(t)2〉,
which should be equal to 2/3Dt(γ̇ t)2. The exponents for
the 0.5 and 1 μm particles are, respectively, 2.90 ± 0.01 and
2.96 ± 0.01, clearly indicating the t3 dependence. The solid
lines in Figs. 2(b) and 2(c) denote theoretical curves calculated
from Eq. (1) with D experimentally obtained from the slopes
of 〈̃x(t)2〉 in Fig. 2(a), clearly verifying the equation, although
the theoretical ones are slightly larger than the experimental
ones for all the MSDs of 〈̃x(t)2〉. This discrepancy will be
discussed later. Here, we would like to emphasize that the
usual 〈[x(t) − x(0)]2〉 is very large due to the contribution
from the flow; for example, about 2000 μm2 at t = 1 s and
γ̇ = 4 s−1, which is much larger than the corresponding value
of 〈̃x(t)2〉, 10.3 μm2. This demonstrates the usefulness of our
method. Figure 3 shows 〈̃x1,3(t )̃x2,4(t)〉 at shear rates of 0,
2, and 4 s−1. Since 〈̃x1,3(t )̃x2,4(t)〉 has no contribution from
normal diffusion, it is almost zero without shear flow, as shown
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FIG. 2. (Color online) MSDs of x̃(t) and ỹ(t) for particles with
diameters 0.5 and 1 μm in distilled water at shear rates of (a) 0,
(b) 2, and (c) 4 s−1 at 25 ◦C. For reference, results for particles with
a diameter of 0.5 μm in glycerine are also shown. Solid and dashed
curves are theoretical results for an infinite system Eq. (1) and a
layer Eq. (10), respectively. A log-log plot of 〈̃x(t)2〉 − 〈ỹ(t)2〉 is also
shown for 0.5 and 1 μm particles in the inset of (c).

in Fig. 3(a). In the presence of shear flows [Figs. 3(b) and 3(c)],
in contrast, the anomalous diffusion appears and increases
with the shear rate. The exponent of the anomaly is almost
3, as is seen from the insets in Fig. 3. However, theoretical
values (solid lines) calculated from Eq. (7) are larger than the
experimental values. This tendency is more remarkable than in
〈̃x(t)2〉. The discrepancies between experiment and theory are
ascribable to the fact that the observed region was confined
to a thin layer of about 10 μm in our experiment, while
the theoretical result in Eq. (1) was obtained for an infinite
system.

Before discussing the discrepancies, we show the time
evolution of the density distribution of 0.5 μm particles at
γ̇ = 4 s−1. In Fig. 4, [̃x(t),̃y(t)] is plotted for 1300 traces at
t = (a) 0.2, (b) 0.4, (c) 0.6, and (d) 0.8 s. The appearance

FIG. 3. (Color online) 〈̃x1,3(t )̃x2,4(t)〉 for particles with diameters
0.5 and 1 μm in distilled water at shear rates of (a) 0, (b) 2, and
(c) 4 s−1 at 25 ◦C. Log-log plots are also shown in the insets of (b)
and (c). Solid and dashed curves are theoretical results for an infinite
system Eq. (7) and a layer Eq. (12), respectively.

of anisotropy due to the anomalous diffusion is clearly seen
at later times. The normalized two-dimensional distribution
function projected onto the x-y plane is given by [2–5]

ρ(x,y,t) ≡ 1

2π
√

〈xB(t)2〉〈yB(t)2〉
exp[−x2/2〈xB (t)2〉

− y2/2〈yB (t)2〉]. (8)

Now, let us consider the effect of the finiteness of the
observed region. From Eq. (2a), 〈xB (t)2〉 is given by

〈xB(t)2〉 = ζ−2
∫ t

0
dτ1

∫ t

0
dτ2〈Rx(τ1)Rx(τ2)〉

+γ̇ 2
∫ t

0
dτ1

∫ t

0
dτ2〈zB(τ1)zB(τ2)〉. (9)

With the use of Eq. (3), the first term on the right-hand side
becomes 2Dt . But, the second term does not coincide with the
t3 term in Eq. (1) when the observed region is confined to a thin
layer with the layer normal being along the z direction, because
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FIG. 4. Time evolution of the particle density for γ̇ = 4 s−1:
plots of [̃x(t),̃y(t)] for 1300 traces at t = (a) 0.2, (b) 0.4, (c) 0.6, and
(d) 0.8 s.

the range of zB is finite and so 〈zB (τ1)zB(τ2)〉 is bounded above.
This indicates that 〈xB(t)2〉 for a thin layer should always be
smaller than that for an infinite observed region. Note that the
decrease of 〈xB(t)2〉 is due to the finiteness of the observed
region, but not to the boundary effect of the top or bottom
plate. In our analysis, we used 〈̃x(t)2〉, which is calculated as

〈̃x(t)2〉 = 2Dt + γ̇ 2
∫ 2t

0
[Iz(τ ) − Iz(t)]dτ, (10)

with

Iz(t) ≡
∫

〈zB(t)2〉dt, (11)

where we have used the relation 〈zB(t1)zB(t2)〉 =
〈zB[min(t1,t2)]2〉, derived from Eqs. (2b) and (3). It is readily
confirmed that substitution of Iz(t) = Dt2 for an infinite ob-
served region into Eq. (10) yields Eq. (1). Similarly, we obtain

〈̃x1,3(t )̃x2,4(t)〉 = 〈̃x1,4(t )̃x2,3(t)〉
= 1

2 γ̇ t[Iz(3t) − 2Iz(2t) + Iz(t)]. (12)

We can estimate 〈zB(t)2〉 for a thin layer. From Eq. (4),
〈zB(t)2〉 can be rewritten as 〈[z(t) − z(0)]2〉, indicating that
the probability density functions (PDFs) for both z(0) and z(t)
are needed. In the present experiment, particles enter the layer
mainly through the plane perpendicular to the x axis, and the

flux is proportional to the flow velocity. Therefore, the PDF
for z(0) may be proportional to γ̇ z(0) if particles entering
the layer through the upper and lower surfaces are negligible,
which is true when the shear rate is large or the diffusion is
small. Thus, by taking into account that the particle density
is constant independent of the position, the normalized PDF
for z(0) becomes 2z(0)/(z2

2 − z2
1), where z2 and z1 are the

positions of the upper and lower boundaries. Note that the
PDF is independent of the shear rate. On the other hand,
the diffusion in the z direction is normal and, therefore, the
probability density for a particle obeys the usual diffusion
equation, the solution of which is a Gaussian function with a
variance of 2Dt . Therefore, we can approximate 〈zB(t)2〉 as

〈zB(t)2〉 � 2

z2
2 − z2

1

∫ z2

z1

z0 dz0

∫ z2

z1
(z − z0)2f (z − z0,t)dz∫ z2

z1
f (z − z0,t)dz

,

(13)

with

f (z,t) ≡ 1√
8πDt

exp(−z2/4Dt), (14)

where we have introduced
∫ z2

z1
f (z − z0,t)dz in the denomi-

nator to make the particle density constant in the layer. This
may compensate for the absence of diffusion of particles into
the layer through the upper and lower boundaries. Theoretical
curves are shown by dashed lines in Figs. 2 and 3. They are in
satisfactory agreement with the experimentally obtained data.

IV. CONCLUSIONS

We have presented a different method to obtain MSDs of
a free particle in shear flow and have verified the anomalous
diffusion, which is caused by the coupling between the normal
diffusion along the velocity gradient and the convection. We
also investigated the effect of the finiteness of the observed
region, which makes MSDs smaller than that for the infinite
system. A good agreement was obtained between experiment
and theory by taking into account the finite effect. An
interesting challenge for the future may be the application
of this method to dense suspensions, in which the motion of
the particles due to shear-induced interparticle interactions is
greater than that arising from Brownian motion [16].
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