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Thermodynamic formula for the cumulant generating function of time-averaged current
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The cumulant generating function of time-averaged current is studied from an operational viewpoint.
Specifically, for interacting Brownian particles under nonequilibrium conditions, we show that the first derivative
of the cumulant generating function is equal to the expectation value of the current in a modified system with an
extra force added, where the modified system is characterized by a variational principle. The formula reminds us
of Einstein’s fluctuation theory in equilibrium statistical mechanics. Furthermore, since the formula leads to the
fluctuation-dissipation relation when the linear response regime is focused on, it is regarded as an extension of the
linear response theory to that valid beyond the linear response regime. The formula is also related to previously
known theories such as the Donsker-Varadhan theory, the additivity principle, and the least dissipation principle,
but it is not derived from them. Examples of its application are presented for a driven Brownian particle on a ring
subject to a periodic potential.
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I. INTRODUCTION

Entropy S as a function of extensive variables characterizes
macroscopic properties of materials in a unified manner [1]. Its
functional form for a given material is completely determined
by thermodynamic measurements of the heat capacity, the
compressibility, and the other relevant susceptibilities. Let
X be an unconstrained variable of a composite isolated
system. We denote the X dependence of S by S(X). Then
the equilibrium value of X is determined by

X∗ = argmax
X

[S(X)], (1)

which is an example of the variational principle of thermo-
dynamics. Furthermore, according to Einstein’s fluctuation
theory [1], the probability density of X is expressed as

Prob(X) � e[S(X)−S(X∗)]/kB, (2)

where kB is the Boltzmann constant, and � represents
the asymptotic equivalence of the exponential factor in the
thermodynamic limit. More precisely, let N be the number
of the degrees of freedom. Then the scaled entropy s(x) =
limN→∞ S(X)/N with x = X/N fixed satisfies

1

kB
[s(x) − s(x∗)] = lim

N→∞
1

N
log Prob(x). (3)

In the probability theory, the right-hand side provides a large
deviation function (up to the minus sign) [2]. That is, the scaled
entropy s(x) is equivalent to the large deviation function.

Now, suppose that the scaled entropy s(x) is defined by (3)
with the principle of the equal weight for microscopic states.
Then, the variational principle (1) can be derived from the
definition. A surprise in this approach is that the entropy thus
defined characterizes thermodynamic properties completely
through the fundamental relation of thermodynamics. After
establishing the connection to thermodynamics, one can
obtain the scaled entropy by thermodynamic measurements.
In other words, the large deviation function, which character-
izes macroscopic fluctuations, is obtained without measuring
fluctuations. Such formulas are not restricted to the case of
fluctuations in isolated systems. As demonstrated for a simple

model in Appendix A, several formulas are derived. One
example is that a scaled cumulant generating function of
a thermodynamic variable, which is given by the Legendre
transform of the large deviation function, is related to a free
energy density in thermodynamics. From this relation, it is
found that the derivative of the scaled cumulant generating
function with respect to its argument is equal to the expectation
value of the thermodynamic variable in a modified system
with an extra external force added. See (A9) for such an
example. The relations between large deviation functions
and thermodynamic functions are thought to be well known,
and the relations lead to fluctuation-response relations, one
of which connects the susceptibility and the intensity of
fluctuations of magnetization [1].

The main difference of nonequilibrium systems from
equilibrium systems is the existence of a current. In particular,
the expectation value of the current in a linear response regime
is connected with the intensity of fluctuations of time-averaged
current in equilibrium [3,4]. This is one of fluctuation-
dissipation relations, which might correspond to fluctuation-
response relations in equilibrium statistical mechanics. Since
the time-averaged current appears to be important at least for
small fluctuations in the linear response regime, it is natural to
consider the large deviation function of time-averaged current.
Then, from the analogy with thermodynamics, one may expect
that there is a formula that connects the large deviation
function with a macroscopic quantity and that the fluctuation-
dissipation relations are derived from the formula when the
linear response regime is focused on. Indeed, Onsager and
Onsager-Machlup attempted to express the large deviation
function of time-averaged current in terms of dissipation
functions [5–7], as pointed out by Oono [8]. This is successful
for small fluctuations in the linear response regime, but the
expression cannot be applied to general cases with large
fluctuations.

In the last two decades, the understanding of the large
deviation function of time-averaged current has been substan-
tially developed. One remarkable result is the discovery of
the fluctuation theorem that represents a simple and beautiful
symmetry property of the large deviation function of time-
averaged entropy production [9]. The symmetry property was
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understood from the microscopic reversibility of the system,
and it was generalized to identities for any quantities [10–14].
This progress enables us to revisit a linear response theory and
to rederive known formulas including a nonlinear response
formula [15] and an expression of steady-state distribution
[16,17]. See Ref. [18] as a review of these rederivations.
In addition to the rederivation of the known formulas, the
symmetry property plays an essential role in deriving an
extension of the Clausius relation [19–21] on the basis of a
neat expression of steady-state distribution [22]. As another
direction of the progress, the large deviation function of
time-averaged current was explicitly calculated for lattice
models [23,24]. The results evolved into a variational form,
which was called an additivity principle [25–28]. When the
system behavior is assumed to be described by fluctuating
hydrodynamics, the condition for the validity of the additivity
principle can be derived from the analysis of the path-integral
expression [29–33]. Note that the additivity principle is less
universal than the fluctuation theorem, but still characterizes
a universal aspect of the large deviation functions of time-
averaged current in a wide range class of systems. See Ref. [34]
for a recent related study.

Based on these developments, we consider a possibility
that the large deviation function of time-averaged current is
expressed by a time-averaged quantity as if the framework
corresponds to Einstein’s fluctuation theory. This formula, if
it exists, is regarded as an extension of Onsager’s theory to
that valid even for large fluctuations. Although the motivation
seems natural, the problem would not be solved easily.
Nevertheless, since a new operational variational principle
associated with the large deviation function of time-averaged
current has been found recently [35], it is a good opportunity
to study the problem.

In this paper, specifically, we study interacting Brownian
particles under nonequilibrium conditions. The motion of the
particles are assumed to be described by a set of Langevin
equations. We then consider the large deviation function of
time-averaged velocity of the particles. The main results in
this paper are formulas (26) and (28). The formula (26)
indicates that the scaled cumulant generating function, which
is given by the Legendre transform of the large deviation
function, is determined from a variational function in a
modified system with an inhomogeneous external force added.
Essentially the same formula was reported in Ref. [35]. The
formula (28) claims that the derivative of the scaled cumulant
generating function is equal to the time-averaged velocity in
the modified system, which corresponds to (A9) in equilibrium
statistical mechanics. The formula (28) also turns out to be an
extension of the fluctuation-dissipation relation. Since these
new formulas take simple forms, we expect that our results
advance the understanding of large deviation function of
time-averaged quantity.

This paper is organized as follows. In Sec. II we introduce
a model and define quantities we study in this paper. In
Sec. III we first summarize main results of the paper, and
after that we derive them. In Sec. IV we address three remarks
on the variational function that appears in our main results.
Concretely, we reexpress the variational function in terms
of entropy production rates, mention a similarity with the
Donsker-Varadhan formula, and explain a connection to the

principle of the least dissipation of energy. In Sec. V we present
a few applications of our formula by restricting our study to a
single Brownian particle on a ring. First, on the basis of our
formula, we rederive exact formulas of the diffusion constant
and the mobility in a compact manner. Second, starting from
our formula, we show a variational expression associated
with an additivity principle. Third, we propose a method
for experimentally obtaining the scaled cumulant generating
function. The final section is devoted to concluding remarks.
Some technical details and related subjects are discussed in
appendices. In the argument below, the Boltzmann constant
kB is set to unity.

II. MODEL

We consider N colloidal particles immersed in a solvent at
temperature T . We describe the system by a set of positions of
the particles in a d-dimensional region �. For mathematical
simplicity, we impose periodic boundary conditions. As a
typical example, one may consider a three-dimensional region,
where one direction is confined by walls and no walls in other
directions. Even such a case is included in our model by setting
up a periodic potential whose height is extremely large at the
walls. Another example of the region � is a one-dimensional
circuit, which can be generated by an optical potential.

We denote the positions of all the particles by x ≡
(xi)Nd

i=1, where x(k−1)d+l represents the lth component of the
position of the kth particle. In this paper boldface fonts
(e.g., x) represent Nd-dimensional vectors. We also express
the position of the kth particle by the d-dimensional vector
�rk = (x(k−1)d+1,x(k−1)d+2, . . . ,xkd ).

The force acting on the particles consists of three types of
force: (1) an external force, (2) an interaction force exerted
from other particles, and (3) a force from solvent molecules.
In (1), the external force is further divided into a homogeneous
part f = (fi)Nd

i=1 and a periodic part determined by a potential∑N
k=1 Uk(�rk). Since the existence of f makes the system

out of equilibrium, we call f a driving force. In (2), the
interaction force is determined by a two-body interaction
potential Uk,l(�rk − �rl) between the kth particle and the lth
particle under the assumption that three- and higher-body
interactions among particles are not taken into account. The
total potential U (x) is written as

U (x) =
N∑

k=1

Uk(�rk) + 1

2

N∑
k=1

∑
l �=k

Uk,l(�rk − �rl). (4)

The total force F(x) that originates from (1) and (2) is
expressed as

F(x) = f − ∂

∂x
U (x). (5)

In (3), the force from solvent molecules is divided into two
parts, a friction force and a fluctuating force, where we assume
that hydrodynamic interactions are ignored. The friction force
is proportional to the particle velocity ẋi = dxi/dt so that it can
be written in the form of −ẋiγi with friction constants (γi)Nd

i=1.
We assume that the fluctuating force is described as Gaussian
white noise satisfying the fluctuation-dissipation relation of
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the second kind. That is, it is expressed by
√

2T γiξi(t), where
ξi(t) satisfies

〈ξi(t)〉 = 0, (6)

〈ξi(t)ξj (s)〉 = δi,j δ(t − s). (7)

From these arguments, we obtain the equations of motion
for colloidal particles. By neglecting inertial effects, these are
written as

ẋi = 1

γi

Fi(x) +
√

2T

γi

ξi, (8)

where i = 1,2, . . . ,Nd. The equations are called Langevin
equations [36] and have been studied in many situations
including Brownian motors [37], polymer dynamics [38], and
dynamics of mesoscale objects in solids. See the introduction
of Refs. [39,40] and chap. 11 of Ref. [41]. It should be
noted that some recent discoveries of nonequilibrium relations
have been tested in experiments corresponding to (8) with
N = d = 1 [42–44].

We assume that the particles obey a probability density
P0(x) at t = 0. After that (t > 0), the particles move according
to (8). We denote by 〈f 〉 the expectation value of f with
respect to the initial distribution P0(x) and history of ξi(t).
We define the probability density of x(t) = x by P F(x,t) ≡
〈δ (x(t) − x)〉. Here the superscript F of P F(x,t) represents
F(x) in (8). We use this superscript throughout the paper,
because the force dependence plays an important role in our
formulation. The evolution equation for P F(x,t) is derived as

∂P F(x,t)

∂t
= −

Nd∑
i=1

∂j F
i (x,t)

∂xi

(9)

with a probability current

j F
i (x,t) = P F(x,t)

γi

Fi(x) − T

γi

∂P F(x,t)

∂xi

. (10)

The equation is called the Fokker-Planck equation [36].
The stationary distribution and current, which are denoted

by P F
st (x) and J F

st,i(x), respectively, are determined by

J F
st,i(x) = P F

st (x)

γi

Fi(x) − T

γi

∂P F
st (x)

∂xi

, (11)

Nd∑
j=1

∂

∂xj

J F
st,j (x) = 0. (12)

The expectation value of a quantity A[(x(s))ts=0] in the steady
state is denoted by 〈A〉F

st . Mathematically, the expectation
value is calculated by replacing initial distribution P0(x) by
P F

st (x).
In this paper we particularly focus on statistical properties

of time-averaged velocities

V (τ ) ≡ 1

τ

∫ τ

0
dt ẋ(t). (13)

The scaled cumulant generating function GF(h) of the time-
averaged velocities is defined by

GF(h) ≡ lim
τ→∞

1

τ
log

〈
eτ

∑Nd
i=1 hiVi (τ )

〉
, (14)

where h = (hi)Nd
i=1. In the expansion form

GF(h) =
∞∑

k1=0

∞∑
k2=0

· · ·
∞∑

kNd=0

CF
k1,k2,...,kNd

h
k1
1 h

k2
2 · · · hkNd

Nd

k1!k2! · · · kNd !
, (15)

the coefficient CF
k1,k2,...,kNd

is related to the cumulant

〈V k1
1 (τ )V k2

2 (τ ) · · · V kNd

Nd (τ )〉c [36]. Concretely, it can be shown
that

CF
k1,k2,...,kNd

= lim
τ→∞

〈
V

k1
1 (τ )V k2

2 (τ ) · · ·V kNd

Nd (τ )
〉
cτ

k−1. (16)

Here, by substituting (8) into (13) and taking the expectation
value, we obtain

〈Vi(τ )〉 =
∫

�N

dx
1

γi

Fi(x)

[
1

τ

∫ τ

0
dtP F(x,t)

]
. (17)

This leads to

〈Vi〉F
st =

∫
�N

dx
1

γi

Fi(x)P F
st (x). (18)

Furthermore, by substituting (11) into (18) and by eliminating
boundary terms due to periodic boundary conditions, we obtain

〈Vi〉F
st =

∫
�N

dxJ F
st,i(x). (19)

III. MAIN RESULTS

The main purpose of this paper is to find an expression of
GF(h) that shares a common structure in equilibrium statistical
mechanics. As reviewed in Appendix A, the cumulant gener-
ating function of a thermodynamic variable is related to a free
energy function, and this relation leads to the important result
that the first derivative of the cumulant generating function is
equal to the expectation value of the thermodynamic variable
in a modified system. See (A9) for such an example. We want
to have a similar expression for GF(h).

Since the relation containing (A9) leads to the fluctuation-
response relation for thermodynamic variables, we expect
that there might be a formula similar to (A9), which leads
to fluctuation-dissipation relations for currents. In order to
investigate this possibility, we focus on the linear response
regime. First, by noting [∂GF(h)/∂hi]|h=0 = 〈Vi〉F

st , we have

∂GF(h)

∂hi

= 〈Vi〉F
st +

Nd∑
j=1

hj

[
∂2GF(h)

∂hi∂hj

] ∣∣∣∣
h=0

+ O(h2). (20)

Here the fluctuation-dissipation relation is written as

〈Vi〉F
st = 1

2T

Nd∑
j=1

fj

[
∂2GF(h)

∂hi∂hj

] ∣∣∣∣
h=0, f =0

+ O( f 2). (21)

See Refs. [41,45] for a derivation. See also Refs. [14,18] for
a recent understanding of the derivation on the basis of the
fluctuation theorem. The substitution of (21) into the first term
of the right-hand side of (20) and the evaluation of the second
term at f = 0 yield

∂GF(h)

∂hi

= 1

2T

Nd∑
j=1

(fj + 2T hj )

[
∂2GF(h)

∂hi∂hj

] ∣∣∣∣
h=0, f =0

+O( f 2,h2, f h). (22)
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By using (21) again in the right-hand side of (22), we obtain

∂GF(h)

∂hi

= 〈Vi〉F+2T h
st + O(h2, f 2, f h). (23)

This implies that when f and h are small, the first derivative of
GF(h) is equal to the expectation value of the time-averaged
velocity in a modified system with an extra force 2T h added.
Since (21) is derived from (20) and (23), the expression (23)
is equivalent to the fluctuation-dissipation relation (21).

Now, we seek for an extension of (23) to that valid for any
h and f . Here one may recall the fluctuation theorem as an
extension of the fluctuation-dissipation relation, which claims

GF(h) = GF(−h − f /T ) (24)

in the system under consideration [14]. Although (21) is
derived from (24), a clear extension of (23) is not obtained
as far as we attempted. Putting aside the fluctuation theorem,
we consider the problem from a different direction. The
basic idea is to consider a modified system with a spatially
inhomogeneous extra force w(x) added. Precisely writing, the
modified system is described by the Langevin equation (8) with
the replacement of F(x) by F(x) + w(x). We then define a
functional �F

h (w) by

�F
h (w) ≡

Nd∑
i=1

(
hi〈Vi〉F+w

st − 1

4T γi

〈
w2

i

〉F+w

st

)
. (25)

The first result of this paper is a variational expression

GF(h) = max
w

�F
h (w). (26)

Let w
F,opt
h be the optimal w that maximizes (25) for given h

and F, that is,

w
F,opt
h = argmax

w

[
�F

h (w)
]
. (27)

The second result is a formula

∂GF(h)

∂hi

= 〈Vi〉F+w
F,opt
h

st . (28)

This is thought to be the generalization of (23). Indeed, there
exists a positive function ψh(x) such that

w
F,opt
h (x) = 2T h + 2T

∂

∂x
log ψh(x) (29)

with a condition

lim
h→0

∂

∂xi

log ψh(x) = 0. (30)

Before deriving the main results, we confirm that the
fluctuation-dissipation relation (21) is obtained from our result
(28) with (29). We start with

∂GF(h)

∂hi

= 〈Vi〉 f − ∂U
∂x +2T h+2T

∂ log ψh
∂x

st . (31)

From a basic property that there is no persistent current in
systems without a driving force, we have an identity

〈Vi〉−
∂U
∂x +2T

∂ log ψh
∂x

st = 0. (32)

This leads to

〈Vi〉 f +2T h− ∂U
∂x +2T

∂ log ψh
∂x

st

=
Nd∑
j=1

lim
f ′→0

⎛
⎝∂ 〈Vi〉 f ′− ∂U

∂x +2T
∂ log ψh

∂x
st

∂f ′
j

⎞
⎠ (fj + 2T hj )

+O(( f + 2T h)2). (33)

By using (30), we further rewrite the right-hand side of (33) as

Nd∑
j=1

lim
f ′→0

⎛
⎝∂ 〈Vi〉 f ′− ∂U

∂x
st

∂f ′
j

⎞
⎠ (fj + 2T hj ) + O( f 2,h2, f h).

(34)

Thus, we arrive at

∂GF(h)

∂hi

=
Nd∑
j=1

lim
f ′→0

⎛
⎝∂ 〈Vi〉 f ′− ∂U

∂x
st

∂fj

⎞
⎠ (fj + 2T hj )

+O( f 2,h2, f h). (35)

By differentiating (35) with respect to hj and setting f = 0
and h = 0, we obtain

∂2GF(h)

∂hi∂hj

∣∣∣∣
f =0,h=0

= 2T lim
f ′→0

⎛
⎝∂ 〈Vi〉 f ′− ∂U

∂x
st

∂fj

⎞
⎠ . (36)

This is equivalent to (21).

A. Derivation

The set of displacements of particles during the time interval
[0,t] is written as

X(t) =
∫ t

0
dt ′ ẋ(t ′), (37)

where it should be noted that

X(t) = V (t)t. (38)

By differentiating (37) with respect to t , we obtain

dXi

dt
= 1

γi

Fi(x) +
√

2T

γi

ξi . (39)

We denote the joint probability density of x(t) and X(t) by
p(x,X,t). The idea of considering such a joint probability
density of x and X (or accumulated work, heat) was employed
in Refs. [46–48]. From the Langevin equations (8) and (39),
we derive the Fokker-Planck equation

∂p

∂t
= L(x,X)

FP · p, (40)

where the Fokker-Planck operator L(x,X)
FP is defined by

L(x,X)
FP · ϕ

=
Nd∑
i=1

{
−

[
∂

∂xi

Fi(x)

γi

ϕ

]
+ T

γi

∂2

∂x2
i

ϕ

−Fi(x)

γi

∂

∂Xi

ϕ + T

γi

∂2

∂X2
i

ϕ + 2T

γi

∂2

∂xi∂Xi

ϕ

}
. (41)
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Here we consider a quantity

qh(x,t) =
∫

RNd

d Xe
∑Nd

i=1 hiXi p(x,X,t), (42)

which obeys

∂qh

∂t
= L(x)

h · qh, (43)

where the operator L(x)
h is calculated as

L(x)
h · ϕ =

Nd∑
i=1

{
−

[
∂

∂xi

Fi(x)

γi

ϕ

]
+ T

γi

∂2

∂x2
i

ϕ

+Fi(x)

γi

hiϕ + T

γi

h2
i ϕ − 2T

γi

hi

∂

∂xi

ϕ

}
. (44)

Then, from (38) and (42), we have

〈
et

∑Nd
i=1 hiVi (t)

〉 =
∫ L

0
dxqh(x,t). (45)

Let μh
0 be the largest eigenvalue of L(x)

h . Equations (43) and
(45) lead to the asymptotic form〈

et
∑Nd

i=1 hiVi (t)
〉 � etμh

0 (46)

when t is sufficiently large. Thus, from the definition of GF(h)
given in (14), we obtain

GF(h) = μh
0 . (47)

The result that a scaled cumulant generating function is
equal to the largest eigenvalue of an operator is standard [2].
The fluctuation theorem was studied with the aid of this
result [14]. Recently, a relation similar to (47) was employed
for calculations of the large deviation function of entropy
production [49], where a kink in the large deviation function
has been pointed out. See Ref. [50] for a recent related result.

We denote the adjoint operator of L(x)
h by L(x)†

h , which is
calculated as

L(x)†
h · ϕ =

Nd∑
i=1

[
Fi(x)

γi

∂

∂xi

ϕ + T

γi

∂2

∂x2
i

ϕ

+Fi(x)

γi

hiϕ + T

γi

h2
i ϕ + 2T

γi

hi

∂

∂xi

ϕ

]
. (48)

Let μh
n and ηh

n (n = 0,1,2, . . .) be all the eigenvalues of L(x)
h

and L(x)†
h , respectively. We label the eigenvalues such that

Re(μh
n) � Re(μh

m) and Re(ηh
n ) � Re(ηh

m) for n < m, where
Re(ϕ) represents the real part of ϕ. We may set in general

μh
n = (

ηh
n

)∗
(49)

with n = 0,1,2, . . ., where ϕ∗ represents the complex conju-
gate of ϕ. As shown in Appendix C, the largest eigenvalues
μh

0 and ηh
0 are real, and thus

μh
0 = ηh

0 . (50)

Furthermore, the eigenfunctions of the largest eigenvalue are
positive. From (47) and (50), we obtain

L(x)†
h · ψh = GF(h)ψh, (51)

where ψh(x) is the positive eigenfunction corresponding to
the largest eigenvalue ηh

0 . Here, by noting log ψh(x) ∈ R, we
define a force uF

h (x) as

uF
h,i(x) ≡ 2T

[
∂

∂xi

log ψh(x) + hi

]
, (52)

which corresponds to the Cole-Hopf transformation [51]. By
using trivial identities

∂ψh(x)

∂xi

= ψh(x)
∂ log ψh(x)

∂xi

, (53)

∂2ψh(x)

∂x2
i

= ψh(x)

{
∂2 log ψh(x)

∂x2
i

+
[
∂ log ψh(x)

∂xi

]2
}

,

(54)

we rewrite (51) as

GF(h) = 1

2T

Nd∑
i=1

[
Fi(x)

γi

uF
h,i(x)

+ 1

2γi

uF
h,i(x)2 + T

γi

∂

∂xi

uF
h,i(x)

]
. (55)

Now, we consider a modified system with an arbitrary
external force w(x) added. The stationary probability density
in the modified system, P F+w

st (x), satisfies (11) and (12) with
the replacement of F by F + w. By multiplying (55) by
P F+w

st (x), integrating it with respect to x, and integrating by
parts in the third term, we obtain

GF(h) = 1

2T

∫
�N

dx
Nd∑
i=1

uF
h,i(x)

[
P F+w

st (x)
Fi(x)

γi

+P F+w
st (x)

1

2γi

uF
h,i(x) − T

γi

∂P F+w
st (x)

∂xi

]
. (56)

Then we substitute (11) into (56), and we re-
place P F+w

st (x)Fi(x)/γi − (T/γi)∂P F+w
st /∂xi by J F+w

st,i (x) −
P F

st (x)wi(x)/γi . Furthermore, by substituting (52) into the
term uF

h,i(x)J F+w
st,i (x), we rewrite (56) as

GF(h) =
∫

�N

dx
Nd∑
i=1

[
hiJ

F+w
st,i (x) − P F+w

st (x)

4T γi

wi(x)2

]

+
∫

�N

dx
Nd∑
i=1

P F+w
st (x)

4T γi

[
uF

h,i(x) − wi(x)
]2

, (57)

where we have used (12). Finally, by recalling (19) and (25),
we arrive at

GF(h) = �F
h (w) +

Nd∑
i=1

1

4T γi

〈(
uF

h,i − wi

)2〉F+w

st . (58)

It should be noted that the external force w(x) in (58) is
arbitrary.

Here, the second term of the right-hand side in (58) is not
negative and becomes zero only when w = uF

h . This leads to

GF(h) = �F
h

(
uF

h

)
� �F

h (w), (59)
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where the equality holds only when w = uF
h . This result is

the variational expression (26). The optimal force w
F,opt
h (x)

defined by (27) is now derived as

w
F,opt
h (x) = uF

h (x). (60)

Next, the derivative of (58) with respect to hi yields

∂GF(h)

∂hi

= 〈Vi〉F+w
st +

Nd∑
i=1

[
1

2T γi

〈 (
uF

h,i − wi

) ∂uF
h,i

∂hi

〉F+w

st

]
. (61)

Since w is arbitrary, we may set w = w
F,opt
h in the expression.

This provides the result (28). Furthermore, from (52) and (60),
we obtain (29) with (30), because the eigenfunction ψh(x)
satisfies limh→0 ψh(x) = const.

IV. REMARKS ON THE VARIATIONAL FUNCTION �F
h

In this section we present three remarks on the variational
function �F

h (w). Before entering the main part, we first show
a slightly different expression of �F

h (w). Since we have (29),
we may restrict w(x) to the form

w(x) = 2T h − ∂

∂x
V (x). (62)

Throughout this section, the extra force w(x) is always
connected to the potential function V (x) through (62). We
then rewrite (26) as

GF(h) = max
V

�F
h (w) , (63)

where the optimal potential V
F,opt

h satisfies

w
F,opt
h (x) = 2T h − ∂

∂x
V

F,opt
h (x). (64)

Furthermore, by noting∫
�N

dx
Nd∑
i=1

2T hiJ
F+w

st,i (x) =
∫

�N

dx
Nd∑
i=1

wi(x)J F+w
st,i (x),

(65)

and by using (19), we express �F
h (w) as

�F
h (w)

= 1

4T

∫
�N

dx
Nd∑
i=1

[
2J F+w

st,i (x)wi(x) − P F+w
st (x)

γi

wi(x)2

]
.

(66)

The expression of (63) with (66) was reported in Ref. [35].
This section is organized as follows. In Sec. IV A, we

rewrite the variational function (66) as the difference between
two entropy production rates. In Sec. IV B, we point out a
similarity between the Donsker-Varadhan formula and our
formula. Finally, in Sec. IV C, we show that the cumulant
generating function of time-averaged current in a simple
electric circuit is expressed in terms of the least energy
dissipation rate associated with a variational principle that
determines the voltage distribution.

A. Expression of �F
h in terms of entropy production rate

In this subsection we express the variational function (66) in
terms of entropy production rate. First, the probability current
for a given probability density P (x) is written as

q F
i (x|P ) = Fi(x)

γi

P (x) − T

γi

∂P (x)

∂xi

, (67)

where the slightly heavy notation q F
i (x|P ) is used in order

to distinguish F and P dependence in the current. Here we
define the functional σ F(P ) as

σ F(P ) ≡ 1

T

∫
�N

dx
Nd∑
i=1

γi

P (x)

[
q F

i (x|P )
]2

. (68)

By substituting (67) into (68), we express σ F(P ) as

σ F(P )

=
∫

�N

dx
Nd∑
i=1

q F
i (x|P )

[
− ∂

∂xi

log P (x) + 1

T
Fi(x)

]
.

(69)

The integration by parts of the first term leads to

σ F(P ) =
∫

�N

dx log P (x)
Nd∑
i=1

∂

∂xi

q F
i (x|P )

+ 1

T

∫
�N

dx
Nd∑
i=1

q F
i (x|P )Fi(x). (70)

We denote the first and second terms of the right-hand side
in (70) by F(P ) and �F(P ), respectively. Then, F(P ) is
equal to the increasing rate of the Shannon entropy and �F(P )
corresponds to the energy-dissipation rate divided by T . See
Appendix C for a more detailed explanation. Since �F(P ) is
identical to the increasing rate of the thermodynamic entropy
of the heat bath, we identify σ F(P ) with entropy production
rate of the total system.

Now, from (67) and (68), we calculate

σ F+w
(
P F+w

st

) − σ F (
P F+w

st

)
= 1

T

∫
�N

dx
Nd∑
i=1

[
2q F+w

i

(
x
∣∣P F+w

st

)
wi(x)

− P F+w
st (x)

γi

wi(x)2

]
. (71)

By noting q F+w
i (x|P F+w

st ) = J F+w
st,i (x) and comparing (71)

with (66), we obtain

�F
h (w) = 1

4

[
σ F+w

(
P F+w

st

) − σ F (
P F+w

st

)]
. (72)

The first term of the right-hand side in (72) is proportional
to the entropy production rate of the modified system in the
steady state. The second term of (72) is a little bit complicated.
σ F(P F+w

st ) is the entropy production rate just after the extra
force w is turned off suddenly in the steady state of the
modified system. In this manner the expression (72) provides
us a thermodynamic interpretation of the variational function
�F

h .
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B. Similarity with the Donsker-Varadhan formula

For a given path (x(t))τt=0, we define the occupation density
as

P em
τ (x) ≡ 1

τ

∫ τ

0
dtδ(x(t) − x). (73)

We denote the probability density of [P em
τ (x)]x∈� by ProbF

τ (P).
We write it formally as

ProbF
τ (P ) =

〈∏
x∈�

δ
(
P em

τ (x) − P (x)
)〉

. (74)

When τ is sufficiently large, the asymptotic form of ProbF
τ (P )

is given by

ProbF
τ (P ) � e−τI F (P ), (75)

which is the large deviation property of the occupation density
with the large deviation function I F(P ). LetL(x)†

FP be the adjoint
Fokker-Planck operator defined by

L(x)†
FP · ϕ =

Nd∑
i=1

[
Fi(x)

γi

∂

∂xi

ϕ + T

γi

∂2

∂x2
i

ϕ

]
. (76)

Then the Donsker-Varadhan formula in the Langevin system
is written as

I F(P ) = − min
φ>0

∫
�N

dxP (x)
L(x)†

FP · φ

φ(x)
. (77)

Such a formula was rigorously derived for general Markov
stochastic processes [52]. Its universal form suggests that it
might be connected to a framework of nonequilibrium statis-
tical mechanics. Indeed, in Ref. [53], it has been pointed out
that the minimum entropy production principle is related to the
Donsker-Varadhan formula (77). This relation was obtained by
noting the detailed balance condition in equilibrium systems.
Similarly, in equilibrium dynamics, the variational principle
determining the activity was recognized as a form similar to the
Donsker-Varadhan formula [54]. More recently, even without
the detailed balance condition, the variational function in the
Donsker-Varadhan formula was conjectured to be related to
the activity [55].

Based on these achievements, we rewrite (77) so as to see a
similarity with our variational function (72). First, since φ in
(77) is positive, we define the potential V (x) by

V (x) ≡ −2T log φ(x). (78)

Then, using (53) and (54), we rewrite (77) as

I F(P ) = − 1

2T
min

φ(x)>0

∫
�N

dxP (x)
Nd∑
i=1

[
− Fi(x)

γi

∂V (x)

∂xi

−T

γi

∂2V (x)

∂x2
i

+ 1

2γi

(
−∂V (x)

∂xi

)2 ]
. (79)

The integration by parts in the second term leads to

I F(P ) = − 1

2T
min

φ(x)>0

∫
�N

dx
Nd∑
i=1

[
−∂V (x)

∂xi

]{
Fi(x)

γi

P (x)

−T

γi

∂P (x)

∂xi

+ 1

2γi

[
−∂V (x)

∂xi

]
P (x)

}
. (80)

Thus, by using (67) with the replacement of F by F − ∂V/∂x,
we obtain

I F(P ) = − 1

4T
min
V (x)

∫
�N

dx
Nd∑
i=1

{
2

[
−∂V (x)

∂xi

]
q

F−∂V/∂x
i (x|P )

− 1

γi

[
−∂V (x)

∂xi

]2

P (x)

}
. (81)

Furthermore, by comparing (81) with (71), we find

I F(P ) = −1

4
min

V

∫
�N

dx[σ F−∂V/∂x (P ) − σ F (P )]. (82)

These expressions, (81) and (82), were derived in Refs. [56,57]
by using another method. For the large deviation function of
occupation density in jump processes, a similar expression in
terms of escape rates instead of the entropy production rates
has been reported in Ref. [55].

It is seen that there is a strong similarity between (82) and
(63) with (72). This suggests that two formulas might be de-
scribed in a unified manner. We will report a unified treatment
of the Donsker-Varadhan formula and ours in another paper.

C. Relationship to the principle of the least dissipation of energy

We consider an electric circuit in which n resistances
(R1,R2, . . . ,Rn) are connected in series. We impose an
electric potential V on the circuit by using a battery as shown
in the left side of Fig. 1.

Let V∗i be the difference of the electric potential at the
resistance Ri in the electric circuit. This V∗i is determined by
Ohm’s law

V∗i = I∗Ri, (83)

where I∗ is the electric current in the circuit. From the
constraint condition

∑n
i=1 V∗i = V and Ohm’s law (83), we

obtain

I∗ = V∑n
i=1 Ri

, (84)

V∗i = V
Ri∑n

j=1 Rj

. (85)

FIG. 1. Left: n resistances (R1,R2, . . . ,Rn) are connected in se-
ries. We impose an electric potential V on the circuit. Right: By using
n batteries, we impose an electric potential Vi on each resistance Ri .
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The principle of the least dissipation of energy claims that
V∗i is characterized by the least dissipation of energy [58].
In order to see this statement, we consider an electric circuit
displayed in the right side of Fig. 1. By using n batteries,
we impose an electric potential Vi on each resistance Ri

such that
∑n

i=1 Vi = V . Under the assumption that the energy
dissipation is determined by the Joule heating, the energy
dissipation rate K is calculated as

K(V1,V2, . . . ,Vn) =
n∑

i=1

V 2
i

Ri

. (86)

Then, one can directly confirm that V∗i is determined as

(V∗i)
n
i=1 = argmin

(Vi )ni=1
(
∑

i Vi=V )

K(V1,V2, . . . ,Vn), (87)

where (
∑n

i=1 Vi = V ) means the constraint condition for
(Vi)ni=1. This is an example of the principle of the least
dissipation of energy. We define the least energy dissipation
rate K∗(V ) as

K∗(V ) = min
(Vi )ni=1

(
∑

i Vi=V )

K(V1,V2, . . . ,Vn). (88)

Next, we consider fluctuations of the time-averaged electric
current I during a time interval [0,τ ]. In a manner similar to
(14), we define the scaled cumulant generating function of the
time-averaged current as

G(h) ≡ lim
τ→∞

1

τ
log〈eτIh〉. (89)

For simplicity, we assume that the current fluctuations are
described by Johnson noise. See chapter 1 of Ref. [36] for a
brief review of Johnson noise. The Johnson noise satisfies the
fluctuation dissipation relation

lim
τ→∞ τ (〈I 2〉 − 〈I 〉2) = 2T∑

i Ri

. (90)

We also assume that the fluctuations are Gaussian. Under these
assumptions, we write G(h) as

G(h) = V∑n
i=1 Ri

h + T∑n
i=1 Ri

h2. (91)

Now, we connect the least energy dissipation rate K∗(V )
and the cumulant generating function G(h). First, from (85)
and (88), we find

K∗(V ) = V 2∑
j Rj

. (92)

Then, by replacing V by V + 2T h in (92), we obtain

K∗(V + 2T h) = V 2∑
j Rj

+ 4T G(h), (93)

where we have used (91). The subtraction of (92) from (93)
leads to

G(h) = 1

4T
[K∗(V + 2T h) − K∗(V )] . (94)

This result that G(h) is written by the difference of the energy
dissipation rates for two different states reminds us of (A8) in

equilibrium statistical mechanics. Our formula (63) with (72)
is a generalization of (94).

V. APPLICATIONS

In this section we present three applications of our result
by restricting our investigation to a Brownian particle on a
ring. We write an explicit setting. Let x(t) be a position of the
particle along the ring of size L. We assume that the motion
of the particle is described by

ẋ = 1

γ
F (x) +

√
2T

γ
ξ (95)

with the periodic boundary condition, where F (x) is a
deterministic force given by

F (x) = f − ∂U (x)

∂x
. (96)

Such a force can be realized by using a rotating periodic
potential [42,43]. Note that (95) with (96) corresponds to the
case that N = d = 1 in the model studied in Sec. II. The
stationary distribution P F

st (x) and the stationary current JF
st

are determined by

JF
st = 1

γ
F (x)P F

st (x) − T

γ

∂

∂x
P F

st (x) (97)

with the periodic boundary condition P F
st (0) = P F

st (L) and the
normalization condition

∫ L

0 dxP F
st (x) = 1.

For this system, in Sec. V A, we derive the diffusion
constant D = limτ→∞(1/2)τ

〈
V (τ )2

〉
c

and the mobility μ =
(∂/∂f ) limτ→∞ 〈V (τ )〉c by utilizing our formula. Then, in
Sec. V B, we show that our variational expression (26) with
(25) leads to a formula derived from an additivity principle
[25–28]. Finally, in Sec. V C, we present an experimental
method for determining the cumulant generating function
without the information of F (x).

A. Diffusion constant and mobility

In the system under study, the stationary distribution P F
st (x),

the diffusion constant D and the mobility μ are known to be
expressed in terms of the following functions [39,40,59]:

I±(x) ≡
∫ L

0
dye± ∫ x∓y

x
dzF (z)/T . (98)

Concretely, the expressions are

P F
st (x) = αI−(x), (99)

D = T

γ
L2α3

∫ L

0
dxI+(x)I−(x)2, (100)

and

μ = L

γ
α2

∫ L

0
dxI+(x)I−(x), (101)

where α is the normalization constant given by

α ≡
[∫ L

0
dxI±(x)

]−1

. (102)
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Here one may wonder about the origin of such compact
expressions. Below, within our formulation, we uncover a
simple structure behind the expressions.

First, we consider the diffusion constant. We start with the
formula (58) with (25). In the case that N = d = 1, it becomes

GF (h)

= h 〈V 〉F+w
st − 1

4T γ

[〈w2〉F+w
st − 〈 (

uF
h − w

)2 〉F+w

st

]
,

(103)

where it should be noted that w(x) is arbitrary. By setting
w = 0 in (103), we obtain

GF (h) = h 〈V 〉Fst + 1

4T γ

〈(
uF

h

)2〉F
st . (104)

Since uF
h (x)|h=0 = 0 [see (30) and (52)], uF

h (x) is expanded as

uF
h (x) =

∞∑
n=1

un(x)hn. (105)

The substitution of (105) into (104) yields

GF (h) = h 〈V 〉Fst + 1

4T γ
〈(u1)2〉Fsth

2 + O(h3), (106)

which leads to

D = 1

4T γ
〈(u1)2〉Fst . (107)

Next, we consider the mobility. Let us fix a function w′(x).
By setting w = −F + w′ in (103), we rewrite (103) as

GF (h) = h 〈V 〉w′
st − 1

4T γ

〈
(w′ − F )2 − (

uF
h − w′ + F

)2〉w′

st .

(108)

We then differentiate (108) with respect to force f . The result
is

∂GF (h)

∂f
= 1

2T γ

〈
(w′ − F ) + (

uF
h − w′ + F

) (∂uF
h

∂f
+ 1

)〉w′

st

.

(109)

Since w′(x) is arbitrary in this expression, we may set w′ =
uF

h + F . This leads to

∂GF (h)

∂f
= 1

2T γ

〈
uF

h

〉F+uF
h

st . (110)

By substituting (105), (106) into (110), we obtain

μ = 1

2T γ
〈u1〉Fst . (111)

As shown in (107) and (111), D and μ are expressed by the
second and the first moments of u1(x), respectively. Here we
determine u1(x). We substitute (105) into (55) and extract the
terms proportional to h. We then obtain

2T 〈V 〉Fst = T

γ

∂

∂x
u1(x) + 1

γ
F (x)u1(x). (112)

Note the periodic boundary condition u1(0) = u1(L) and the
normalization condition∫ L

0
dxu1(x) = 2T L, (113)

which comes from (52). By comparing (112) with (97), we
find that u1(x) can be solved in the manner similar to P F

st (x).
The result is

u1(x) = 2T LαI+(x). (114)

By substituting (114) and (99) into (107) and (111), we obtain
(100) and (101). Furthermore, we can systematically evaluate
higher-order cumulant coefficients by formulating an iterative
relation. See Appendix D.

At the end of this subsection, we study the violation of the
fluctuation-dissipation relation. First, from (18), we have

〈V 〉F+uF
h

st − 1

γ
〈F 〉F+uF

h

st = 〈
uF

h

〉F+uF
h

st . (115)

We substitute (115) into (110) and combine it with our main
result (28). We then obtain

∂GF (h)

∂f
= 1

2T

∂GF (h)

∂h
− 1

2T γ
〈F 〉F+uF

h

st , (116)

which leads to

D

T
− ∂ 〈V 〉Fst

∂f
= 1

2T γ
lim
h→0

∂

∂h
〈F 〉F+uF

h

st . (117)

Furthermore, by considering an expansion form

P
F+uF

h

st (x) = P F
st (x) + hQ1(x) + O(h2), (118)

we rewrite the right-hand side of (117) as

1

2T γ

∫ L

0
dxF (x)Q1(x). (119)

The expression (119) represents a degree of the violation of
the fluctuation-dissipation relation. Recently, several attempts
have been presented so as to characterize the violation of
fluctuation-dissipation relation [60–64]. It might be interesting
to find a connection of (119) with them.

When the driving force f is absent, Q1(x) becomes zero
so that the fluctuation-dissipation relation holds. We show
this fact explicitly. We substitute (118) into (97) with the
replacement of F (x) with F (x) + uF

h (x), and extract the terms
proportional to h. We then obtain the following differential
equation for Q1(x):

∂

∂x

[
1

γ
F (x)Q1(x) + 1

γ
u1(x)P F

st (x) − T

γ

∂

∂x
Q1(x)

]
= 0.

(120)

with the periodic boundary condition Q1(0) = Q1(L) and the
normalization condition∫ L

0
dxQ1(x) = 0, (121)

which comes from (118). Here, from (99) and (114), we find
that u1(x)P F

st (x) is constant in x when F (x) = −∂U (x)/∂x. In
this case, (120) provides us Q1(x) = C1e

−U (x)/T , where C1 is
a constant. Then, (121) leads to C1 = 0. Thus, recalling (119),
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we conclude that the right-hand side of (117) is equal to zero
when f is absent. Note that the discussion above applies to
many-body systems and higher-dimensional cases.

B. Relation to an additivity principle

We start with the variational expression (26) with (25).
Since the probability current is independent of x in the one-
dimensional case, we can rewrite (26) as

GF (h) = max
w

[
hJF+w

st L −
∫ L

0
dx

P F+w
st (x)

4T γ
w(x)2

]
, (122)

where JF+w
st and P F+w

st (x) are the stationary probability
current and density in the modified system. Note that JF+w

st
and P F+w

st (x) can be determined uniquely from (97) for a given
extra force w(x). Conversely, when a constant current J and a
probability density function P (x) are given, we can define the
extra force w(x) by

w(x) = γ

P (x)

[
J + T

γ

∂P (x)

∂x
− P (x)

γ
F (x)

]
. (123)

Thus, there is a one-to-one correspondence between w(x) and
[JF+w

st ,P F+w
st (x)]. From this fact, we can rewrite (122) as

GF (h) = max
P,J

{
hJL − 1

4T

∫ L

0
dx

γ

P (x)

×
[
J + T

γ

∂P (x)

∂x
− P (x)

γ
F (x)

]2 }
. (124)

By taking the maximum of P (x) first, we obtain

GF (h) = max
J

(
hJL − 1

4T
min

P

{∫ L

0
dx

γ

P (x)

×
[
J + T

γ

∂P (x)

∂x
− P (x)

γ
F (x)

]2 })
. (125)

Therefore, we find that the Legendre transform of GF (h) with
respect to hL, which is the large deviation function I (J ),
becomes

I (J ) = 1

4T
min

P

{∫ L

0
dx

γ

P (x)

×
[
J + T

γ

∂P (x)

∂x
− P (x)

γ
F (x)

]2 }
. (126)

This expression is the same as the variational expression
derived from the additivity principle [25–28].

When the system is described by fluctuating hydrodynam-
ics, the variational expression is obtained under the assumption
that the most dominant contribution to a path integration is
given as a stationary configuration [29–33]. Here, since the
Langevin equation (8) can be mapped to a stochastic partial
differential equation [65], which is equivalent to fluctuating
hydrodynamics, we can derive the variational expression in
our system if the assumption is satisfied. Our result (126)
indicates that the assumption is valid.

In the derivation of (126), the spatial homogeneity of the
stationary current plays an important role. However, since
this property is specific to one-dimensional systems, it is not
obvious whether the same variational principle does hold in

higher-dimensional cases [66]. Furthermore, by noticing that
the probability current and the probability density considered
here are equivalent to the particle current and the particle
density in noninteracting particle systems, one might find that
it is a highly nontrivial problem to derive (126) for interacting
particle systems.

C. Experimental determination of cumulant
generating function

We consider an experimental method for determining
GF (h) without the information of F (x). Since the direct
evaluation of cumulants becomes harder and harder as the
order of the cumulants increases, it may be useful if we could
present an efficient method for evaluating GF (h) on the basis
of our formula under the assumption that we measure only the
trajectories [x(t)]τt=0 and values of T and γ .

The basic idea is to utilize (58), which was a cornerstone
in the derivation of the main results (26) and (28). First, we
add some external forces w(x) to the system and measure
trajectories of the particle. We then notice that the left-hand
side of (58) is independent of external forces w(x). Since we
can estimate the right-hand side of (58) by using the measured
data, we obtain equations that yield w

F,opt
h (x). Essentially the

same idea was reported in Ref. [35]. Below we present a
slightly different one from that in Ref. [35].

Concretely, in terms of a complete set of orthogonal
functions (φα)∞α=0, we expand w

F,opt
h (x) as

w
F,opt
h (x) �

m∑
α=0

uh
αφα(x), (127)

where m is a truncation number of the expansion. As
m is increased, the accuracy of the expansion (127) in-
creases. For later convenience, we choose φ0(x) = 1. Since∫ L

0 dxw
F,opt
h (x) = 2T hL [see (29)], the coefficient uh

0 is
derived as

uh
0 = 2T h. (128)

We shall determine the other expansion coefficients (uh
α)mα=1.

First, by differentiating (58) with respect to h, we obtain

∂GF (h)

∂h
= 〈V 〉F+w

st + 1

2T γ

〈(
w

F,opt
h − w

)∂w
opt
h

∂h

〉F+w

st

.

(129)

We then expand w(x) as

w(x) =
m∑

α=0

wαφα(x). (130)

By substituting (127) and (130) into (129), we rewrite (129)
as

∂GF (h)

∂h

= 〈V 〉F+w
st + 1

2T γ

m∑
α=0

m∑
η=0

(
uh

α − wα

) 〈φαφη〉F+w
st

∂uh
η

∂h
.

(131)
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Here, by defining

Aw
η ≡ 1

2T γ

m∑
α=0

(
uh

α − wα

)〈φαφη〉F+w
st , (132)

we rewrite (131) as

∂GF (h)

∂h
= 〈V 〉F+w

st + 2T Aw
0 +

m∑
η=1

Aw
η

∂uh
η

∂h
, (133)

where we have used (128). We prepare m + 1 external forces
w(0)(x),w(1)(x), . . . ,w(m)(x). Recalling that (133) is valid for
any external force w(x), we equate the right-hand side of (133)
for the case w(0)(x) to the right-hand side of (133) for the other
cases w(α)(x) (α = 1, . . . ,m). The obtained equations are

〈V 〉F+w(0)

st + 2T Aw(0)

0 − 〈V 〉F+w(α)

st − 2T Aw(α)

0

=
m∑

η=1

(
Aw(α)

η − Aw(0)

η

)∂uh
η

∂h
, (134)

where α = 1, . . . ,m. We further define an m × m matrix as

Āαη ≡ Aw(α)

η − Aw(0)

η . (135)

With the assumption that Ā is invertible, we derive

∂uh
η

∂h
=

m∑
α=1

(Ā−1)ηα

( 〈V 〉F+w(0)

st + 2T Aw(0)

0

−〈V 〉F+w(α)

st − 2T Aw(α)

0

)
. (136)

This expression implies that ∂uh
η/∂h is expressed in terms

of (uh
η)mη=1, 〈V 〉F+w(α)

st and 〈φηφδ〉F+w(α)

st . Now, from trajectories
of the particle in the modified systems with the external
forces w(α)(x) added, we approximately obtain 〈V 〉F+w(α)

st and
〈φηφδ〉F+w(α)

st in the form

〈V 〉F+w(α)

st � 1

τ

∫ τ

0
dtẋ(t), (137)

〈φηφδ〉F+wα

st � 1

τ

∫ τ

0
dtφη (x(t)) φδ (x(t)) , (138)

with 0 � η, δ � m. Note that the approximation becomes exact
in the limit τ → ∞. Therefore, we can express ∂uh

η/∂h by
(uh

η)mη=1 from experimental data. By integrating ∂uh
η/∂h with

the condition uh
η|h=0 = 0, (1 � η � m), we obtain (uh

η)mη=1 as
a function of h. Similarly, (133) leads to the expression of
∂GF (h)/∂h in terms of (uh

η)mη=1. The integration yields GF (h),
where we have used GF (h)|h=0 = 0.

We performed a numerical experiment of the driven
Brownian particle on a ring subject to a periodic poten-
tial U (x) = U0 cos(2πx/L). We set φk(x) = cos(2πkx/L)
(0 � k � m/2), φk(x) = sin (2πx(k − m/2)/L)(m/2 < k �
m). The m + 1 external forces [wk(x)]mk=0 are chosen as
[Cφk(x)]mk=0, where C is a constant. Following the recipe we
described above, we obtain GF (h) and w

F,opt
h (x) from trajecto-

ries of the particle. The results are displayed in Fig. 2. We also
calculate GF (h) and w

F,opt
h (x) by approximately evaluating

the largest eigenvalue and the corresponding eigenfunction of
the operator L(x)†

h . See Appendix E for the calculation method.
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FIG. 2. (Color online) Numerical experiment for measurement of
GF (h) (up) and w

F,opt
h (x) with h = 3 (down). Quantities are converted

to dimensionless forms by setting γ = T = L = 1. We fix f = 1
and U0 = 3. We assumed to know T = γ = 1 and experimentally
determined GF (h) and w

F,opt
h (x) from trajectories [x(t)]τt=0 following

the method described in the text. We set m = 10, C = 10, and τ =
400 000. By taking 10 samples, we estimated GF (h) and w

F,opt
h (x).

The obtained results are displayed with green dashed lines. Error bars
are within the lines. The red lines were obtained from the evaluation
of the largest eigenvalue of L(x)†

h .

These two results are close to each other. It turns out that
our experimental determination method is useful to obtain the
accurate value of GF (h) from measured trajectories.

VI. CONCLUDING REMARKS

In this paper we have presented the new formula (28) for
the cumulant generating function of time-averaged velocity.
The formula enables us to determine the cumulant generating
function in terms of the expectation value of time-averaged
current in a modified system. This corresponds to (A9) in
the example of equilibrium statistical mechanics, and it is also
regarded as an extension of the fluctuation-dissipation relation.
Furthermore, we have pointed out that our formula is related
to the additivity principle, the Donsker-Varadhan formula, and
the least dissipation principle. Before ending the paper, we
address problems that should be studied in future.

First, since our formulas are rather formal, we should
explore further applications of our formulation to various
physical problems. With regard to this aspect, in Appendix F
we present a simple model in which we can explicitly calculate
the cumulant generating function and the optimal force. We
hope that this model might help readers to grasp our formu-
lation and promote the applications. Furthermore, although
our formulation is valid for interacting particle systems, useful
predictions are not presented yet. A key step in the analysis of
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many-body problems is to extract slowly varying effective
variables from many-body distribution functions. Here we
may employ some approximations for extracting effective
variables. The result of the approximate calculation with our
formulation might provide a new insight into properties of
current fluctuations because our formulation is qualitatively
new.

Next, we ask the range of the applicability of our formula-
tion. The first question may be to consider similar formulas in
underdamped Langevin systems. The formulas that correspond
to (26) and (28) can be derived in a straightforward manner.
This fact is not surprising at all when the formulation of this
paper is properly understood. However, it may be difficult to
find a physical interpretation of the formulas. For example,
it seems that “the extra force” appearing in the variational
formula cannot be realized in laboratory experiments. More
importantly, as far as we attempted, the variational function
may not be expressed in terms of the entropy production
rates, which is different from the overdamped case. We do not
understand whether or not these are fatal in our formulation.
We need further investigations.

Here, with regard to the range of the applicability of our
formulas, we restrict our concerns to a formal aspect by putting
aside physical interpretations. Concretely, in Markov jump
processes, we can derive the formulas that correspond to (26)
and (28). As seen in (G14) and (G15) in Appendix G, the
mathematical expressions are quite simple. We thus expect
that there might be physical examples for which these formulas
are useful. Furthermore, since these are expressed in terms of
escape rates, it is conjectured that similar variational principles
are formulated in many-body Hamiltonian systems. It is
stimulating to prove this conjecture. By combining physical
interpretations and formal aspects, we wish to seek for a
universal structure behind our formulation.

Finally, we go back to our basic motivation. Our naive
idea is that the large deviation theory for current fluctuations
might be associated with an operational framework. This
was conjectured from the well-established fact that the large
deviation theory for fluctuations of thermodynamic variables
is tightly connected to equilibrium thermodynamics. The
progress developed in this paper does not provide a final
answer to the problem, but the results are encouraging us
to continue our efforts. In the best case, we might have an
operational framework of thermodynamics for currents. Then,
we will consider a possibility to unify such a framework with
equilibrium thermodynamics. It may be plausible that a unified
scheme is related to the so-called steady-state thermodynamics
[19–21,67–69]. With dreaming such possibilities, we continue
studying operational viewpoints in nonequilibrium statistical
mechanics.
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APPENDIX A: EQUILIBRIUM STATISTICAL MECHANICS

We review the relation between the cumulant generating
function of a thermodynamic variable and a thermodynamic
function. Specifically, we consider a spin model with finite
range interaction in a finite dimensional lattice �. Let σi , i ∈
�, be a spin variable whose value is either +1 or −1. We denote
(σi)i∈� by σ collectively. We assume that the Hamiltonian for
the system under a magnetic field H is given by

HH (σ ) = H0(σ ) − Hμ
∑
i∈�

σi, (A1)

where μ is the magnetic moment. According to equilibrium
statistical mechanics, for any observable A(σ ), the expectation
value 〈A〉T ,H in the system at temperature T is given by

〈A〉T ,H =
∑

σ

A(σ )
e−HH (σ )/T

Z(T ,H )
, (A2)

where

Z(T ,H ) =
∑

σ

e−HH (σ )/T . (A3)

As an observable, we consider the magnetization density

m̂(σ ) = μ

N

∑
i∈�

σi, (A4)

where N = |�|. Now, we define the free energy density
f (T ,H ) by

f (T ,H ) = −T lim
N→∞

1

N
log Z(T ,H ). (A5)

Then the fundamental relation of thermodynamics is written
as

df = −sdT − mdH, (A6)

where s is the entropy density and m is the expectation value
of the magnetization density m̂(σ ). Notice that f (T ,H ) is
determined from the measurement of the heat capacity c(T ,H )
and m(T ,H ).

Putting aside the thermodynamic function, we consider the
scaled cumulant generating function of m̂(σ ), which is defined
as

GT,H (h) = lim
N→∞

1

N
log〈ehm̂(σ )N 〉T ,H . (A7)

From (A5) and (A7), we find the following relation between
the cumulant generating function and the free energy:

GT,H (h) = − 1

T
[f (T ,H + hT ) − f (T ,H )] . (A8)

In particular, from the thermodynamic relation (A6), we obtain

∂GT,H (h)

∂h
= m(T ,H + hT ) (A9)

for any h. By differentiating (A9) with respect to h and set
h = 0, we obtain

lim
N→∞

N〈(m̂(σ ) − m)2〉T ,H = T
∂m(T ,H )

∂H
, (A10)

which is referred to as a fluctuation-response relation [1].
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APPENDIX B: PROPERTIES OF THE
LARGEST EIGENVALUE

We show that the largest eigenvalue of the operators L(x)
h

and L†(x)
h is real and that the corresponding eigenfunctions are

positive. The argument presented here is not mathematically
rigorous, but provides a practical idea for understanding
the claim. Although we focus on one-dimensional case for
simplicity, the extension to higher-dimensional cases are
straightforward. We express the operator L(x)

h in the form

L(x)
h · ϕ = A(x)

∂2

∂x2
ϕ + B(x)

∂

∂x
ϕ + C(x)ϕ, (B1)

where A(x) > 0. We study the eigenvalue problem of L(x)
h in

the space of periodic functions defined on the interval [0,L].
We define xi ≡ Li/N , i = 1,2, . . . ,N , and let �x be

the distance between xi+1 − xi . We replace the differential
operator ∂/∂x and ∂2/∂x2 by differences. Concretely, the
following replacements are considered:

∂ϕ

∂x

∣∣∣∣
x=xi

→ ϕ(xi+1) − ϕ(xi−1)

2�x
, (B2)

∂2ϕ

∂x2

∣∣∣∣
x=xi

→ ϕ(xi+1) + ϕ(xi−1) − 2ϕ(xi)

(�x)2
, (B3)

for i = 2,3, . . . ,N − 1. A special care is needed for the cases
i = 1 and i = N . For example,

∂ϕ

∂x

∣∣∣∣
x=x1

→ ϕ(x2) − ϕ(xN )

2�x
, (B4)

∂2ϕ

∂x2

∣∣∣∣
x=xN

→ ϕ(x1) + ϕ(xN−1) − 2ϕ(xN )

(�x)2
. (B5)

Then we define an N × N matrix MN such that

(MNϕ)i

= A(xi)
∂2ϕ

∂x2

∣∣∣∣
x=xi

+ B(xi)
∂ϕ

∂x

∣∣∣∣
x=xi

+ C(xi)ϕ(xi),
(B6)

where the N -dimensional vector ϕ is defined by (ϕ)i = ϕ(xi).
Since MN is an approximation of the operator L(x)

h , we assume
that the eigenvalues and eigenfunctions of L(x)

h are determined
from the limit N → ∞ for the eigenvalues and eigenvectors
of MN . Thus, below, we study the eigenvalue problem of MN

instead of the eigenvalue problem of L(x)
h .

We show that the largest eigenvalue of MN is real and that
all components of the corresponding left and right eigenvectors
are positive, when N is sufficiently large. This claim is
understood from the Perron-Frobenius theory. A real matrix
B is called an irreducible ML-matrix [70] if B satisfies the
following two conditions: (1) All nondiagonal components of
B are nonnegative. (2) There exists a positive number a such
that the matrix T ≡ aI + B is irreducible, where I is the unit
matrix. The Perron-Frobenius theory leads to the statement
that the irreducible ML-matrix B has an eigenvalue μpf that
satisfies the following conditions:

(1) μpf is real.

(2) The associated left and right eigenvectors are strictly
positive and unique up to constant multiples.

(3) For any eigenvalue μ except for μpf , the real part of μ

is less than μpf .
See Theorem 2.6 of Ref. [70]. Since A(x) > 0, the matrix

MN for sufficiently large N turns out to be an irreducible ML
matrix. We thus obtain the claim that the largest eigenvalue of
MN is real and that all components of the corresponding left
and right eigenvectors are positive.

APPENDIX C: σ F(P) AND ENTROPY PRODUCTION RATE

We explain thermodynamic interpretations of the first and
second terms of (70), which were denoted by F(P ) and
�F(P ) in Sec. IV A, respectively.

We first consider the first term, F(P ). We assume that the
system is set under the force F and that the probability density
is given by P . We define a probability density pF(x,t) as the
solution of

∂

∂t
pF(x,t) = −

Nd∑
i=1

∂

∂xi

q F
i (x|pF) (C1)

with the initial condition

pF(x,0) = P (x). (C2)

Here we take the limit t → 0 in (C1). By noting (C2) in the
right-hand side of (C1), we obtain

lim
t→0

∂

∂t
pF(x,t) = −

Nd∑
i=1

∂

∂xi

q F
i (x|P ). (C3)

Thus, the first term of (70), F(P ) is expressed as

F(P ) = − lim
t→0

{∫
�N

dx[log pF(x,t)]
∂

∂t
pF(x,t)

}
. (C4)

Since
∫
�N dxpF(x,t) = 1, (C4) is further rewritten as

F(P ) = d

dt

[
−

∫
�N

dxpF(x,t) log pF(x,t)

] ∣∣∣∣
t=0

. (C5)

This shows that F(P ) is the increasing rate of the Shannon
entropy for a given distribution P .

Next, we consider the second term, �F(P ). We shall
show that �F(P ) is the expectation value of the energy
dissipation rate divided by T when the distribution is given
by P . According to the energetic interpretation of Langevin
equations [71,72], the energy dissipation rate � for each
realization is given by

� =
Nd∑
i=1

(γi ẋi −
√

2γiT ξi) ◦ ẋi , (C6)

where the symbol ◦ represents the multiplication in the sense of
the Stratonovich [36]. It should be noted that � is a stochastic
variable. By substituting (8) into (C6), we write

� =
Nd∑
i=1

[
1

γi

Fi(x)2 +
√

2T

γi

Fi(x) ◦ ξi

]
. (C7)
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Here we change the multiplication rule from the Stratonovich
type (◦) to the Ito type (·) [36]. Then, (C7) becomes

� =
Nd∑
i=1

[
1

γi

Fi(x)2 + T

γi

∂Fi(x)

∂xi

+
√

2T

γi

Fi(x) · ξi

]
. (C8)

By taking the expectation value of (C8) and integrating by
parts the second term, we obtain

〈�〉 =
∫

dx
Nd∑
i=1

Fi(x)

[
1

γi

Fi(x)P (x) − T

γi

∂P (x)

∂xi

]

= T �F(P ), (C9)

where we have used 〈Fi(x) · ξi〉 = 0. The last expression
claims that �F(P ) is the expectation value of the energy
dissipation rate divided by T when the distribution is given
by P .

APPENDIX D: ITERATIVE EXPRESSION
OF CUMULANT COEFFICIENTS

For the system studied in Sec. V, we determine the cumulant
coefficients in an iterative manner. We start with the expression

2T GF (h) = T

γ

∂uF
h (x)

∂x
+ uF

h (x)

γ

[
F (x) + uF

h (x)

2

]
, (D1)

which is obtained from (55) with d = N = 1, where uF
h (x)

satisfies ∫ L

0
dxuF

h (x) = 2T hL, (D2)

uF
h (0) = uF

h (L). (D3)

From a trivial relation

∂uF
h (x)

∂x
+ 1

T
uF

h (x)F (x)

= e− ∫ x

0 dyF (y)/T ∂

∂x

[
uF

h (x)e
∫ x

0 dyF (y)/T
]
, (D4)

we rewrite (D1) as

∂

∂x

[
uF

h (x)e
∫ x

0 dyF (y)/T
]

= e
∫ x

0 dyF (y)/T

[
2γGF (h) − 1

2T
uF

h (x)2

]
. (D5)

By integrating (D5) with respect to x, we obtain

uF
h (x) = e− ∫ x

0 dyF (y)/T

{
C +

∫ x

0
dye

∫ y

0 dzF (z)/T

×
[

2γGF (h) − 1

2T
uF

h (y)2

]}
, (D6)

where C is an integration constant. Here, by direct calculation,
we can derive an identity∫ x

0
dyg(y)e

∫ y

0 dzF (z)/T = 1

1 − ef L/T

[∫ L

0
dyg(y)e

∫ y

0 dzF (z)/T

−
∫ L

0
dyg(x + y)e

∫ x+y

0 dzF (z)/T

]
(D7)

for any periodic function g(x). We then set

g(x) = 2γGF (h) − 1

2T
uF

h (x)2 (D8)

in (D7) and substitute it into the second term of the right-hand
side of (D6). The result is

uF
h (x) = e− ∫ x

0 dyF (y)/T

{
C̃ − 1

1 − ef L/T

∫ L

0
dye

∫ x+y

0 dzF (z)/T

×
[

2γGF (h) − 1

2T
uF

h (x + y)2

]}
, (D9)

where C̃ is a constant. The condition uF
h (0) = uF

h (L) leads to
C̃ = 0. Through the transformation of the integration variable
y → L − y, we rewrite (D9) as

uF
h (x) = 2γ

1 − e−f L/T

[
GF (h)I+(x) − 1

4T γ

×
∫ L

0
dye

∫ x−y

x
dzF (z)/T uF

h (x − y)2

]
, (D10)

where we have used (98). By integrating the both sides of (D10)
with respect to x and using the condition (D2), we derive

GF (h) = hL
T

γ
(1 − e−f L/T )α + α

4T γ

∫ L

0
dxI−(x)uF

h (x)2,

(D11)

where α was defined in (102).
It should be noted that uF

h (x) satisfies a self-consistent
equation. Indeed, by substituting (D11) into (D10), we find

uF
h (x) = 2T hLαI+(x) + 1

2T (1 − e−f L/T )

∫ L

0
dy

×
{
e
∫ x−y

x
dzF (z)/T

[
α

∫ L

0
drI−(r)uF

h (r)2

− uF
h (x − y)2

]}
. (D12)

By substituting (105) into (D12), we can determine the
coefficient un(x) iteratively. Concretely, by noting

uF
h (x)2 =

∞∑
n=1

∞∑
l=1

un(x)ul(x)hn+l

=
∞∑

n=2

hn

[
n−1∑
l=1

ul(x)un−l(x)

]
, (D13)

we derive a recursion equation

un(x) = 1

2T (1 − e−f L/T )

n−1∑
l=1

∫ L

0
dye

∫ x−y

x
dzF (z)/T

×
{
α

[∫ L

0
drI−(r)ul(r)un−l(r)

]

−ul(x − y)un−l(x − y)

}
(D14)
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for n � 2. For example, by recalling (114), we calculate

u2(x) = 2T α2L2

(1 − e−f L/T )

∫ L

0
dye

∫ x−y

x
dzF (z)/T

×
{
α

[∫ L

0
drI−(r)I+(r)2

]
− I+(x − y)2

}
. (D15)

Furthermore, we expand GF (h) as

GF (h) =
∞∑

n=1

Gn

n!
hn. (D16)

By substituting (D13) and (D16) into (D11), we obtain

G1 = L
T

γ
(1 − e−f L/T )α (D17)

and

Gn =
n−1∑
l=1

αn!

4T γ

∫ L

0
dxI−(x)ul(x)un−l(x) (D18)

for n � 2. With this formula, the cumulant coefficients Gn

can be calculated in an iterative manner. For example, the
third-order cumulant coefficient is derived as

G3 = 6α2L

γ

∫ L

0
dxI−(x)I+(x)u2(x). (D19)

Reimann et al. found the exact expression of the diffusion
constant (100) from the first and second cumulants of first
passage time [39]. Here we remember an iterative formula for
the moments of the first passage time [36]. By comparing this
iterative formula with our iterative formula, one might find a
general relationship between the cumulant generating function
and statistical properties of the first passage time beyond the
first two cumulants.

APPENDIX E: CALCULATION OF G(h) AND w
opt
h (x)

We focus on the case that N = 1 and d = 1, which is studied
in Sec. V. We numerically solve the largest eigenvalue problem
(51). First, we consider a linear equation

∂

∂t
φ(x,t) = L(x)†

h φ(x,t). (E1)

Since GF (h) is the largest eigenvalue of L(x)†
h , the long-time

behaviors of solutions are described as

φ(x,t) � ψh(x)eGF (h)t . (E2)

Now, we assume φ(x,t) > 0 for any t by choosing appropriate
initial conditions. Then we define

u(x,t) ≡ 2T
∂

∂x
log φ(x,t) + 2T h. (E3)

By dividing (E1) by φ(x,t) and using the same method deriving
(55) in Sec. IIIA, we obtain

2T
∂

∂t
log φ(x,t) = F (x)

γ
u(x,t) + 1

2γ
u(x,t)2 + T

γ

∂

∂x
u(x,t).

(E4)

Finally, by differentiating (E4) with respect to x, we rewrite
(E4) as

∂

∂t
u(x,t) = − ∂

∂x
ju(x,t), (E5)

with a current

ju(x,t) ≡ −F (x)

γ
u(x,t) − 1

2γ
u(x,t)2 − T

γ

∂

∂x
u(x,t). (E6)

Let u∗(x) be the stationary solution given as the long-time
limit of u(x,t). Then, from (E2) and (E3), we obtain

u∗(x) = 2T h
∂

∂x
log ψh(x) + 2T h. (E7)

By recalling (29), we have

w
opt
h (x) = u∗(x). (E8)

Furthermore, by comparing (E6) with (55), we obtain

GF (h) = − 1

2T
lim
t→∞ ju(x,t). (E9)

Therefore, by numerically solving (E5), we can calculate
GF (h) and w

opt
h (x).

APPENDIX F: EXACTLY CALCULABLE MODEL

We illustrate our theoretical idea by explicitly deriving the
cumulant generating function and the optimal force for a linear
Langevin equation. The model describes the motion of a single
Brownian particle in two dimensions, which corresponds to
the case that N = 1 and d = 2 in (8). By setting γ = 1 for
notational simplicity, we write the equation as

dx
dt

= F(x) +
√

2T ξ , (F1)

with

F(x) ≡ −kx + εl(x), (F2)

where l = (−x2,x1). From (11) and (12), we obtain the
stationary distribution as

P F
st (x) = C exp

(
− k

2T
x2

)
, (F3)

with a normalization constant C. Although the stationary
distribution is Gaussian, the detailed balance condition is not
satisfied because of the circulation force εl . One can check
this fact immediately from (11) and (F3). It should be noted
that the linear Langevin equation was studied with a novel
idea, irreversible circulation, which characterizes the violation
of detailed balance [73].

The quantity we consider here is a time-averaged angular
momentum (or irreversible circulation) defined as

L(τ ) ≡ 1

τ

∫ τ

0
dt l(x(t)) · ẋ(t). (F4)

For the scaled cumulant generating function of L,

G(h) = lim
τ→∞

1

τ
log〈eτhL(τ )〉, (F5)
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we can derive the variational principle by using the same
method as Sec. III A. First, we define an operator Lh as

Lh · ϕ = T ∇2ϕ − ∇ · (Fϕ) + h (l · F) ϕ

+h2T l2ϕ − 2T h∇ · (lϕ) . (F6)

Since G(h) is equal to the largest eigenvalue of the operators
Lh and L†

h, we have

L†
h · φ = G(h)φ, (F7)

where φ is the positive eigenfunction corresponding to the
largest eigenvalue of L†

h. Next, we define a force u as

u(x) = 2T [∇ log φ(x) + hl(x)]. (F8)

By dividing (F7) by φ and using the definition of u, we obtain

F · u + 1
2 u2 + T ∇ · u = 2T G(h). (F9)

This takes the same form as (55) so that we can follow the
argument from (55) to (58). We then arrive at

G(h) = �̃h(w) + 1

4T
〈(w − u)2〉F+w

st , (F10)

with

�̃h(w) = h

∫
�

dxl · j F+w
st − 1

4T
〈w2〉F+w

st . (F11)

Here it should be noted that∫
�

dxl · j F+w
st = 〈L〉F+w

st . (F12)

Equation (F10) is the key identity of our formulation, which
corresponds to (58). Indeed, from (F10) we obtain

G(h) = max
w

�h(w), (F13)

∂G(h)

∂h
= 〈L〉F+wopt

st , (F14)

where the optimal force wopt is given as

wopt(x) = u(x). (F15)

Finally, by solving (F9), we derive the explicit expression
of u and G(h). Suppose that

φ = exp

(
−a

2
x2

)
, (F16)

where a is a constant. This yields

u(x) = −2T ax + 2T hl(x). (F17)

By substituting (F17) into (F9), we obtain

G(h) = −2T a + x2[T a2 + ka + h(T h + ε)]. (F18)

Since the left-hand side is independent of x, we determine the
constant a as

a = 1

2T
[−k +

√
k2 − 4T h(T h + ε)]. (F19)

Here we can confirm that (F7) holds for (F16) with (F19),
because (F7) is equivalent to (F9). We then obtain

G(h) = k −
√

k2 − 4T h(T h + ε). (F20)

From (F17) and (F19), the force in the optimal system is
explicitly written as

F(x) + u(x) = −
√

k2 − 4T h(T h + ε)x + (ε + 2T h)l(x).

(F21)

APPENDIX G: FORMULA IN MARKOV JUMP PROCESS

The model we consider here is a continuous-time Markov
process of a finite space M. We assume that the transition rate,
w(a → a′) for a �= a′ ∈ M, is irreducible. We set w(a →
a) = 0 for notational simplicity. The escape rate λ(a) is then
defined by

λ(a) =
∑

a′∈M
w(a → a′). (G1)

Let P w(a,t) be a probability of a(t) = a, where the superscript
w represents the transition rate dependence of the probability
P w. Then P w(a,t) satisfies the master equation

∂

∂t
P w(a,t) =

∑
a′

[w(a′ → a) − λ(a)δa,a′ ]P w(a′,t). (G2)

For later convenience, we define a matrix by

A(a,a′) ≡ w(a′ → a) − λ(a)δa,a′ . (G3)

The stationary distribution P w
st (a) satisfies∑

a′
A(a,a′)P w

st (a′) = 0. (G4)

We denote by 〈g〉wst the expectation value of a function g(a)
with respect to the stationary distribution P w

st (a).
We fix a time interval [0,τ ]. For a given history

[a(t)]τt=0, where a(t) ∈ M, a sequence of transition times
(t1,t2, . . . ,tn−1) is determined, and a(t) is expressed as a(t) =
ai for ti−1 < t < ti with t0 = 0 and tn = τ . Here we consider
a quantity α(ai ,ai+1) defined for the jump event ai → ai+1 at
t = ti (1 � i � n − 1). Its time-averaged value in the history
is written as

A(τ ) = 1

τ

n−1∑
i=1

α(ai ,ai+1). (G5)

We then study the scaled cumulant generating function of A(τ ),
which is defined by

G(h) ≡ lim
τ→∞

1

τ
log〈eτhA(τ )〉, (G6)

where 〈 〉 represents the sample average over realizations of
history with an initial distribution.

It is known that G(h) is equal to the largest eigenvalue of
the matrix Ah given by

Ah(a′,a) = w(a → a′)ehα(a,a′) − λ(a)δa,a′ . (G7)

See Ref. [54] for the derivation. Let φmax(a) be the left
eigenvector for the largest eigenvalue of Ah. That is,∑

a′
φmax(a′)Ah(a′,a) = G(h)φmax(a). (G8)
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Since φmax(a) > 0 (see Appendix B), we may define a potential
function Vmax(a) as

Vmax(a) ≡ −2 log φmax(a). (G9)

Dividing the both sides of (G8) by φmax(a), we obtain

G(h) =
∑

a′
[w(a → a′)e−Vmax(a′)/2+Vmax(a)/2+hα(a,a′)

−w(a → a′)]. (G10)

Here, for any potential function V (a), we define a modified
transition rate uV

h (a → a′) as

uV
h (a → a′)

≡ w(a → a′)e−V (a′)/2+V (a)/2+hα(a,a′). (G11)

The corresponding escape rate λV
h becomes

λV
h (a) =

∑
a′

uV
h (a → a′), (G12)

and (G10) is rewritten as

G(h) = λ
Vmax
h (a) − λ(a). (G13)

This expression might be known, although we do not find its
explicit presentation in previous studies.

Now, our main claim, which is far from trivial, is the
variational expression

G(h) = max
V

〈
λV

h − λ
〉uV

h

st , (G14)

and the relation
∂G(h)

∂h
=

∑
a,a′

P
u

Vopt
h

st (a)u
Vopt

h (a → a′)α(a,a′) (G15)

with

Vopt = argmax
V

〈
λV

h − λ
〉uV

h

st . (G16)

The derivation is the following. First, we consider the

variation V → V + δV in 〈λV
h − λ〉uV

h

st , which is expressed as

δ
[〈
λV

h − λ
〉uV

h

st

]
=

∑
a

δP
uV

h

st (a)
[
λV

h (a) − λ(a)
] +

∑
a

P
uV

h

st (a)δλV
h (a).

(G17)

From (G11) and (G12), we rewrite the second term of (G17)
as

−1

2

∑
a

∑
a′

P
uV

h

st (a)uV
h (a → a′)[δV (a′) − δV (a)]. (G18)

Since this becomes zero from the condition of the stationary

distribution, the variational equation δ[〈λV
h − λ〉uV

h

st ] = 0 leads
to

K = λV
h (a) − λ(a), (G19)

where K is a constant corresponding to a Lagrange multiplier.
Here (G19) is equivalent to

∑
a′

e−Vopt(a′)/2Ah(a′,a) = Ke−Vopt(a)/2. (G20)

By comparing this with (G8), we find that Vopt = Vmax as the
result of the Perron-Frobenius theory.

Next, we consider the modified system with the transition
rate u

Vopt

h (a → a′). By multiplying the both sides of (G13) by

P
u

Vopt
h

st (a) and summing over a, we obtain

G(h) = 〈
λ

Vopt

h − λ
〉uVopt

h

st , (G21)

where we have used Vopt = Vmax. We thus conclude (G14).
Furthermore, by differentiating (G13) with respect to h,

multiplying the both sides by P
u

Vopt
h

st (a), and summing over
a, we derive

∂G(h)

∂h
=

∑
a,a′

P
u

Vopt
h

st (a)u
Vopt

h (a → a′)α(a,a′)−1

2

∑
a,a′

P
u

Vopt
h

st (a)

× u
Vopt

h (a → a′)
[
∂Vopt(a′)

∂h
− ∂Vopt(a)

∂h

]
. (G22)

The second term of (G22) turns out to be zero from the
condition of the stationary distribution. The final expression is
(G15).

We point out that the expression (G14) is similar to the
formula of the large deviation function of the empirical
measure in Markov jump processes [55]. This similarity
corresponds to the relation between (72) and (82) in Langevin
equations.
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[53] C. Maes and K. Netočný, J. Math. Phys. 48, 053306 (2007).
[54] J. P. Garrahan, R. L. Jack, V. Lecomte, E. Pitard, K. van

Duijvendijk, and F. van Wijland, J. Phys. A 42, 075007
(2009).

[55] M. Baiesi, C. Maes, and B. Wynants, J. Stat. Phys. 137, 1094
(2009).
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