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Negative thermal conductivity of chains of rotors with mechanical forcing
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We consider chains of rotors subjected to both thermal and mechanical forcings in a nonequilibrium steady
state. Unusual nonlinear profiles of temperature and velocities are observed in the system. In particular, the
temperature is maximal in the center, which is an indication of the nonlocal behavior of the system. Despite this
uncommon behavior, local equilibrium holds for long enough chains. Our numerical results also show that when
the mechanical forcing is strong enough, the energy current can be increased by an inverse temperature gradient.
This counterintuitive result again reveals the complexity of nonequilibrium states.
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I. INTRODUCTION

The thermodynamic properties of nonequilibrium station-
ary states are poorly understood. They are usually charac-
terized by currents of conserved quantities, such as energy,
flowing through the system. When stationary states are close
to equilibrium states, linear response theory is effective and
explains common macroscopic phenomena such as Fourier’s
law: In a system in contact with two thermostats at different
temperatures, the heat flux is proportional to the temperature
gradient (as long as the relative difference between the two
temperatures is small). In contrast, there is no general theory
to describe systems in a stationary state far from equilibrium
and the corresponding macroscopic properties seem to depend
on the specific details of the dynamics.

In this paper we investigate numerically the energy transport
properties of a simple one-dimensional system, a chain of
N rotors, in a stationary state far from equilibrium. Many
studies have considered one-dimensional chains of oscillators
subjected to a temperature gradient [1,2]. Here we consider
both thermal and mechanical forcings, obtained as follows:
The leftmost rotor is attached to a wall and put in contact with
a Langevin thermostat at temperature TL, while the rightmost
rotor is subjected to a constant external force F and put in
contact with another Langevin thermostat at temperature TR .

What we observe in our numerical experiments is that the
combined effect of these two generalized forces can reduce
the current instead of increasing it. This counterintuitive effect
is observed for large mechanical forcings F , when TR is
increased while TL remains fixed (see Fig. 8 below). The
mechanical forcing induces a negative current (from right to
left). When TR is increased while TL remains fixed, one would
naively expect that the (negative) thermal forcing is also larger
and thus that the negative current should be larger (in absolute
value). In contrast to this expectation, we observe that, in this
case, the current is reduced. This strange effect does not appear
if instead TL is lowered and TR is fixed (see Fig. 6 below), in
which case the current indeed becomes larger in absolute value.

We are unable to provide explanations to the above-
described phenomena. We believe that such behaviors show
the complexity of nonequilibrium stationary states far from
equilibrium and also suggest that Fourier’s law is valid only
close to equilibrium. A naive extension of the definition of

thermal conductivity to genuinely nonequilibrium settings can
give negative values to this quantity.

In Sec. II we describe the system we work with and the
numerical integrator we have used. We then turn to studying
various properties of the system. In particular, we numerically
check that local equilibrium holds for systems large enough,
despite the fact that, globally, the system is out of equilibrium
(see Sec. III B). In Sec. III C we study how the current depends
on the magnitude of the mechanical force and on the tempera-
tures that are imposed on both ends of the chain. All these nu-
merical studies are performed for chains of increasing lengths.

II. DESCRIPTION OF THE SYSTEM

The configuration of the system is described by the
positions (angles) q = (q1, . . . ,qN ) of the rotors, which belong
to the one-dimensional torus 2πT , as well as their associated
(angular) momenta p = (p1, . . . ,pN ). The masses of the
particles are set to 1 for simplicity. The Hamiltonian of the
system is

H (q,p) =
N∑

i=1

[
p2

i

2
+ (1 − cos ri)

]
, (1)

where we have set ri = qi − qi−1 for i � 2 and r1 = q1.
We consider a system with free boundary conditions on the

right end, whose evolution equations read

dqi = pidt,

dpi = [sin(qi+1 − qi) − sin(qi − qi−1)]dt, i �= 1,N

dp1 = [sin(q2 − q1) − sin(q1)]dt − γp1 dt +
√

2γ TLdW 1
t ,

dpN = [F − sin(qN − qN−1)]dt − γpN dt +
√

2γ TRdWN
t ,

(2)

where W 1
t and WN

t are independent standard Wiener processes
and γ > 0 determines the strength of the coupling to the
thermostat. In the following, we work with γ = 1. Note that
the external constant force F is nongradient since it does not
derive from a periodic potential.

We checked the robustness of the results we describe below
with respect to the choice of boundary conditions. We also
considered fixed boundary conditions on the right end [this
amounts to adding an extra force − sin(qN ) to the last atom].
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In particular, we checked that our counterintuitive results on
the behavior of the thermal current as a function of the strength
of the nongradient force are still observed with these boundary
conditions.

A. Equilibrium and nonequilibrium states

If F = 0 and TL = TR = T , the system is in equilibrium
and the unique stationary measure is given by the Gibbs
measure at temperature T associated with the Hamiltonian in
Eq. (1). The properties of the nonequilibrium stationary state
for TL �= TR with F = 0 have been studied numerically by
various authors [3–6]. The thermal conductivity of the system,
defined as the stationary energy current multiplied by the size
of the system and divided by the temperature difference [7],
has a finite limit for large system sizes, even though the rotor
chain is a momentum-conserving one-dimensional system
[8,9]. In addition, as the average temperature T increases
above the value 0.5, the thermal conductivity decreases
dramatically [3].

If F �= 0, the system is out of equilibrium even if TL = TR

(recall indeed that F is nongradient). In the stationary state the
force induces an energy current toward the left. The stationary
state cannot be computed explicitly and if F is large, linear
response theory cannot be used to obtain information about
the conductivity of the system.

If TL < TR , there are two mechanisms that separately
generate an energy current toward the left of the system:
the mechanical force F and the thermal force given by
the temperature gradient. It seems difficult, however, to
separate the contributions of each mechanism. The numerical
experiments reported below show that these two mechanisms
are not necessarily additive and that one mechanism may
reduce the effect of the other one, leading to counterintuitive
results.

B. Numerical integration

The numerical integration of Eq. (2) is performed using a
splitting strategy where the Hamiltonian part of the evolution
is integrated with the Verlet scheme [10]. The fluctuation-
dissipation parts, with the additional nongradient force, are
Ornstein-Uhlenbeck processes and can thus be integrated
analytically. We thus use the following algorithm:

p̃n
1 = αpn

1 + σLGn
1,

p̃n
N = F + α

(
pn

N − F
) + σRGn

N,

p̃n
i = pn

i , i �= 1,N

p
n+1/2
i = p̃n

i − �t

2

∂H

∂qi

(qn,p̃n),

qn+1
i = qn

i + �t p
n+1/2
i ,

pn+1
i = p

n+1/2
i − �t

2

∂H

∂qi

(qn+1,pn+1/2),

where α = exp(−γ�t), σL =
√

(1 − α2)TL, σR =√
(1 − α2)TR , and H is given by Eq. (1). In turn, Gn

1
and Gn

N are independent normal Gaussian random variables.
Recall also that the friction parameter γ is set to 1. The three
first lines of the above algorithm consist in exactly integrating
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FIG. 1. Kinetic temperature profiles for chains of length N =
1024, with F = 1.6 and different temperature gradients.

the Ornstein-Uhlenbeck processes on p1 and pN , whereas the
three last lines are based on the standard Verlet algorithm.

The time step �t = 0.05 ensures that the energy conser-
vation in the Verlet scheme is accurate enough. While there
might be some time-step bias in the value of the currents, the
qualitative conclusions are robust with respect to the choice of
the time step.

III. PROPERTIES OF THE NONEQUILIBRIUM SYSTEM

This section is organized as follows. First we discuss the
existence of a stationary measure for the dynamics in Eq. (2).
Under the assumption that such a stationary measure exists,
we establish several relations that are consistent with physical
intuition. We then point out that this system shows some very
surprising features. For instance, the temperature profile is
nonmonotonic and a maximum is observed in the center of
the system, while the velocity profiles are very nonlinear.
Despite these nonlocal features, we show that local equilibrium
holds. We finally turn to investigating the dependence of the
stationary energy current on F , TL, and TR .
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FIG. 2. Average momenta for chains of length N = 1024, with
F = 1.6.
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FIG. 3. Rescaled profiles for systems of increasing size N = 2k .
The variable x is the site index i divided by N . The value of the
nongradient force is F = 1.6 and TL = TR = 0.2. The top graph
shows the momenta and the bottom shows the kinetic (solid lines)
and potential (dashed lines) temperatures.

A. Stationary measure

We believe that there exists a unique, smooth, stationary
measure for the dynamics in Eq. (2). However, as far as we
know, there is no rigorous result in this direction for rotor
chains, even in the case F = 0. Indeed, the standard techniques
(see, for instance, Refs. [11,12]) used to prove the existence
and uniqueness of an invariant measure for chains of oscillators
under thermal forcing do not apply here.

A possible pathology for rotor chains is that the (internal)
energy concentrates locally on one or several rotors, which
rotate faster and faster. Since the interaction forces are
bounded, it may not be possible to prevent this fast rotation.
In practice, we have not observed such catastrophes in the
parameter regime we considered, but the kinetic temperature
profiles presented in Fig. 1 (obtained from the variance of
the momenta, with the previously mentioned caveat about the
interpretation of this quantity) are quite unexpected and show
that the internal energy tends to be larger in the middle of
the chain. This picture also allows us to understand what
happens when the imposed temperatures at the right and
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FIG. 4. The top graph shows the empirical distribution of mo-
menta at the site imax (where the temperature is maximal) and a
comparison with the local Gibbs equilibrium with the same average
and variance. Note that the two densities are almost indistinguishable.
The bottom graph shows the empirical distribution of the distances
at bond imax and a comparison with the local Gibbs equilibrium
with the same average energy (again, the two densities are almost
indistinguishable). Both plots correspond to a chain of length N =
1024, with F = 1.6 and TL = TR = 0.2.

left ends change: The maximal temperature in the chain
is almost unchanged, but the position of the maximum is
displaced. This shows that the linear response correction to
the stationary measure is necessarily nonlocal. Such nonlocal
effects were already observed in nonequilibrium exclusion
processes [13,14].
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Interesting relations can nonetheless be obtained under the
assumption that the stationary state exists. We denote by 〈·〉
the expectation with respect to the stationary measure. First,
a constant profile of force settles down in the bulk. Taking
expectations in Eq. (2) indeed gives

〈sin ri+1〉 = 〈sin ri〉, i �= 1,N

〈sin r2〉 = 〈sin r1〉 + γ 〈p1〉,
〈sin rN 〉 = F − γ 〈pN 〉.

This leads to the following profile: Fi := 〈sin ri〉 = F −
γ 〈pN 〉 for all i � 2, while F1 := 〈sin r1〉 = F − γ (〈pN 〉 +
〈p1〉).

The balance between the average work done by the force
and the energy dissipated by the thermostats is given by

0 = F 〈pN 〉 + γ
(
TL − 〈

p2
1

〉) + γ
(
TR − 〈

p2
N

〉)
, (3)

as can be seen by noting that the average variation of the total
energy H is zero. Moreover, the entropy production inequality
(obtained by computing the variations of the relative entropy
with respect to the invariant measure; see, e.g., Ref. [15]) gives

T −1
L

(
TL − 〈

p2
1

〉) + T −1
R

(
TR − 〈

p2
N

〉)
� 0.

In the case TL = TR = T , this relation, combined with Eq. (3),
yields F 〈pN 〉 � 0. Therefore, the stationary momentum on the
right end has the same sign as the driving force, as expected.

Figure 2 shows that the momentum profile is not linear
and that its derivative is maximal where, according to Fig. 1,
temperature is maximal. We also observe in Fig. 3 (top) that the
profile seems to become steeper in the thermodynamic limit.

B. Local equilibrium and thermodynamic limit

A very interesting question is whether nonequilibrium
systems are locally close to equilibrium. This issue was
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FIG. 6. Comparison of the currents with fixed temperature on the
right end and increasing temperatures on the left end. Shown from
top to bottom are decreasing system sizes N = 2048, 512, 256, and
128 (the ordering is the same for all situations considered; for the
longest systems we have considered forces 0 � F � 1.6 and for the
shortest ones we have considered the range 0 � F � 2.4).

considered in Ref. [16] for systems subjected to thermal
forcings only. We check the local equilibrium assumption in
three steps.

(i) We study the agreement between the local kinetic
temperature (defined as the variance of the velocities) and the
local potential temperature. The latter is obtained as follows.
First, we numerically precompute the canonical average of the
potential energy V (r) = 1 − cos r of one bond as a function
of the temperature:

g(T ) =

∫ 2π

0
V (r) exp(−V (r)/T ) dr

∫ 2π

0
exp(−V (r)/T ) dr

The local potential temperature at bond i is then defined as
the value Ti such that g(Ti) is equal to the time average of the
potential energy of the bond ri along the trajectory defined by
Eq. (2). The results presented in Fig. 3 (bottom) show that the
two local temperatures are quite different for small systems,
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FIG. 7. Comparison of the currents with fixed temperature dif-
ference. Shown from top to bottom are decreasing system sizes
N = 2048, 512, 256, and 128 (the ordering is the same for all
situations considered).

but are identical for larger ones. In addition, as the length of
the system increases, the profiles become more symmetric.

(ii) We check that the individual distributions of p and
r are in accordance with a local Gibbs equilibrium. To this
end, we build the histograms of the momenta and distances at
the site imax where the local temperature is maximal (since
this is the location where the disagreement between the local
kinetic and potential temperatures is the strongest). The results
presented in Fig. 4 show that the empirical distributions of p

and r at the site imax are in excellent agreement with the Gibbs
distributions with the same parameters (average velocity pi

and temperature Ti), namely,

Z−1
kin exp[−(p − pi)

2/2Ti]dp

and

Z−1
pot exp[−V (r)/Ti]dr,

except for the smallest systems (say, N � 512).
(iii) We check that momenta and distances are independent.

To this end, we compare the joint law ψ = ψ(rimax,pimax )
of (rimax,pimax ) and the product law obtained from the tensor
product of the individual distributions of these two variables
[denoted, respectively, by ψ̄r (rimax ) and ψ̄p(pimax )]. More

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

 0

 0.01

 0.02

 0  0.5  1  1.5  2  2.5

cu
rr

en
t

force

 0.25

 0.15
 0.2

TL TR

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

 0

 0.01

 0.02

 0  0.5  1  1.5  2  2.5

cu
rr

en
t

force

 0.2
 0.15
 0.2

TL TR

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

 0

 0.01

 0.02

 0  0.5  1  1.5  2  2.5

cu
rr

en
t

force

 0.15  0.15

 0.25

TL TR

FIG. 8. Comparison of the currents for a fixed temperature at
the left end and various temperature differences. Shown from top to
bottom are decreasing system sizes N = 2048, 512, 256, and 128
(the ordering is the same for all situations considered).

precisely, for a given number n of sample points (obtained
by subsampling a long trajectory every 104 steps), we check
that the distance

δn =
∫

[0,2π]×R

∣∣ψn(r,p) − ψ̄n
r (r)ψ̄n

p(p)
∣∣ dr dp (4)
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between these two distributions indeed decreases as the inverse
square root of the number of configurations used to build
the histograms. Again, this is true for systems large enough.
Figure 5 shows that δn ∼ n−1/2.

C. Behavior of the energy current

We consider the following situations: (i) same tempera-
tures on the left and on the right: (TL,TR) = (0.20,0.20) or
(0.15,0.15); (ii) hot left end and cold right end: (TL,TR) =
(0.25,0.15), (0.20,0.15), or (0.25,0.20); and (iii) cold left end
and hot right end: (TL,TR) = (0.15,0.25).

Currents are computed as a function of the magnitude
F of the nongradient forcing term for systems of different
lengths: N = 128, 256, 512, 1024, and 2048. Recall that local
equilibrium holds at the leading order, so that the energy
current is induced by the first-order corrections in 1/N .

We first compare the currents when the temperature on the
right end is fixed (see Fig. 6). As expected, the negative current
induced by the mechanical forcing is reduced by the opposite,
positive thermal current.

We next compare the currents at fixed temperature differ-
ence TR − TL for different average temperatures (see Fig. 7).
In this case, we observe that for strong mechanical forcings, the
current is enhanced when the average temperature decreases,
while the opposite happens when the mechanical forcing is
small.

We finally turn to the most interesting situation. The
temperature on the left end is fixed and the temperature on
the right end varies (see Fig. 8). In this case, counterintuitive
results are observed for large mechanical forcings: The total
current is enhanced as TR decreases even though, in such a
situation, the thermal gradient is in the opposite direction.
The mechanical forcing induces a negative current, while
the thermal gradient induces (in the absence of any force) a
positive current. The combined effect of both mechanical and
thermal forcings induces a negative current larger (in absolute
value) than the one in the absence of any thermal gradient.

IV. DISCUSSION OF THE RESULTS

In conclusion, for large mechanical forcings F , we observe
the following.

(a) When TR is fixed, the current varies qualitatively as
when there is no mechanical forcing: The absolute value of
the current increases when TL decreases, which means that the
current induced by the thermal forcing and the current induced
by the mechanical forcing are somewhat additive. In this case,
a positive thermal conductivity is observed (for a fixed value
F of the mechanical forcing, considering only the response in
the limit when TR − TL → 0).

(b) When TL is fixed, the current has a surprising behavior:
Its absolute value increases when TR decreases. This means
that the thermal forcing, which is naively expected to reduce
the current induced by the mechanical forcing, actually
enhances it. In this case, a negative thermal conductivity is
observed (again, for a fixed value F of the mechanical forcing).

A possible interpretation is based on the fact that, for such
a system, the thermal conductivity is a decreasing function of
the temperature when F is large (see Fig. 7). It is possible
that, by lowering TR and thus increasing the conductivity at
the right end, one makes the system more sensitive to the
mechanical forcing. The increased mechanical current may
hence counterbalance the increased opposite thermal current.

An interesting question that we did not discuss here is
the scaling of the energy current as a function of the system
size when F �= 0. Some preliminary results suggest that the
thermal conductivity is finite, as when F = 0, but this question
definitely calls for additional studies.
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