
PHYSICAL REVIEW E 84, 061110 (2011)

Thermodynamic cost of measurements
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The measurement of thermal fluctuations provides information about the microscopic state of a thermodynamic
system and can be used in order to extract work from a single heat bath in a suitable cyclic process. We present a
minimal framework for the modeling of a measurement device and we propose a protocol for the measurement of
thermal fluctuations. In this framework, the measurement of thermal fluctuations naturally leads to the dissipation
of work. We illustrate this framework on a simple two states system inspired by the Szilard’s information engine.

DOI: 10.1103/PhysRevE.84.061110 PACS number(s): 05.70.Ln, 05.20.−y, 05.40.−a

I. INTRODUCTION

In his seminal paper of 1929, Leó Szilard was the first
to point out the role of information in statistical thermody-
namics [1]. Recently, experimental and theoretical works have
specified the relation between information and dissipated work
in the thermodynamics of small systems [2–9]. In its traditional
formulation, the second law of thermodynamics states that
the average work W needed to change the state of a system
in contact with a heat bath is bounded from below by the
difference in free energy of the final and the initial states:

W � �F. (1)

In the presence of measurement and feedback during the
process, the second law has to be extended in order to include
the information obtained through the measurement and the
bound on the work to perform is lowered [7–11]:

W � �F − kT I, (2)

where I is the mutual information of the system state and the
measurement outcome, k is Boltzmann’s constant, and T is
the temperature of the heat bath.

A striking consequence of this relation is the theoretical
possibility to extract work out of a single heat bath during a
cyclic process. The second law of thermodynamics prohibits
such processes. In order to re-establish the second law it is
therefore essential that the acquisition (and/or processing) of
an amount I of information leads to the dissipation of at least
kT I of work.

Landauer and Bennett indeed focused on the processing of
the information [12,13]. They argue that, in order to utilize
some information, one has to record it on some memory
device and eventually erase it. Landauer’s principle states that
this erasure step is necessarily accompanied by a minimum
amount of entropy production sufficient to balance the entropy
reduction due to the feedback process. This principle has been
the subject of many studies; see, e.g., [14,15].

The aim of this paper is to propose a framework for the mod-
eling of a measurement device. Under thermodynamically con-
sistent assumptions, the measurement of thermal fluctuations
naturally leads to dissipation in a way similar to Landauer’s
principle. The basic assumptions about the measurement
device are the following: It should be a thermodynamic
system subject to thermal fluctuations and it should receive
information from the system on which the measurement is
performed. The first assumption implies that the measurement

errors should at least include the thermal fluctuations inside the
measurement device. The second assumption implies that the
measurement device is driven by the original system. In our
framework, it is this driving that is responsible for the entropy
production inside the measurement device

II. MODELING THE MEASUREMENT DEVICE

We wish to measure a certain quantity x. Here, x is
thought of as a random variable distributed according to some
probability distribution p(x). The knowledge that we have
about x is given by the Shannon entropy of p(x) given by [16]

S[p(x)] = −
∑

p(x)lnp(x). (3)

The lower it is, the more information we have about x. By
measuring x, we mean acquiring some information about a
single realization of this random variable. Let y be the result
of the measurement, distributed according to the conditional
distribution p(y|x) for fixed x. If we know the value of y, then
our knowledge about the value of x changes and x is distributed
according to the conditional probability distribution:

p(x|y) = p(y|x)p(x)

p(y)
, (4)

where p(y) = ∑
x p(y|x)p(x) is the marginal distribution of

y, i.e., the a priori probability to observe outcome y. The
entropy of x after observing y is the Shannon entropy of
p(x|y):

S[p(x|y)] = −
∑

x

p(x|y)lnp(x|y). (5)

This quantity depends on the measurement outcome y. On
average over y, it is smaller than the Shannon entropy of p(x)
given by Eq. (3), meaning that knowing the value of y increases
our information about x. The average decrease of entropy of x

upon knowing the value of y is the mutual information between
x and y [16]:

I = S[p(x)] −
∑

y

p(y)S[p(x|y)]

=
∑
x,y

p(x,y)ln
p(x,y)

p(x)p(y)
, (6)

where p(x,y) = p(y|x)p(x) = p(x|y)p(y) is the joint distri-
bution of x and y. The mutual information I is positive and it
is zero if and only if x and y are independent.
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If x is the microscopic (or mesoscopic) state of a thermody-
namical system in equilibrium with a heat bath at temperature
T , then the information obtained can be used to extract heat
from the heat bath and convert it into work [1–3,7–9]. More
precisely, let x be the microscopic state (or microstate) of
a thermodynamic system S in contact with a heat bath at
temperature T and let p(x) be its equilibrium (canonical)
distribution. If one knows the value of y, then the microstates
of S are distributed according to p(x|y) given by Eq. (4).
This distribution is a nonequilibrium one and exploiting the
relaxation ofS to equilibrium allows one to extract a maximum
average amount of work linked to the Kullback-Leibler
distance or relative entropy of the nonequilibrium distribution
p(x|y) and the equilibrium one p(x) [4,6]:

Wmax(y) = kT
∑

x

p(x|y)ln
p(x|y)

p(x)
, (7)

where k is Boltzmann’s constant. On average over y, one
obtains

Wmax =
∑

y

p(y)Wmax(y) = kT I, (8)

where I is the mutual information between x and y given by
Eq. (6).

The measurement device should be a physical system
obeying the laws of thermodynamics. Moreover, it should
receive information from the original system S. These con-
siderations lead us to consider the measurement device as a
thermodynamic system M and the measurement outcome y

as a microstate of M. The energy levels of M depend on
the value x to be measured in such a way that p(y|x) is the
equilibrium distribution of y. Denoting by EM(y|x) the energy
of M when S is in state x and M in state y, we have

p(y|x) = exp

(
−EM(y|x) − FM(x)

kT

)
, (9)

where FM(x) = −kT ln
∑

y exp[−EM(y|x)/kT ] is the equi-
librium free energy of M given x. Every time the value of x

changes, M is driven away from equilibrium. Furthermore,
we suppose the relaxation time of M to be much smaller than
the relaxation time of S, so that M always has the time to
relax toward the canonical distribution (9) before the value of
x changes.

During the measurement, M is in a probabilistic mixture of
macrostates [17]. By this we mean that the macroscopic state of
M is random. This is so because it depends on x, which is itself
random. The measurement errors come form the difficulty
to distinguish different macrostates of M upon seeing one
realization of y. In fact, different p(y|x) for different values
of x may overlap, meaning that different values of x may be
compatible with one value of y.

III. MEASURING THE STATE OF A TWO LEVELS
SYSTEM

We will start with a simple example inspired by the Szilard’s
engine [1,18] in order to introduce the measurement protocol,
and then we will consider a more general case. The aim is to
measure the state of a two levels systemS in contact with a heat
bath at constant temperature T , possibly with measurement

errors. The information obtained through the measurement is
then used in order to extract some heat out of the heat bath and
convert it into work. We denote by x ∈ {1,2} the state of S and
by y ∈ {1,2} the result of the measurement. Initially, S is in
equilibrium with the heat bath and the energies of its levels are
equal so that it has equal probability to be in one state or the
other. At some point, we measure the state of S with success
probability p � 1/2:

p(y|x) =
{

p if y = x

1 − p if y �= x.
(10)

By a cyclic process depending on the measurement outcome
one can extract at most Wmax = kT I of work, where I is the
information gained through the measurement [8,9,18]:

I (p) = pln
p

1/2
+ (1 − p)ln

1 − p

1/2
(11)

for this specific system.
The measurement device M is a two level system as well

since the measurement has two possible outcomes. Its energy
levels are separated by a gap linked to p by

�E = −kT ln
p

1 − p
, (12)

so that p(y|x) given by Eq. (10) is the equilibrium distribution
for y. In other words,

EM(y|x) =
{−kT lnp + FM if y = x,

−kT ln(1 − p) + FM if y �= x,
(13)

where FM is the free energy of M. Hence, during the
measurement, each macroscopic state of M is labeled by a
state of S.

The measurement process consists of three steps:
(1) Initially, M is independent of S and S occupies one of

its two states with equal probability.
(2) At some point M is “put in contact” with S and its

energies are switched to the values given by Eq. (13). It relaxes
immediately toward equilibrium, so that it is described by the
conditional distribution (10). Having a look at the value of y

yields on average information I (p), given by Eq. (11) about
the value of x.

(3) Finally, M is “decoupled” from S in the sense that it
does not anymore receive information from it. A protocol fed
back with the result of the measurement is performed on S
yielding a maximum average amount of kT I (p) of work.

The problem is now to find the quantity of work performed
on M during this cycle of transformations. But before doing
so, let us make one short remark. It is important that M does
not stay in “contact” with S during the whole process. If it
did, then each time S would jump from one state to the other
because of a thermal fluctuation, work would be performed on
M. Hence in order to dissipate the smallest possible amount of
work, it is important to make the contact as short as possible.
It should be just long enough to yield the desired information,
but not longer.

We first need to specify the macroscopic state of M in
steps (1) and (3), that is, when it is not coupled to S. For the
process to be cyclic, we require these states to be the same.
Consider two possibilities:

(i) M is in some standard state, with equal energies E0
M.
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(ii) When M is decoupled from S, it is just left as it is. In
other words, it is in a statistical mixture of macroscopic states:
with probability 1/2 it is in a state with energies EM(y|1) and
with probability 1/2 in a state with energies EM(y|2).

In the first case, work is performed on M in steps (2)
and (3), i.e., when M is put in contact with S and when it is
separated from S. When M is put in contact with S, its energy
levels are instantly moved from E0

M to EM(y|x). The averaged
work dissipated when one instantly changes the energies of a
system is given by kT times the Kullback-Leibler distance
between the initial equilibrium distribution and the final one.
This is a special case of the Kawai-Parrondo-Broeck equality
[19,20]. We will make use of this relation throughout this paper
to calculate the work performed at each step of the process.
The work performed when M is put in contact with S is thus
given by

Wcont = kT

2

(
ln

1/2

p
+ ln

1/2

1 − p

)
+ �FM, (14)

where �FM = FM − F 0
M is the difference in the free energy

of M before and after the contact. When M is separated from
S, the work performed on average is

Wsep = kT

(
pln

p

1/2
+ (1 − p)ln

1 − p

1/2

)
− �FM. (15)

The first term on the right hand side of this equation is the
mutual information between x and y, Eq. (11). Thus

Wsep = kT I (p) − �FM. (16)

The overall work performed is

Wtot = Wcont + Wsep

= kT I (p) + kT

2

(
ln

1/2

p
+ log

1/2

1 − p

)
. (17)

Obviously, the work performed on M is greater than the work
that can be extracted from S using the information provided
by the measurement because

D(p) = 1

2

(
ln

1/2

p
+ ln

1/2

1 − p

)
� 0 (18)

with equality if and only if p = 1/2, i.e., when the measure-
ment does not provide any information.

In the second case, work is only performed during the
contact since M is left unchanged after the measurement.
During the contact, with probability 1/2 M does not change
and no work is performed on it and with probability 1/2, the
energies of the levels of M are exchanged. The average work
performed is

W ′ = kT

2

(
pln

p

1 − p
+ (1 − p)ln

1 − p

p

)
. (19)

One can show that W ′ = Wtot, meaning that it makes no
difference whether one uses a definite standard state or not.
In the next section, we will generalize this result to the general
case of a measurement with an arbitrary number of outcomes
with an arbitrary distribution.

As can be seen in Fig. 1, D(p) � I (p). Hence the
contribution of the contact step to the dissipated work is greater
than the contribution of separation step. The dissipated work

0

1

2

3

0.5 0.6 0.7 0.8 0.9 1
p

D(p)
I(p)

FIG. 1. The two different contributions D(p) and I (p) to the work
performed on M during the measurement process as a function of the
probability p of a successful measurement. D(p) is the contribution
due to the contact and I (p) is the contribution due to the separation.

in our model has a lower bound, which is larger than twice
the Landauer bound and can be by orders of magnitude larger
when we want to suppress measurement errors (i.e., p → 1).

IV. GENERALIZATION

The situation is similar in the general case. Consider the
setup depicted in Sec. II: S is a thermodynamic system in
contact with a heat bath at temperature T and p(x) is its
canonical distribution. The measurement device is also a
thermodynamic system in contact with the heat bath and the
energies of its micro-states have some standard value E0

M(y)
or are given by Eq. (9), i.e., they are such that p(y|x) is the
canonical distribution for M for a given value of x. Since the
states ofM correspond to the possible measurement outcomes,
it would make no sense that y can take more values than x.
However, formally, the following derivation is still valid in that
case.

As in the previous section, we consider two different
protocols for the measurement. Either the energy levels of
M are driven from the standard values E0

M(y) to the values
corresponding to the measurement, EM(y|x) and then back to
the standard values. Or the energies of M initially have the
values given by the previous measurement, i.e., EM(y|x ′) with
probability p(x ′), x ′ being the state of S during the previous
cycle, and are driven to the values corresponding to the actual
measurement. We will see that for a suitable choice for E0

M(y),
the two protocols give the same value for the work performed
on M, as in the case of a two states system.

We set the values of E0
M(y) so that the marginal distribution

of the measurement outcome y is an equilibrium one:

E0
M(y) = −kT lnp(y) + F 0

M, (20)

where p(y) = ∑
x p(y|x)p(x) and F 0

M is the free energy ofM
in the standard state. If S is in state x when the measurement
is carried on, then the average work performed on M during
the contact is given by

Wcont(x) = kT
∑

y

p(y)ln
p(y)

p(y|x)
+ �FM(x), (21)

where �FM(x) = F 0
M − FM(x) is the change in free energy

of M during the process. Hence, on average over x, the work
performed is

Wcont =
∑

x

p(x)Wcont(x). (22)
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The work performed during the separation, conditioned on x,
is given by

Wsep(x) = kT
∑

y

p(y|x)ln
p(y|x)

p(y)
− �FM(x). (23)

As in the previous section, the average over x of this quantity
is linked to the mutual information between x and y:

Wsep =
∑

x

p(x)Wsep(x) = kT I − �FM, (24)

where �FM = ∑
x p(x)�FM(x) is the average change in free

energy of M and I is the mutual information given by Eq. (6).
The total work performed is the sum of the two contributions.
It can be rewritten in following form:

Wtot = kT
∑
x,y

[p(x,y) − p(x)p(y)] lnp(y|x). (25)

Let us now consider the second protocol. The measurement
device is left untouched after the previous measurement and
is thus in equilibrium with its energies set to EM(y|x ′) for a
certain x ′ appearing with probability p(x ′). Here, x ′ is the state
occupied by the system S during the previous measurement
cycle. After the contact, the energies of M are set to EM(y|x),
where x is the current state of S, appearing with probability
p(x) (independently of x ′). Given x ′ and x, the average work
performed on M is

W ′(x ′,x) = kT
∑

y

p(y|x ′)ln
p(y|x ′)
p(y|x)

+ FM(x) − FM(x ′).

(26)

On average over x ′ and x, we obtain the following expression:

W ′ =
∑
x ′,x

p(x ′)p(x)W (x ′,x)

= kT
∑
x ′,x,y

p(x ′)p(x)p(y|x ′)ln
p(y|x ′)
p(y|x)

. (27)

Using the fact that p(y) = ∑
x ′ p(y|x ′)p(x ′), one can bring the

above expression to the same form as Eq. (25):

W ′ = kT
∑
x,y

[p(x,y) − p(x)p(y)] lnp(y|x) = Wtot. (28)

This extends the result obtained in the previous section for a
two states system. It means that switching M from a random
state to another, or switching it from the standard state to a
random state and then back to the standard state, involves the
same quantity of work on average.

V. RELATION TO LANDAUER’S PRINCIPLE

In its original formulation, Landauer’s principle states
that the erasure of one bit of information is necessarily
accompanied by the dissipation of at least kT ln2 of work [12].
Bennett used Landauer’s principle to propose a solution to
Szilard’s paradox [13]. Let us briefly sketch the argument
behind Landauer’s principle. Consider a one particle gas in
a closed container in contact with a heat bath. The volume is
divided in two by a removable partition. If the particle is in
the left half of the container, it encodes one value, say “0” and

if it is in the right half of the container, it encodes the other
value, “1” in this case. Erasing the information contained in
the memory means bringing the memory to a standard state,
say the state “0,” without knowing the value that is encoded.
Such a protocol needs to bring both states “0” and “1” to “0.”
An obvious way to proceed is to remove the partition and then
compress the gas in the left half of the container. Such a process
dissipates at least kT ln2. The dissipation occurs during the free
expansion of the gas right after the removal of the partition:
the volume of the gas is doubled, i.e., its entropy is increased
by k ln 2 and no heat is exchanged with the heat bath meaning
that the entropy of the latter stays constant during this process.
Compressing the gas in the left half of the container needs
kT ln 2 of work which is then transferred to the heat bath in
form of heat, thereby increasing its entropy by k ln 2. This
result was extended to general memories; see, e.g., [15].

If the bit was used to store the result of the measurement of
the state of a two levels system, as in Sec. III, then the work
needed to erase the bit surely compensates the maximum work
that can be extracted with help of the measurement because
I (p) � ln 2 with equality if and only if p = 1 (or p = 0), i.e.,
when there are no measurement errors. In [13], Bennett argues
that the measurement can be performed reversibly. By this, he
means that as long as we know in which state the memory
is (say in the state encoding “0,” the standard state), we can
reversibly drive it to “0” or to “1” according to the result
of the measurement. We will call this process “recording of
the information” rather than “measurement.” However, this
argument implies that the system S does not evolve during
the recording, so that the information is still useful when
the process of recording is finished. This is not the case in
general. Consider for instance the (imperfect) measurement
of the position of a Brownian particle as presented in [3]:
once one has measured the position of the particle, one should
immediately perform a process depending on the measured
position in order to convert all of the information into heat. In
fact, the particle does not stop moving after the measurement.
So if one takes an infinite time to reversibly record the
information before using it, then once it is recorded it will
bring nothing anymore because the system will have relaxed
back to equilibrium.

In our framework, the information about the result of
the measurement is stored in a way similar to the situation
considered in Landauer’s principle: the measurement device
is in a probabilistic superposition of macroscopic states,
one per value of x and appearing with probability p(x).
However, there are two important differences. We do not only
consider dissipation during the erasure step but also during
the measurement itself. As argued above, reversible recording
of the information implies that the fluctuation about which
the information is recorded is “frozen.” If instead the system
is still in contact with the heat bath and continues to evolve,
then the driving of the measurement device needs to be fast.
However, the main reason for the instantaneous changes in the
energies of M is that it should be directly driven by S: either
the energies have a value that directly depends on x or not. But
we consider no in between. In our opinion, this is what makes
the difference between “measurement” and “recording.” We
consider “recording” to be the following process: we know the
outcome of some measurement and we want to record it to
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some memory device. This can be done infinitely slowly and
hence with an arbitrarily small dissipation. On the other hand,
a “measurement” device is directly driven by the information
which is measured, i.e., we do not have a direct control on it.
What then makes the information utilizable is the fact that M
relaxes instantly. IfM is not fully relaxed, then the information
obtained is less, but the work performed is the same.

Finally, let us remark that Landauer’s erasure step is
analogous to our “separation” step. During this step, the
measurement device is brought from a mixture of macrostates
to the standard state similarly to Landauer’s bit, which is
brought from a statistical mixture of “0” and “1” to the standard
state “0.” And in fact, the work dissipated during this process
is kT I , i.e., it exactly compensates the work extracted from
the heat bath using the information I . One big difference,
however, is the presence of measurement errors. As already
mentioned, in the situation considered here, unlike in the
classical situation usually involved in Landauer’s principle, the
different p(y|x) may overlap for different values of x. Sagawa
and Ueda extended Landauer’s principle to the situation
with measurement errors [15]. But in their framework, the
measurement errors consist of an erroneous recording of the
information and the different macrostates of the memory
encoding the different measurement outcome are still perfectly
distinguishable.

VI. CONCLUSION

We have presented a very simple model for a measurement
device and a protocol for the measurement of thermal
fluctuations. The basic considerations motivating this model
are the following: the measurement device should be a
physical system and should obey the laws of thermodynamics
and its state should depend on the value which is measured.
In particular, the measurement errors should at least include
thermal fluctuations. In that respect, the model presented here
is minimal: the measurement errors are only due to thermal
fluctuations. We showed that under these assumptions, the
measurement process itself already leads to dissipation of
work in addition to the dissipation due to Landauer’s erasure
principle.

We also showed that the work performed on the measure-
ment device is the same, whether the measurement device
is initialized in and eventually brought back to a standard
state, or is simply left as it is at the end of the measurement
process.
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