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The solution of the problem of the partition function calculation for a Coulomb-like system is proposed.
The quantum-field-theory approach is used to give a statistical description of a system of interacting particles
with due regard to arbitrary spatially inhomogeneous configurations. Formation of structures in a Coulomb-like
system is analyzed and applied to the case of of dusty crystals and two-dimensional colloidal crystals. In the
one-dimensional case, an exact solution for the spatial distribution of charged particles is obtained. In the two-
dimensional case, the exact partition function for homogeneous distribution of particles is presented. We have
analytically derived the necessary condition for the crystal formation in a system of interacting particles in the
three-dimensional case.
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I. INTRODUCTION

Particle systems with Coulomb interaction (Coulomb-like
systems), such as plasmas, colloidal particles, electrolyte
solutions, electron gas in solids, etc., are widely presented both
in nature and under laboratory conditions. Many soft-matter
systems, e.g., surfactant solutions, colloids in various solvents,
and dust particles in plasmas, exhibit self-assembling into
various structures. The interest in this system is generated
by its applications to the studies of a variety of peculiar
phenomena in various fields of science [1–3]. One of the
most important problems here is the statistical description of
Coulomb-like systems with high concentrations of interacting
particles [4]. The formation of different crystal structures,
transitions between crystalline phases of different symmetries,
and melting-like phenomena [5,6] are observed when the
concentration increases [7]. Moreover, dusty plasmas as well
as colloidal suspensions may serve as perfect media for the
experimental investigation of classical fluids and solids [7–16],
since both direct measurements of the interaction between
colloidal particles [17,18] and theoretical treatment [19]
reveal the Coulomb-like nature of the interaction in colloidal
suspensions [2]. The theoretical description of such systems is
one of the key problems of statistical physics.

It is rather difficult to solve this problem since traditional
methods of statistical mechanics cannot be applied to inhomo-
geneous systems with Coulomb-like interactions. Here specific
methods should be applied, which can take into account the
inhomogeneity of particle distributions. In particular, these
methods should employ an appropriate procedure to find the
dominant contribution to the partition function and to avoid
free-energy divergences when the volume grows infinite. Only
a few model systems of interacting particles are known for
which the partition function can be evaluated exactly in the
thermodynamical limit [20–23]. As for the description of
equilibrium states, only a few results have been obtained within
the framework of exact equilibrium statistical mechanics. Now
the known results can be obtained much more easily in terms of
the method of collective variable and integral transformations
[24]. Moreover, this method makes it possible to obtain the free
energy of a classical plasma system in a regular manner up to an
arbitrary order. A universal sequence of ordered structures was
obtained from the mesoscopic description of the self-assembly

using the functional and statistical field theory [25]. In this
paper an alternative approach is proposed, resulting in a
density-functional theory with rather simple structure. The
theory makes it possible to include the contributions of long-
range correlations between fluctuations in the grand potential.
The effect of fluctuations on the stability of a periodic structure
was investigated in Ref. [14] (see also [15]). The field-theory
method was applied to show that a periodic structure is
stabilized due to the low-amplitude order parameter. The
nature of the transition and properties of various ordered phases
were studied for the case of an isotropic system, either dusty
plasma or a colloidal system.

One of the ways to describe the spatially inhomogeneous
distribution in a system of interacting particles is to use
the new unconventional method proposed in Refs. [26,27],
which employs the Hubbard-Stratonovich representation of
the partition function [28]. Now this method is extended and
applied to a system with Coulomb-like interaction to find the
solution for the particle distribution. It is important that this
solution has no divergences for the thermodynamical limits.

The purpose of the present contribution is to apply the
quantum-field-theory approach to the statistical description of
a Coulomb-like system and to calculate the thermodynamic
characteristics for both homogeneous and inhomogeneous
distributions of interacting particles. The condensed spatially
periodic structures are studied as well. We consider electrically
neutral systems and use the pure Coulomb interaction potential
or an effective screened potential, if the appropriate model
can be introduced. We use the saddle-point approximation
with regard to the conservation of the number of particles
that yields a nonlinear equation for the new field variable.
In the three-dimensional case, this equation reduces to the
sine-Gordon equation whose solution determines the state
associated with the dominant contribution in the partition
function. This method makes it possible to describe the
conditions of Wigner crystal formation in a system of dust
particles in a plasma. There may exist various possibilities
for different parameters corresponding to the interaction
potential. Nevertheless, the results for simple and basic cases
are most important for understanding the behavior of dusty
plasmas in complex situations. The necessary condition for
the crystal formation in a system of dust particles is derived
analytically for the three-dimensional case. For the one- and
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two- dimensional cases, exact solutions for various spatial
distributions of charged particles are found.

II. STATISTICAL DESCRIPTION OF A COULOMB-LIKE
SYSTEM

We begin with a brief account of an inhomogeneous system
of interacting particles [26,27]. The method makes it possible
to describe an equilibrium system of interacting particles
taking into account the formation of a thermodynamically
stable spatial particle distribution and to consider the collective
behavior of the structures thus formed. The statistical investi-
gation of particle interaction in condensed matter is based on
the function of the canonical ensemble of particle sets {n}. We
can write the partition function in the well-known form; i.e.,

ZN =
∑
{n}

exp[−βH (n)], (1)

where
∑

{n} implies summation over all probable distributions
of occupation number {ns}, β = 1

kT
is the inverse temperature,

and H (n) is the configuration Hamiltonian of the system.
A system of interacting particles with regard to the type
of statistics with quantum correlations can be treated in the
classical manner with the model Hamiltonian [29] given by

H (n) =
∑

s

εsns − 1

2

∑
s,s ′

Wss ′nsns ′ , (2)

with εs being the additive part of the energy in the state s that
in most cases is equal to the kinetic energy, Wss ′ being the
interaction energies for the particles in the states s and s ′. In
this model, the macroscopic states of the system are described
by a set of occupation numbers ns . Index s labels an individual
particle state that can correspond to a fixed site of the Ising
lattice [21]. It is clear that calculating of the partition function
makes a rather complicated problem even in the case of the
Ising model. The partition function for the canonical ensemble
of a system of interacting particles is given by Ref. [27]

ZN =
∑
{n}

exp[−βH (n)]

=
∑
{n}

exp

{
− β

[ ∑
s

εsns − 1

2

∑
s,s ′

Wss ′nsns ′

]}
. (3)

In order to perform a formal summation in Eq. (2), additional
field variables can be introduced in terms of the theory of
Gaussian integrals [28–30]:

exp

{
1

2θ
ν2

∑
s,s ′

ωss ′nsns ′

}

=
∫ ∞

−∞
Dϕ exp

{
ν

∑
s

nsϕs − 1

2β

∑
s,s ′

ω−1
ss ′ ϕsϕs ′

}
, (4)

where Dϕ = ∏
s dϕs/

√
det 2πβωss ′ depends on the character

of the interaction energy and ω−1
ss ′ is the inverse interaction

matrix. The latter satisfies the condition ω−1
ss ′′ωs ′′s ′ = δss ′ . The

partition function of a system may be rewritten as

Z =
∫ ∞

−∞
Dϕ

∑
{ns }

exp

{∑
s

(iϕs − βεs)ns

− 1

2β

∑
s,s ′

(
W−1

ss ′ ϕsϕs ′
)}

. (5)

In the above analysis we did not restrict the number of
particles. Now let us fix the total number of particles in the
system N = ∑

s ns . To do this we use the well-known Cauchy
formula [21]:

1

2πi

∮
dξξ

∑
s

ns−N−1 = 1. (6)

Then the partition function can be rewritten in the form

ZN = 1

2π

∮
dξ

∫ ∞

−∞
Dϕ exp

{
− 1

2β

∑
s,s ′

(
W−1

ss ′ ϕsϕs ′
)

− (N + 1) ln ξ

}∏
s

∑
{ns }

[ξ exp(iϕs − βεs)]
ns , (7)

where summation extends over the occupation numbers ns .
Finally it reduces to

ZN = 1

2π

∮
dξ

∫ ∞

−∞
Dϕ exp[−βF (ϕ,ξ )], (8)

where the effective free energy can be present as

βF (ϕ,ξ ) = 1

2β

∑
s,s ′

(
W−1

ss ′ ϕsϕs ′
)

+ δ
∑

s

ln(1 − δξe−βεs cos ϕs) + (N + 1) ln ξ.

(9)

δ = +1 for Bose statistics and δ = −1 for the Fermi statistics;
ξ ≡ eβμ is the absolute chemical activity of the chemical
potential μ. This presentation of the partition function makes it
possible to use the efficient methods developed in the quantum-
field theory without imposing any additional restrictions on the
integration over the field variables. The functional βF (ϕ,ξ )
depends on the distribution of field variables ϕ and the absolute
chemical activity ξ . The field variable ϕ contains the same
information as the original partition function with summa-
tion over the occupation numbers, i.e., all the information
about probable states of the system. The partition function
represented in terms of the functional integral over auxiliary
fields corresponds to the construction of an equilibrium
sequence of probable states of the system with regard to
their weights. This representation provides a possibility to
employ the well-known method of quantum-field theory and
to make no use of the perturbation theory. The extension to
the complex plane makes it possible to apply the saddle-point
method.

Now we can employ the saddle-point method to find
the asymptotic value of the partition function ZN for N →
∞; the dominant contribution is given by the states which
satisfy the extremum condition for the functional. The particle
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distribution is determined by the saddle-point solution of the
equations; i.e.,

δβF

δξ
= δβF

δϕ
= 0, (10)

which is valid in both cases of spatially homogeneous or
inhomogeneous distributions. The solutions associated with
finite effective free energy F (ϕ,ξ ) as the volume of the
system tends to infinity are thermodynamically stable. The
spatially inhomogeneous solution of these equations describes
the distribution of interacting particles. Such inhomogeneous
behavior is determined by the interaction intensity. In other
words, the accumulation of particles in a finite spatial domain
is related to the spatial distribution of the fields and the activity.
In the case of a Coulomb-like system that is neutral as a whole,
the interaction energy can be present as ωss ′ = ω(|rs − rs ′ |) =
(Q2/|rs − rs ′ |) exp(−κ|rs − rs ′ |). The inverse matrix ω−1

ss ′ to
such interaction in the continuum limiting case should be
treated in the operator sense [29]; i.e.,

ω−1
rr ′ = δrr ′L̂r ′ = − 1

4πQ2
(� − κ2), (11)

where Q is the particle charge, � is the Laplace operator, and
κ is the screening length. With the accuracy up to the surface
term, the effective free energy in the continuum case is given
by

βF (ϕ,ξ ) =
∫

dV

{
1

8πQ2β
[(∇ϕ)2 + κ2ϕ2]

+ δ
∑

p

ln(1 − δξe−βεp cos ϕ)

}
+ (N + 1) ln ξ.

(12)

Integration over the momentum and coordinates should be
performed over the cell volume (2πh̄)3 in the phase space
of individual states. To demonstrate the advantages of the
approach we first derive the well-known result in the case
of ideal gas. For ideal gas ϕ = 0 and the partition function
may be written as

ZN = 1

2πi

∮
dξ exp

{
− δ

∑
p

ln(1 − δe−βεp )

− (N + 1) ln ξ

}
, (13)

which can be transformed to

ZN = 1

2πi

∮
dξ

ξN+1

∏
(1 − δe−βεp )δ, (14)

since the partition function of the grand canonical ensemble
Z = ∏

(1 − δe−βεp )δ fully reproduces the well-known result
for the partition function of an ideal quantum gas. As has
been shown in Ref. [22] for the classical statistic we have ξ �
1 and δ

∑
p ln(1 − δξe−β

∑
p εp cos ϕ) ≈ −ξe−βεp cos ϕ + · · ·.

The effective free energy for the Boltzmann statistic can be

rewritten in the form [27]

βF (ϕ,ξ ) =
∫

dV

{
1

2re

[(∇ϕ)2 + κ2ϕ2] − ξA cos ϕ

}
+ (N + 1) ln ξ, (15)

where we have introduced a new variable re = 4πQ2β. Here
A ≡ λ−3 = (2πm/βh2)3/2, where λ represents the quantum
thermal wavelength. The effective free energy of noninter-
acting particles vanishes, ϕ = 0, and thus in this case of
Boltzmann statistics the free energy can be written in the
following simple form:

βF (ϕ,ξ ) = −
∫

drξ
(

2πm

βh̄2

)3/2

+ (N + 1) ln ξ. (16)

The normalization condition reduces to the equation

V ξ

(
2πm

βh̄2

)3/2

= N + 1, (17)

which yields the absolute chemical activity ξ =
N
V

(2πm/βh̄2)−3/2. Substituting this quantity into the
expression for the effective free energy yields the effective
free energy for fixed number of particles and energy, and the
partition function of noninteracting particles is then given by
ZN = exp(−βFB) where

βFB = 3N

2
− ln

N !

V

(
βh̄2

2πm

)3/2

, (18)

which reproduces the well-known free energy for the ideal
Boltzmann gas.

In the case of interacting particles, we propose a method
that makes it possible to determine the states with the dominant
contributions to the partition function. Namely, we use the
saddle-point approximation which provides an efficient and
powerful technique in the quantum-field theory. This approach
has been successfully applied to many problems. In particular,
such approach holds in the case of a high-temperature many-
body system. We start from the one-dimensional case.

III. ONE-DIMENSIONAL COULOMB-LIKE SYSTEM

Let us consider a one-dimensional system with linear
particle density. Charges distributed along a macromolecule
can be treated as an example of such a system. We consider
a cylindrical molecule of length L and radius r 
 L. Let the
Coulomb charges lie on the cylinder axis. In this case the
problem can be solved exactly [27]. The free energy of a
system of charged particles in the one-dimensional case can
be presented as

βF = V

L

∫ L

0
dz

{
1

re

(
dϕ

dz

)2

− ξA cos ϕ

}
+ (N + 1) ln ξ.

(19)

Then the saddle-point equation reduces to the sine-Gordon
equation

1

re

(
d2ϕ

dz2

)
+ ξA sin ϕ = 0. (20)

061115-3



B. I. LEV AND A. G. ZAGORODNY PHYSICAL REVIEW E 84, 061115 (2011)

The first integral of this equation is given by

1

re

(
dϕ

dz

)2

+ ξA cos ϕ = C. (21)

It corresponds to the exact solution with the finite period; i.e.,

l = 1√
2re

∫
dϕ√

C − ξA cos ϕ
= 4K(p)√

2re(C + ξA)
, (22)

where K(p) is the full elliptic integral of the first kind
with unknown argument p = √

2ξA/(C + ξA). This solution
depends on the integration constant C [31]. Substituting the
solution into the free energy yields

βF = 2ξAV

{
2E(p)

p2K(p)
− 1

p2
+ 1

}
− ξAV + (N + 1) ln ξ.

(23)

Here E(p) is the full elliptic integral of the second kind with
the same argument. The free energy extremum is achieved for
p = 1 or C = ξA which corresponds to the soliton solution
given by

ϕ = 4 arctan exp(z
√

reξA). (24)

This solution determines the state associated with the dominant
contribution in the partition function. Thus, the free energy
takes the form

βF = 8
V

L

(
ξA

re

)1/2

− ξAV + (N + 1) ln ξ. (25)

Minimization of the free energy by chemical activity leads to
the equation

4
V

L

(
ξA

re

)1/2

− ξAV + (N + 1) = 0. (26)

Its solution exists only for (N + 1)(re/L) � 16 or πQ2/kT >

4. This leads to the chemical activity ξ = (N + 1)/V . Sub-
stituting this value in the free energy provides the following
result for the one-dimensional Coulomb-like system:

βF = βFB + 8

[
(N + 1)

L

re

]1/2

. (27)

In this case the free energy of interacting particles increases
with the increase of number of particles and the size of the
system. The possible periodic structure can be motivated by
spatial boundary conditions. The period of the structure l =
L[L/(N + 1)re]1/2 increases with the decrease of the number
of particles. Such a system is homogeneous on the macroscopic
scale, but the particle distribution can be spatially periodic.

IV. TWO-DIMENSIONAL CASE: HEXAGONAL
STRUCTURE

As was shown in Ref. [19], the Debye-Huckel theory for
the interfacial geometry predicts the Coulomb-like system
for charged colloids or charged polymers at monolayers,
solid substrates, and interfaces. The phase diagram of two-
dimensional electron liquids was described in Refs. [32–34].

In the case of a two-dimensional system we can obtain an
exact solution for the homogeneous distribution of particles.
Let us consider the Coulomb-like potential

ωij = −Q2

〈r〉 ln κrij , (28)

where rij = |ri − rj | is the distance between particles and
〈r〉 is the average distance between particles. For charged
colloidal particles we have Q2 = lbρ

2, where lb = e2/4πεkT

is the Bjerrum length, which defines the length at which
two unit charges interact with thermal energy, and ρ is the
charge density. This model potential has the same form as
for the interaction between two homogeneously charged lines
in three-dimensional space. Thus, the motion of real charges
on the two-dimensional plane is similar to the motion of
parallel lines oriented perpendicularly to the plane of the
two-dimensional system. In the continuous limit the partition
function in the case under consideration can be written in the
standard form

ZN =
∫

exp[−βH (r,p)]dNrdNp, (29)

where H is the Hamiltonian of the system

H (r,p) =
∑

i

p2
i

2m
+ 1

2

∑
i,j

ωij . (30)

In the two-dimensional case the equation of state can be
derived from the relation

P = kT
∂ ln Zn

∂S
, (31)

where S is the square of a circle of radius R. Having introduced
the dimensionless variable r ′

i = ri/S
1/2 we can rewrite the

partition function in the form

ZN = SN

∫
exp[−βH (r,p)]dNr′dN p′. (32)

The derivative of the partition function in this case can be
presented as

∂ZN

∂S
= NS−1ZN

− SN

kT

∫
exp[−βH (r,p)]

∂H (r,p)

∂S
dNr′dNp′ (33)

or, in another representation,

∂ZN

∂S
= NZN

S
− SN

kT

∫
exp[−βH (r,p)]

× 1

2

∑
i,j

rij

2S

∂ωij

∂rij

dNr′dN p′. (34)

This result can be presented in the dimensional form within
the context of the explicit form of the potential

∂ZN

∂S
= NZN

S
− N (N − 1)

4SkT

∫
exp[−βH (r,p)]dNr′dN

≡ NZN

S
− N (N − 1)ZN

4SkT
. (35)
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Substituting this result into the equation of state generates the
exact solution for the two-dimensional Coulomb-like system;
i.e.,

PS = NkT

{
1 + (N − 1)Q2

4kT 〈r〉
}
. (36)

If we take into account that 〈r〉 ∼ n−1/2, where n is the
concentration of particles, it is possible to show that, for a
large concentration, the system of interacting particles will
be unstable and the inhomogeneous particle distribution can
appear. Such inhomogeneous distributions are caused by the
long-range nature of the Coulomb interaction. In the case of
intensive interaction, the Coulomb-like system is unstable as
a whole, so the minimum value of the free energy is achieved
in the case of inhomogeneous distribution of particles.

Now we employ the proposed approach in order to find
the states associated with the Wigner crystal. In the two-
dimensional case, we can write the effective free energy in
the following simple form:

βF = h

∫
dxdy

{
1

re

[(∇ϕ)2 + κ2ϕ2] − ξA cos ϕ

}
+ (N + 1) ln ξ, (37)

where h is the thickness of the two-dimensional layer. In
the general case, the equation for the saddle-point states
δβF/δϕ = 0 is given by

1

re

{�2ϕ − κ2ϕ} + ξA sin ϕ = 0, (38)

where �2 is the two-dimensional Laplace operator. The
chemical activity can be obtained from the normalization
condition δβF/δξ = 0:

h

∫
dxdyξA cos ϕ = N + 1. (39)

It should be noted that this condition enables us to introduce
the concentration of particles ρ(r) = ξA cos ϕ(r). The first
integral of the equation for the field variable can be obtained
from the first equation by multiplying this equation by ∇ϕ

with regard to the relation � = ∇2. Thus, we obtain the first
integral in the form

1

re

[(∇ϕ)2 + κ2ϕ2] + ξA cos ϕ = E, (40)

where E is an unknown integration constant that should be
found from the condition of existence of the solution. Although
this equation cannot be solved in the general case, it provides
a tool to study many interacting Coulomb-like systems under
various external conditions. In terms of the density function
ρ(r) the first integral also can be written as

1

re

{
1

(ξA)2 − ρ2
(∇ρ)2 − κ2 arccos2

(
ρ

ξA

)}
+ ρ = E, (41)

and the effective free energy in terms of the first integral has
the form

βF = h

∫
dxdy

{
E + 2

κ2

re

arccos2

(
ρ

ξA

)
− 2ρ

}
+ (N + 1) ln ξ. (42)

Let us consider the case of the periodic distribution of particles
in the system. Here it is necessary to assume that ρ ∼ ρ0{1 +
cos(k�)} where � is the surface variable and k is inverse lattice
vector of the periodic distribution. The first integral should be
constant for each point of the space including the spatial point
where ρ = 0. In this case the first integral can be determined
as

−π2κ2

4re

= E. (43)

Substituting this relation into the free energy, we can present
it in the form

βF = V

{
− π2κ2

4re

+ 2κ2

re

arccos2

(
ρ0

ξA

)}
+ (N + 1) ln ξ,

(44)

where the value of the integral over the coordinate space is
estimated in terms of averaged concentration and V = hS is
the volume of the system. From the condition of minimum
effective free energy, we conclude that the solution exists if
ξA = ρ0 and the effective free energy takes the form

βF � βFB + (N + 1)

{
π2κ2

4nre

− 1

}
, (45)

which can be smaller than the free energy of gas if
8π2κ2/nre < 1.

V. THREE-DIMENSIONAL CASE: WIGNER CRYSTAL

The three-dimensional structure of induced electro-
rheological solids was described in Refs. [35,36]. In this
section we describe the system of dust particles in weakly
ionized plasma but in the stationary case. In this case we again
use a method that makes it possible to determine the states with
the dominant contributions to the partition function. Namely,
we use the saddle-point approximation. In the general case,
the equation for the saddle-point states δβF/δϕ = 0 is given
by

1

re

{�ϕ − κ2ϕ} + ξA sin ϕ = 0, (46)

where re = 2πQ2β. The chemical activity can be obtained
from the normalization condition δβF/δξ = 0:∫

dV ξA cos ϕ = N + 1. (47)

It should be noted that this condition enables us to introduce
the concentration of particles as ρ(r) = ξA cos ϕ(r). This leads
to the first integral given by

1

re

{(∇ϕ)2 + κ2ϕ2} + ξA cos ϕ = E, (48)

where E is an unknown integration constant. Similarly to the
two-dimensional case, this equation cannot be solved explicitly
in the general case.

Let us start from the case of a homogeneous distribution
of interacting particles. In this case we have to derive the
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condition for the existence of the solution ϕ = ϕ0 = constant
from the equation for the field variable

κ2

re

ϕ0 + ξA sin ϕ0 = 0 (49)

and to find the chemical activity from the normalization
condition

ξAV cos ϕ0 = N + 1. (50)

Within the context of the first integral and the equation for
the chemical activity, the free energy can be written as

βF = FB + N

{
κ2

ren
− ln cos ϕ0

}
, (51)

where we have introduced the concentration of particles n =
(N + 1)/v. Obviously, the second term in the free energy is
always positive since cos ϕ0 � 1 and thus the free energy of a
homogeneous system of interacting particle is greater than the
free energy of the Boltzmann gas.

In the general case, particle distributions in Coulomb-like
systems are inhomogeneous, the long-range nature of the
Coulomb interaction being the reason. Similarly to the two-
dimensional Coulomb-like system in the case of intensive
interaction the system becomes unstable as a whole, so the
minimum value of the free energy is achieved in the case of
inhomogeneous distribution of particles.

Now we employ the proposed approach to show how to
find the states associated with the Wigner crystal. Taking
into account that the density function ρ(r) = ξA cos ϕ is only
positive and assuming that the state of interest does exist, we
take the periodic distribution function in the form

ρ(r) = ξA cos ϕ

= ξA{1 + cos(kxx) + cos(kyy) + cos(kzz)}, (52)

which corresponds to the cubic lattice with the wave vector k =
(kx,ky,kz). If we assume that one charged particle is present at
every lattice site and that the lattice is isotropic kx = ky = kz =
2πn1/3 [where n = (N + 1)/V is the particle density], then the
normalization condition yields ξ = n/A or ξ = (N + 1)/AV .
From the first integral for the field variable, one can conclude
that E2 = π2λ2/4re. We substitute this relation into the free
energy written in terms of the first integral; i.e.,

βF =
∫

dV

{
E + 2

κ2

re

ϕ2 − 2ξA cos ϕ

}
+ (N + 1) ln ξ.

(53)

Here ϕ is the the value for average concentration of particles.
Now the effective free energy of the system can be written in
the simple form given by

βF = βFB + (N + 1)

{
π2κ2

4nre

− 1

}
. (54)

Introducing the coupling parameter �e ≡ ren
1/3 (which is the

ratio of the Coulomb to kinetic energy) provides a relation for
the critical value of the coupling parameter; i.e.,

�e � 4π2κ2n2/3 ≡ (2πκL)2, (55)

where L is the lattice period. With this condition being
satisfied, we can expect a crystal structure to be formed.

Namely, such structures are observed in dusty plasmas [1].
In terms of the structure lattice parameter used in Ref. [1]
l ≡ κL (the interparticle distance normalized by the effective
screening length), the relation obtained is given by

�e � (2πl)2. (56)

This relation gives the value of the same order as the
result of the numerical simulation [1]. We cannot solve
the problem of crystal structure formation in dusty plasmas
exactly; nevertheless we can analytically predict the conditions
for such formation. The problem is that we do not know
the three-dimensional solution of the sine-Gordon equation
that determines the field variable. Moreover, this approach
provides a description of spatially periodic distributions. The
partition function has no singularities for any values of the
Coulomb-like field. It is shown that the minimum of the free
energy sometimes does not correspond to a homogeneous
particle distribution, but could indicate the formation of a
crystal-like structure.

VI. CONCLUSION

We have developed a formalism to describe the spatially in-
homogeneous distribution in a system of interacting particles.
It employs the new unconventional method proposed earlier
in Refs. [26,27], which employs the Hubbard-Stratonovich
representation of the partition function. This method is now ex-
tended and applied to a system with Coulomb-like interaction
to find the solution for the particle distribution. It is important
that this solution has no divergences for the thermodynamical
limits. We use the saddle-point approximation with regard to
the conservation of the number of particles which yields a
nonlinear equation for the new field variable. In the three-
dimensional case, this equation reduces to the sine-Gordon
equation whose solution determines the state associated with
the dominant contribution in the partition function. This
method makes it possible to describe the conditions of Wigner
crystal formation in a system of dust particles in a plasma.
There may exist various possibilities for different parameters
corresponding to the interaction potential. However, the results
for simple and basic cases are very important for understanding
the behavior of a dusty plasma in complex situations. We have
analytically derived the necessary condition for the crystal
formation in a system of dust particles in the three-dimensional
case. In the one- and two-dimensional cases, we have found
exact solutions for various spatial distributions of charged
particles. The proposed method is designed for studies of
self-assembly systems where nonuniform distributions are
found on the different length scales. We present the partition
function and the equation of state in the most general form. In
the three-dimensional case we obtained a condition (quadratic
dependence of coupling parameter � on the experimental
parameter l) which is in good agreement with the exper-
imental data reported in Ref. [1]. In the one-dimensional
case we obtained a structure of periodic distribution of
charge particles along a cylindrical sample. In the two-
dimensional case an exact result is obtained for the partition
function for homogeneous distribution in a purely Coulomb
system.
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The periodic distribution of charged particles in the two-
dimensional case is shown to be related of the minimum
free energy, which can be calculated in this case for both
homogeneous and inhomogeneous particle distributions. To
conclude, we note that our method, proposed earlier in
Refs. [26,27], can be used to describe systems with various
inhomogeneous distributions of interacting particles regarding
the thermodynamic function as the free energy and the

equation of state. It is shown that the method proposed here
makes it possible to obtain the earlier result much more easily.
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