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Jarzynski equality in van der Pol and Rayleigh oscillators
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We have studied the Jarzynski equality (JE) in van der Pol and Rayleigh oscillators, which are typical
deterministic non-Hamiltonian models but not expected to rigorously satisfy the JE because they are not reversible.
Our simulations that calculate the contribution to the work W of an applied ramp force with a duration t show
that the JE approximately holds for a fairly wide range of t including ¢ — 0 and t — oo, except for 7 ~ T,
where T denotes the period of relaxation oscillations in the limit cycle. The work distribution function (WDF)
is shown to be non-Gaussian with the U-shaped structure for a strong damping parameter. The T dependence
of R (=—kpT In{e~#")) obtained by our simulations is semiquantitatively elucidated with the use of a simple
expression for limit-cycle oscillations, where the bracket (-) expresses an average over the WDF. The result
obtained in self-excited oscillators is in contrast with the fact that the JE holds in the Nosé-Hoover oscillator,
which also belongs to deterministic non-Hamiltonian models.
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I. INTRODUCTION

In the last decade, a significant progress has been made
in theoretical studies on nonequilibrium statistics (for reviews,
see Refs. [1-3]). The important three fluctuation theorems have
been proposed: the Jarzynski equality (JE) [4], the steady-state
and transient fluctuation theorems [5-8], and the Crooks
theorem [7,8]. They may be applicable to nonequilibrium
systems driven arbitrarily far from the equilibrium states. In
this paper we pay our attention to the JE expressed by

(e Py = /dW P(W) e PW = ¢ PAF (1)

where W denotes a work made in a system when its parameter
is changed, the bracket (-) expresses the average over the work
distribution function (WDF), P(W), of a work performed
by a prescribed protocol, AF stands for the free-energy
difference between the initial and final equilibrium states, and
B (=1/kpT) is the inverse temperature of the initial state.
Equation (1) includes the second law of thermodynamics,
(W) > AF, where the equality holds only for the reversible
process. The JE was originally proposed for a classical isolated
system and open system weakly coupled to baths that are
described by the Hamiltonian [4] and the stochastic models
[9]. Jarzynski later proved that the JE is valid for strongly
coupled open systems [10]. The validity of the JE has been
confirmed by some experiments for systems that can be
described by damped harmonic oscillator models [11-16].
Stimulated by these experiments, many theoretical analyses
have been made for harmonic oscillators with the use of
the Markovian Langevin model [13-16], the non-Markovian
Langevin model [17-20], Fokker-Planck equation [21], and
Hamiltonian model [22-27]. Recently the validity of the JE
in nonlinear oscillators with anharmonic potentials has been
investigated in Refs. [18,28].

In this paper we study the self-excited oscillators described
by van der Pol and Rayleigh equations with state- and
velocity-dependent dampings [29,30]. They are expressed
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by
X =, 2
vV=—x—-Cv+ f(1), 3)
c(x?> —a) for the van der Pol model,
¢ = 4

"~ | c(w? —a) for the Rayleigh model,

where v =X, a =1, ¢ (=0) is a damping parameter, the
dot (-) denotes a derivative with respect to time ¢, { stands
for an auxiliary variable, and f(¢) expresses an applied
external force. Conditions of { > O and ¢ < 0 express positive
and negative dissipations, respectively. The van der Pol
equation was proposed as a mathematical model of self-excited
oscillations for a simple electric circuit with nonlinear triode
valve [29]. The Rayleigh equation was introduced to show
the appearance of sustained vibrations in acoustics [30]. Van
der Pol and Rayleigh equations are formally equivalent in
the sense that the van der Pol equation can be transformed
to the Rayleigh equation and vice versa with a proper
change of variables. These equations provide basic models
for various nonlinear dynamics of systems in mechanical
and electrical engineering, biology, biochemistry, and many
other applications (for a recent review of nonlinear equations,
see Ref. [31]). Many studies have been reported of the van
der Pol model, which can be regarded as a special case
of the FitzHugh-Nagumo model [32,33]. The properties of
periodic solutions of the van der Pol oscillator are known in
considerable detail for a sufficiently small or large damping
coefficient.

The van der Pol and Rayleigh oscillators belong to de-
terministic non-Hamiltonian models. The Nosé-Hoover (NH)
oscillator [34,35], which has been widely adopted for a study of
molecular dynamics, also belongs to non-Hamiltonian models.
The NH oscillator is described by [34,35]

X =u, (5)

v=—x—C v+ f), (6)
. 1

¢ =—@*—kgT), (7)
T0
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where ¢ is a state variable of the thermal reservoir with the
temperature 7 and 1o stands for the relaxation time of ¢.
It is noted that Eqs. (2)—-(4) with a = kpT are similar to
Eqgs. (5)—(7) except for the fact that Eq. (4) is given by ¢ while
Eq. (7) is expressed by ¢ [36,37]. The fluctuation theorem
in a non-Hamiltonian system coupled to a thermostat has
been discussed in Refs. [5,6,38-40]. References [41-43] have
provided the condition for the JE to hold in a non-Hamiltonian
(and Hamiltonian) model. The condition requires that the
equilibrium canonical distribution should be given by [43]

P(Q.q.}) x e PHQ D) o=FV @) ®)
with
V(g) = —kgT Ing(q), ©)

where H(Q) denotes energy of the system, ¢(q) is the
(normalized) equilibrium distribution of bath variable ¢, and
A is an external parameter. The canonical distribution of the
Nosé-Hoover model with f(¢) = A is given by [35]

P(.X,U,{) e e*ﬁ(xz/27)\.’6#412/24*!@@'2/2)7 (10)

which satisfies the condition given by Eqgs. (8) and (9)
with @ = (x,v) and ¢ = ¢, and then the JE holds in the
Nosé-Hoover model [41-43]. In contrast, the equilibrium
distribution of the van der Pol or Rayleigh oscillator, which
is an odd-shaped racetrack [44], does not meet the condition
given by Eqgs. (8) and (9). Although this suggests that the
JE does not hold in van der Pol and Rayleigh oscillators, it
is worthwhile to examine how and to what extent the JE is
violated in self-excited oscillators, which is the purpose of the
present paper.

The paper is organized as follows. In the next section,
Sec. II, we briefly explain basic equations of van der Pol
and Rayleigh oscillators. We examine the validity of the JE
by simulations applying a ramp force with a duration t. Our
simulations in Sec. III show that although the JE is not exactly
satisfied in self-excited oscillators, it approximately holds in
a fairly wide range of t values including v — O (transient
force) and T — oo (quasistationary force). Various types of
analytical solutions for applied sinusoidal forces have been
developed for van der Pol and Rayleigh models. It is, however,
still difficult to obtain analytical solutions for arbitrary external
forces including nonperiodic ones. By using a simple analytic
expression of solutions for an applied ramp force, which is
suggested by He’s method for a limit cycle of self-excited
oscillators [45], we present in Sec. IV a semiquantitative
analysis of the results of our simulations. Section V is devoted
to our conclusion.

II. SELF-EXCITED OSCILLATOR MODELS

A. Energy, heat, and work

From Egs. (2)-(4), van der Pol and Rayleigh oscillators are
described by

X+x+cv=f@), (11)
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with

c(x> — 1) for the van der Pol model,

= . (12)
c(v?> — 1) for the Rayleigh model.

When we set { = ¢ (>0) in Eq. (11), it expresses a damped

harmonic oscillator. Multiplying x for the both sides of Eq. (11)

and integrating them over ¢, we obtain

Ut)—U©) = Q@) + W), (13)
with
_x@0)? | x()?
U@ = 5 + T, (14)
o) = —/ ¢ %% dt, (15)
0
W.(t) =/ f()x dt, (16)
0

where U(t), Q(t), and W,.(¢) stand for the internal energy,
heat (dissipative energy), and classical work, respectively.
Equation (13) expresses the first law of thermodynamics. In
order to show the JE, Jarzynski employed an alternative work
defined by [4]

12
W,@) = —/ S@) x(2) dt, (17)
0
which is related with W.(¢) as

W) = = f(O)x@) + f(0)x(0) + We(0). (18)

It is noted that U(t), Q(t), W.(t), and W;(¢) depend on a
microscopic history of the system of x(¢) and v(¢) for ¢t > 0
starting from their initial values of x(0) (=xy) and v(0) (=vy).
W, () has been employed for a study of the JE in this study.

We have presented in the Appendix some numerical
calculations of thermodynamical quantities such as energy,
heat, and work of the van der Pol oscillator, which are
evaluated both by single and multiple runs of simulations.
It should be note that even for f(¢) = 0, we obtain (U(#))g —
(U(0))o # 01in van der Pol (and Rayleigh) oscillators because
of a dissipative contribution of (dQ(t)/dt)y (see Figs. 12
and 13 in the Appendix), where (-)¢ stands for an average
over initial states Eqs. (22) and (23). This is in contrast to
the NH oscillator where the relations (U(¢))o — (U(0))o = 0
and (dQ(t)/dt)y = 0 hold. This difference reflects on the
difference in nonequilibrium properties of self-excited and NH
oscillators: The JE does not hold in the former, while it holds
in the latter.

B. The Jarzynski equality

For a study of the JE, we will apply a ramp force f(¢) given
by

0 for <O,
fO=1g(t) for 0<r<r, (19)
g for t>1,
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where T denotes a duration of the force and g its magnitude.
By using Eqgs. (17) and (19), we obtain a work induced by the
applied ramp force,

T
Wo = W,(z) = —<§)/ (1) dt. (20)
0
The WDF is expressed by

P(W) = (§(W — Wo))o, 21

where (-)o signifies the average over the canonically distributed
{x0} and {vo},

P(xp,vp) oc e PUd/2H15/2), (22)
satisfying the equipartition relation given by
(x5} = (v3), = kaT- (23)
The JE in Eq. (1) can be rewritten as

1

=-3 In(e Yy = AF. (24)

If the WDF is Gaussian, R is given by

2
R=p-22 (25)
2
with

w= (W), (26)
o’ = (W —w?), 27)

which stand for mean and variance, respectively, of the WDF.
Of course, Eq. (25) is not valid for non-Gaussian WDF.

III. MODEL CALCULATIONS

A. The van der Pol oscillator

Model calculations of the JE for van der Pol and Rayleigh
oscillators will be reported in Secs. IIT A and IIIB, respectively.
We have made simulations, solving Egs. (11) and (12) by
using the Runge-Kutta method with a time step of 0.0001 for
initial states of {x¢} and {vo} given by Egs. (22) and (23) with
kgT =1.0.

In order to get some insight into the van der Pol oscillator,
we first show results without forces [ f(¢) = 0.0]. Time courses
of x(¢) and v(¢) for adamping parameter of ¢ = 10.0 calculated
by single runs with xog = 1.0 and vy = 0.0 are plotted in
Figs. 1(a) and 1(b), respectively. Time courses of x(¢) exhibit
the relaxation oscillation with characteristic sharp periodic
jumps. A parametric plot of x(¢) versus v(¢) in Fig. 1(c)
shows the limit cycle. The period of the relaxation oscillation
depends on the magnitude of a damping parameter c¢. The
dashed curve of Fig. 1(d) expresses the ¢ dependence of
period T for f(t) = 0.0, which is increased with increasing c.
When a constant force f = 0.5 is applied to the oscillator, its
oscillation period is further increased, as shown by the solid
curve in Fig. 1(d).

Figure 2(a) shows time courses of x(#) when a ramp force
with 7 = 100.0 is applied to the van der Pol oscillator for
¢ = 1.0 with initial conditions of xo = 1.0 and vy = 0.0.
The period of the oscillation with the applied ramp force
with g = 0.5 (solid curve) is gradually increased compared
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FIG. 1. (Color online) (a) x(z), (b) v(¢), and (c) a parametric
plot of x(¢) vs v(¢) in the van der Pol oscillator with ¢ = 10.0
for f(¢r) = 0.0 with an initial condition of xo = 1.0 and vy = 0.0.
(d) The ¢ dependence of a period T' with constant forces of f(¢) = 0.0
(dashed curve) and f(¢) = 0.5 (solid curve).

to that with ¢ = 0.0 (dashed curve). Figure 2(b) shows a
similar plot of x(¢) for ¢ = 10.0. The period of the oscillation
with ¢ = 10.0 is longer than that with ¢ = 1.0 by a factor
of about three. An applied ramp force with g = 0.5 and
T = 100 induces a work W;(¢) whose time course is shown by
the chain (solid) curve for ¢ = 1.0 (¢ = 10.0) in Fig. 2(c).
We obtain Wy = —0.110 (Wy = —0.126) for ¢ = 1.0 (¢ =
10.0) by a single run with initial values of xy = 1.0 and
Vg = 0.0.

4 : :
) | (a) van der Pol osc. I . c=1
0 .-’

FIG. 2. (Color online) Time courses of x(¢) of the van der Pol
oscillator with (a) ¢ = 1.0 and (b) ¢ = 10.0 for ramp forces with
g = 0.0 (dashed curve) and g = 0.5 (solid curve) for = 100.0.
(c) W;(¢t) with ¢ = 1.0 (chain curve) and ¢ = 10.0 (solid curve) for
g = 0.5 and 7 = 100.0. An applied ramp force f(¢) is plotted by
dotted curves in (a) and (b). Simulations are performed by single runs
with initial conditions of xo = 1.0 and vy = 0.0.
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FIG. 3. (Color online) P(W) for r = 0.1, 1.0, 10.0, and 100.0
with ¢ = 10.0 and g = 0.5 in the van der Pol oscillator, P(W) for
7 = 10.0 and 100.0 being multiplied by factor of 1/2 and 1/20,
respectively.

Calculating Wy in Eq. (20) for given initial states, we
have obtained the WDF, P(W), with the use of Eq. (21),
whose results for T = 0.1, 1.0, 10.0, and 100.0 with ¢ = 10.0
are plotted in Fig. 3. Although the WDF for v =0.1 is
Gaussian, those for T = 1.0, 10.0, and 100.0 are non-Gaussian
with the U-shaped structure, which are quite different from
the Gaussian distributions obtained in harmonic oscillators.
Figure 4 shows P(W) for various values of ¢ with a fixed T =
1.0. With decreasing the damping parameter from ¢ = 10.0,
the WDF is changed from the double-peaked distribution to
the single-peaked Gaussian-like distribution.

Figures 5(a)-5(c) show 7t dependencies of w, o, and R,
respectively, for ¢ = 1.0 (dashed curves), ¢ = 5.0 (dotted
curves), and ¢ = 10.0 (solid curves) for ramp forces with
g = 0.5. Here p is almost zero for t = 0.1, and it gradually
decreased to —0.125 for T = 1000.0. In contrast, o ~ 0.5 at
T = 0.1, and it goes to zero at T = 1000.0 with a small bump
at T ~ 3.0. The calculated R with ¢ = 10.0 (solid curve)
is in nearly agreement with AF (=—g?/2 = —0.125) for
7 2 100.0 and T < 0.2, but it significantly deviates from A F
for 0.2 < 7 < 100.0. The discrepancy of R # AF implies a

2 T T T T

, , ,
van der Pol osc.

) a1 0 T 2

FIG. 4. (Color online) P(W) for ¢ = 1.0, 2.0, 5.0, and 10.0 with
7 = 1.0 and g = 0.5 in the van der Pol oscillator.
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FIG. 5. (Color online) The t dependence of (a) i, (b) o, and
(c) R in the van der Pol oscillator with ¢ = 1.0 (dashed curve), 5.0
(dotted curve), and 10.0 (solid curve) for ramp forces with g = 0.5,
the arrow along the right ordinate in (c) expressing AF. The JE is
expressed by R = AF (=—0.125).

violation of the JE. This deviation becomes less significant for
smaller values of ¢ = 5.0 and 1.0, and it vanishes for ¢ = 0.0
(harmonic oscillator) where the JE holds.

B. The Rayleigh oscillator

Next we study the case of the Rayleigh oscillator. Time
courses of x(¢) and wv(r) of the relaxation oscillation for
¢ =10.0 and f(¢) = 0.0 are plotted in Figs. 6(a) and 6(b),
respectively, and a parametric plot of x(¢) versus v(¢) in
Fig. 6(c) exhibits the limit cycle. The period of the relaxation
oscillation depends on the magnitude of c. The dashed curve
of Fig. 6(d) expresses the ¢ dependence of the period T for
f(t) = 0.0, which is increased with increasing c. The period
of the oscillator for a constant f = 0.5 (solid curve) coincides
with that for f = 0.0 (dashed curve) in Fig. 6(d).

The dashed (solid) curve in Fig. 7(a) shows x(¢) of the
Rayleigh oscillator with ¢ = 1.0 for ramp forces with g = 0.0
(g =0.5) and t = 100.0, which is calculated by single runs
with initial condition of xy = 1.0 and vy = 0.0. We note that
x(t) for g = 0.5 is gradually shifted upward compared to that
for g = 0.0. Figure 7(b) shows a similar plot of x(¢) for the case
of ¢ = 10.0, whose period is longer than that for ¢ = 1.0 in
Fig. 7(a). The time course of W, (¢) for an applied ramp force
with ¢ = 0.5 and v = 100.0 is shown by the chain (solid)
curve for ¢ = 1.0 (¢ = 10.0) in Fig. 7(c). A work induced by
the applied force is Wy = —0.123 (Wy = —0.101) forc = 1.0
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FIG. 6. (Color online) (a) x(¢), (b) v(z), and (c) a parametric plot
of x(¢) vs v(r) in the Rayleigh oscillator with ¢ = 10.0 for f(¢) =
0.0 with the initial condition of xy = 1.0 and vy = 0.0. (d) The ¢
dependence of a period T with constant forces of f(¢) = 0.0 (dashed
curve) and f(z) = 0.5 (solid curve).

(c = 10.0) for a given initial condition of xo = 1.0 and vy =
0.0.

Calculated WDFs for various t are plotted in Fig. 8. WDFs
for r = 10.0 and 100.0 have U-shaped structures, while they
become the Gaussian-like distribution for T = 0.1 and 1.0.

Figures 9(a)-9(c) show t dependencies of i, o, and R,
respectively, for ¢ = 1.0 (dashed curves), ¢ = 5.0 (dotted
curves), and ¢ = 10.0 (solid curves). Their T dependencies
are similar to those for the van der Pol oscillator shown in
Figs. 5(a)-5(c). We note that o for ¢ = 10.0 has a large

4 T T
7 | (2) Rayleigh osc. c=1
0

110
027
20.1

=

0.1}

—0.20

FIG. 7. (Color online) Time courses of x(¢) of the Rayleigh
oscillator with (a) ¢ = 1.0 and (b) ¢ = 10.0 for ramp forces with
g = 0.0 (dashed curve) and g = 0.5 (solid curve) for t = 100.0.
(c) W;(¢t) with ¢ = 1.0 (chain curve) and ¢ = 10.0 (solid curve) for
g = 0.5 with T = 100.0. An applied ramp force f(¢) is plotted by
dotted curves in (a) and (b). Simulations are performed by single runs
with initial conditions of xo = 1.0 and vy = 0.0.
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FIG. 8. (Color online) P(W) for = = 0.1, 1.0, 10.0, and 100.0
with ¢ =10.0 and g = 0.5 in the Rayleigh oscillator, P(W) for
7 = 10.0 and 100.0 being multiplied by factors of 1/10 and 1/5,
respectively, and that for ¢ = 1.0 being shifted upward by 0.2.

maximum at T ~ 10.0 where P(W) has the two-peak structure
as shown in Fig. 8. The calculated R for ¢ = 10.0 (solid curve)
is nearly in agreement with AF (=—0.125) for t 2 20.0 and
7 < 0.5, but significantly deviates from AF for 0.5 <17 <
20.0. This deviation is reduced for smaller ¢ values of ¢ = 5.0
(dotted curve) and 1.0 (dashed curve), and it vanishes for
¢ = 0.0, which corresponds to a harmonic oscillator.

Rayleigh osc.

o
=
T

S0 1 2z = 3
lOgloT

FIG. 9. (Color online) The 7 dependence of (a) u, (b) o, and
(c) R in the Rayleigh oscillator with ¢ = 1.0 (dashed curve), 5.0 (dot-
ted curve), and 10.0 (solid curve) for ramp forces with g = 0.5, the
arrow along the right ordinate in (c) expressing A F (=—0.125).
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IV. DISCUSSION

A. WDF of harmonic oscillators

We have tried to elucidate the result obtained by simulations
having been reported in the preceding section. In arecent paper,
He [45] has discussed a limit cycle of self-excited oscillators,
by using a very simple expression for a relaxation oscillation
given by

x(t) = Acoswt, (28)

where an amplitude A and frequency w are determined as
a function of a damping parameter ¢ with the use of the
variational method [45]. It has been shown that they are given
by A =2.0 and w = 3.8929/c + O(c™?) for the van der Pol
oscillator with ¢ > 1 [31,45]. Extending He’s method [45],
we will study the WDF and the JE of self-excited oscillators
in the following.

Before discussing the WDF of self-excited oscillators, we
briefly explain that of a harmonic oscillator [c = 0in Eq. (11)],

i4+x=f@), 29)

whose solution for the applied ramp force f(¢) is given by

t
x(t) = xgcost + vgsint + / sin(t — ) f(t)dt',  (30)
0

t —sint
M for 0 <t <.

€1y

= XxgCoSt + vy sint +

From Eq. (20), we obtain a work for a given initial condition
of x¢ and vy,

Wo = Cxo + Dvy + ¢, (32)
with

C:_gsmr7 (33)

T

1 —
D= _w’ (34)

T

2 2(1 —cost
p=-% 4 &L (35)
2 T

The WDF in Eq. (21) is given by

1 oo .
POW)= 5 / W () du, (36)

—00

with

—iuW, . o ﬂx(z) .
(e %) exp(—zu¢)/ exp | — - iuCxgy ) dxg
-0

o) 2
X / exp <—% — iuDv0> dvy,
—0Q
(C? + DHu?
2B ’

A simple manipulation with Eqgs. (36) and (37) leads to the
Gaussian WDF given by

x exp(—iu¢)exp [— 37

e—(W—/t)Z/Z(fZ’ (38)

POW) = ——
To
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with
2 2
g g°(1 —cos1)
M=¢=—?+—2, (39)
T
o2 2g%(1 — cos r). 40)
pz*
The average of eV over P(W) in Eq. (1) is given by
(e—ﬁW> — e—ﬂ(#—ﬂUZ/Z)’ 41)
which yields
1
R=——In(e?"), (42)
p
po® &
=pu——=——=AF. 43
== > (43)

Equation (43) implies that the JE holds regardless of a value
of T in harmonic oscillators [13-27].

B. WDF of self-excited oscillators

We now calculate the WDF of self-excited oscillators.
Taking into account Egs. (28) and (31), we have assumed
that the solution of the limit cycle in a self-excited oscillator
is given by

(t —sint)

x(1) = A cos(wt — 0) + & for 0<t<71. (44)

Here A and w depend on ¢ as in Ref. [45], and a phase 9 is
determined by initial conditions of xg and vy,

v
tanf = —-, (45)
wXo
which arises from
xp = Acosf, vy= wAsinb. (46)

Note that A in a self-excited oscillator is assumed to depend
on c¢ but to be independent of initial condition of xy and vy,
while A in a harmonic oscillator depends on them as given by

A= ,/xg + vg in Eq. (31).
Substituting Eq. (44) into Eq. (20), we obtain a work
performed by the ramp force for a given 6,

A 2 2 1 —
W0=—<g—>[sin(a)r —0)+sinf] — s + g(—chST).
T 2 T

47)
The average of (e~“W0), in Eq. (36) is given by

o0 o0
(e o) o / / e PRI o PU 2= Wo gy duy.  (48)
—00 —00

Transforming Eq. (48) to the polar coordinate and using
Eq. (46), we obtain

2w
<e—mwo>0 . f e—(ﬁAz/Z)(00529+w2 sin® 0) @ —pl do, (49)
0
with
gAY\ . .
h(©®) = [ = )[sin(wt — ) + sin 6], (50)
T
= Wy cos(@ — §), (5D
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gAJ/2(1 — coswt)

W, =20 = , (52)
wT
l_
tan 8 =:£___739§f232, (53)
Sin wtT
2 2(1 —cost
Mz_g_+8<_2>_ (54)
2 T

A substitution of Eq. (49) into Eq. (36) leads to

2w
P(W) O('/ e—(ﬂA‘/Z)(COS29+w‘Sin29) S[W -1 + h(@)] d@,
0

(55)
which yields the WDF given by

N ——
T W ey

for —Wy+u<W<W;+4pu. (56)

Equation (56) expresses the U-shaped WDF, which is divergent
at two edges of (W, + ). Thus when c is increased from
zero, the WDF changes from the Gaussian Eq. (38) to U-
shaped non-Gaussian Eq. (56), just as shown in Fig. 4.
Figures 10(a) and 10(b) express W, and u, respectively,
as a function of t, which are calculated by Egs. (52) and (54)
withA =2.0,g =0.5,w =27/T,and T = 19.07 [Figs. 1(d)
and 6(d)]. We note in Fig. 10(a) that the second law of
thermodynamics holds because u > AF (=—0.125). W, has
an interesting tv dependence, which is similar to that of

(a)
20,05/ -
=1
0.1F -
012030 60 80 100
12
- 08
2 0.6
0.4
02
O—30 40 %0 80 100
\T T T T T
1 Q) theory ]

--=-- van der Pol osc. |
— — Rayleigh osc.

edges of WDF
o

FIG. 10. (Color online) (a) W, and (b) u as a function of t
calculated by Egs. (52) and (54) with A =2.0, g = 0.5, 0 =2/ T,
and 7 = 19.07. (c¢) The t dependence of (W, + w) (solid curves)
and that of upper and lower edges of the WDF obtained by simulations
for van der Pol (squares) and Rayleigh oscillators (circles) with
¢ = 10.0, dashed and chain curves being plotted only for a guide
of eye (see text).
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o in harmonic oscillator given by Eq. (40). Two edges of
(=W, + ) are plotted by solid curves in Fig. 10(c), where
squares (circles) express upper and lower edges of the WDF
obtained by simulations for the van der Pol oscillator (Rayleigh
oscillator). Oscillating behaviors in upper and lower edges
of the WDF obtained in simulations are well reproduced in
Fig. 10(c).

By using the WDF given by Eq. (56), we can evaluate
(e=P"y in Eq. (1),

(e7PVy = 7P In(BWy), (57)

where 1,,(z) expresses the modified Bessel function of the first
kind. From Eq. (57), R in Eq. (42) is given by

1
R=p— B In Io(BWoy). (58)

In the limit of T = 0o, we have R = AF because u =
—g%/2=AF, W; =0.0, and I;(0) = 1.0. In the opposite
limit of 7 = 0.0 where © = 0.0 and W; = gA, we obtain
R = —B~'In Iy(BgA), which is generally different from AF.
By using Egs. (52), (54), and (58) with A =2.0, g =0.5,
w=2r/T,and T = 19.07, we have calculated R, which is
plotted by the solid curve in Fig. 11. For a comparison, we
show by squares and circles results of simulations for van
der Pol and Rayleigh oscillators, respectively, with ¢ = 10.0.
We note that the T dependence of R for T 2 1.0 obtained by
simulations is semiquantitatively explained by our analysis.
Our calculation, however, yields poor results for 7 < 1.0,
where x(¢) in Eq. (44) is not a good approximation because
an oscillation cannot become a limit cycle for r ~ 7 K T.
Actually with decreasing t at t < 1.0, the WDF is changed
from the U-shaped distribution to the Gaussian distribution,
as shown in Figs. 3 and 8. Our calculation for ¢ < 1.0 can
be improved if the WDF is phenomenologically interpolated
between the Gaussian and U-shaped distributions as given

= AF

04 \ |—— theory 1
03 \ | —— theory (inter.)
-0.6- e | -®-- van der Pol osc.]
' .- Rayleigh osc.
N , | , I , | ,
071 0 i ) 3
log;ot

FIG. 11. (Color online) The t dependence of R calculated by
Eq. (58) (solid curves) and Eq. (61) (interpolation: bold solid curve)
with A =2.0, g =05, o =2n/T, and T = 19.07, and those for
van der Pol (squares) and Rayleigh oscillators (circles) with ¢ = 10.0
obtained by simulations, dashed and chain curves being plotted only
for a guide of eye. The arrow along the right ordinate expresses A F
(=—0.125).
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by
P(W)x _P w2 + a-p ! ,
(59)
with
p=e /M, (60)

where 7( denotes a parameter. The Gaussian and U-shaped
WDFs are dominant for small and large 7, respectively, and
they are interpolated between small and large values of t with
a factor p. The average of (e~#V) is given by

(€ Py = p e PUbD (1 — p)ye PI(BW,). (61)

The bold solid curve in Fig. 11 expresses R obtained by
Egs. (42), (60), and (61) with 7y = 1.0. We note that R deviates
from AF for 1.0 < 7 < 10.0, although R >~ AF fort < 1.0
and t > 10, as shown by simulations.

V. CONCLUSION

Studying the JE in van der Pol and Rayleigh oscillators
to which a ramp force with a duration t is applied, we have
obtained the following results:

(1) The JE nearly holds in a fairly wide range of t
including transient (tr — 0) and quasistationary forces (tr —
00), although the JE is not rigorously satisfied [41-43],

X
PN = O = DD W

O

| (b)

U
Nl-hlo\l

10- (0

dQ/dt
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(2) The WDF has the U-shaped structure for a large damping
parameter, and

(3) The 7 dependence of R (=—kgT In{e™#V)) [Eq. (24)]
obtained by our simulations can be semiquantitatively ac-
counted for by our analysis with a simple expression of
x(t) for a limit cycle whose amplitude is assumed to be
determined by a damping parameter but not sensitive to initial
conditions.

The first item is in contrast with results of NH oscillators
where JE holds [41-43]. Derivations of the JE require the
condition that the equilibrium canonical distribution of non-
Hamiltonian systems satisfies Eqgs. (8) and (9) [43]. Van der
Pol and Rayleigh oscillators do not meet the condition, while it
is held in the NH oscillator [41-43]. Although our simple anal-
ysis in item 3 can explain essential features of van der Pol and
Rayleigh models, a development of a more advanced theory
is desirable for a better understanding of their properties. It
would be interesting to examine our result by experiments,
for example, by electrical circuits consisting of nonlinear
elements.
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FIG. 12. (Color online) (a) x(t), (b) U(¢), (c) dQ(t)/dt, and (d) W,(¢) in the van der Pol oscillator with ¢ = 1.0, and (e) x(¢), (f) U(¢),
(g) dQ(t)/dt, and (h) W,(r) with ¢ = 10.0 for applied ramp forces with g = 0.0 (dashed curves) and g = 0.5 (solid curves) (r = 10.0)
evaluated by single runs with the initial condition of xy = 1.0 and vy = 1.0 yielding U(0) = 1.0.
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APPENDIX: ENERGY, HEAT, AND WORK
OF THE VAN DER POL OSCILLATOR

In this Appendix we will present some model calculations
of thermodynamical quantities such as the energy and heat
in the van der Pol oscillator, which are evaluated both by
single and multiple runs of simulations. Figures 12(a)-12(d)
show x(t), U(t), d Q(t)/dt, and W, (t), respectively, of the van
der Pol oscillator with ¢ = 1.0 for applied ramp forces with
g = 0.0 (dashed curve) and g = 0.5 (solid curve) for t = 10.0
calculated by single runs with initial conditions of xo = 1.0
and vp = 1.0 [U(0) = 1.0]. The period of the oscillation with
the applied ramp force with g = 0.5 is gradually increased
compared to that with g = 0.0. Weobtain U (¢) — U(0) = Q(¢)
for g = 0.0 where W;(0) = W.(¢) = 0.0 in Eq. (13). The
heat (energy) flows from an environment to the oscillator for
dQ(t)/dt > 0, and for dQ(t)/dt < O the heat (energy) flow
is reversed. Periodic energy exchanges are realized between
the oscillator and environment in the limit cycle. For an
applied ramp force with g = 0.5, W,(¢) is time dependent
at 0 <r < 10.0, and it becomes constant (= —0.191) at
t > 10.0, where f(t) = 0, as shown in Fig. 12(d).

Figures 12(e)-12(h) show similar plots of relevant ther-
modynamical quantities in the van der Pol oscillator with a
larger damping constant of ¢ = 10.0, which are calculated
also by single runs with the same initial condition of xo = 1.0
and vg = 1.0. The period of relaxation oscillation of x(t) for
¢ = 10.0 is larger than that for ¢ = 1.0. Time dependencies of

<x>0
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U(t)and d Q(t)/dt for c = 10.0 become much significant than
those for ¢ = 1.0: Note that scales of ordinates in Figs. 12(f)
and 12(g) are much larger than those in Figs. 12(b) and 12(c).
We obtain a positive W, () (=0.551) att > 10.0 in Fig. 12(h).

Related thermodynamical quantities averaged over 100 000
runs with canonically distributed initial states of {xo} and {vo}
with kT = 1.0 [Egs. (22) and (23)] are plotted in Fig. 13.
Figures 13(a)-13(d) show (x(#))o, (U(t))o, (d Q(¢)/dt)o, and
(W;(2))o, respectively, of the van der Pol oscillator with
¢ = 1.0 for applied forces of g = 0.0 (dashed curves) and
g = 0.5 (solid curves) with 7 = 10.0. We note in Fig. 13(a) that
although (x)p = 0 for g = 0.0, (x)o for g = 0.5 at r > 10.0
expresses a small limit-cycle oscillation superposed on a
constant of 0.5. This is because random initial states are
effectively biased by an applied force. For g = 0.0, (U(#))o =
1.0 at t = 0.0, and it becomes about 2.0 at ¢+ = 5.0, which is
determined by amplitudes of x(#) and v(¢) in the limit cycle, as
shown in Fig. 13(b). Itis noted that even for g = 0.0, we obtain
(U(t))o — (U(0))p # 0.0, which is due to finite dissipative
contributions of (dQ/dt)y (# 0.0) between an oscillator and
environment. Comparing Fig. 13(b) with Fig. 12(b), we note
that magnitudes of (U(#))o become much smaller than those
of U(¢) for a single run. Owing to an applied ramp force,
(U(1))o for g = 0.5 is lower than that for g = 0.0. We obtain
(Wy)o = —0.110 at ¢ > 10.0 as shown in Fig. 13(d).

Similar plots of relevant thermodynamical quantities for the
van der Pol oscillator with a larger ¢ = 10.0 are presented in

-0.1% L 1 L 1 L 1 L 1 L
0 20 40 ¢ 60 80 100

FIG. 13. (Color online) (a) (x(#))o, (b) (U(#))o, (c) (d Q(2)/dt)o, and (d) (W, (t))o in the van der Pol oscillator with ¢ = 1.0, and (e) (U(?))o,
) (Q())o, (g) (dQ(t)/dt)o, and (h) (W, (1)) with ¢ = 10.0 for applied ramp forces with g = 0.0 (dashed curves) and g = 0.5 (solid curves)
(r = 10.0) averaged over 100 000 runs with k37 = 1.0 (=(U(0))). Results for g = 0.5 in panels (f) and (g) are shifted upward by 5 and 10,

respectively, for a clarity of figures.
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Figs. 13(e)-13(h). The initial averaged energy of (U(t))o =
1.0 at r = 0.0 is increased to about 2.4-3.6 at ¢t 2 5.0 for
g = 0.0 in Fig. 13(f). This increase in (U(t))o is due to
energy supplies from environment to the oscillator, which

PHYSICAL REVIEW E 84, 061112 (2011)

are rapidly accomplished at 0 < ¢ < 1.0 for both g = 0.0 and
0.5 as shown in Figs. 13(f) and 13(g). Figure 13(h) shows
(Wj)o = —0.092 att > 10.0, which is in contrast to a positive
W; = 0.551 for a single run shown in Fig. 12(h).
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