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The evaporation-condensation transition of the Potts model on a square lattice is numerically investigated
by the Wang-Landau sampling method. An intrinsically system-size-dependent discrete transition between
supersaturation state and phase-separation state is observed in the microcanonical ensemble by changing
constrained internal energy. We calculate the microcanonical temperature, as a derivative of microcanonical
entropy, and condensation ratio, and perform a finite-size scaling of them to indicate the clear tendency of
numerical data to converge to the infinite-size limit predicted by phenomenological theory for the isotherm lattice
gas model.
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I. INTRODUCTION

A first-order transition as a state transformation of
substances is observed in our everyday lives, such as
evaporation-condensation and melting-freezing. The thermo-
dynamic mechanism of such transition is very clear; a
phase transition occurs when the state of the lowest free
energy alternates from one thermodynamic state to another
by changing a certain environmental parameter. But dynamics
of the transition is rather complicated, and our knowledge
cannot be said to be sufficient. Since the initial and final
states are completely different from a second-order transition,
nucleation and large-scale domain growth, i.e., invasion of
the metastable state by the most stable state, is observed in
the vicinity of the transition point, which includes various
mechanisms depending on the spatiotemporal scale [1–3]. This
is essentially nonequilibrium phenomena, and the dynamics is
difficult to understand by relating it to the well-understood
equilibrium state near the transition point. There is a droplet
formation phenomena, however, that can be discussed in an
equilibrium framework as mentioned in the following. It can
be a good starting point to understand first-order transition
dynamics.

In regard to first-order transitions, we usually imagine
discontinuous transformation with hysteresis controlled by an
intensive variable such as temperature, pressure, and magnetic
field. But once we constrain one conjugate extensive variable,
such as internal energy, particle density, and magnetization,
and take it as a control variable, a coexisting phase is inserted
in the phase diagram between two homogeneous phases, and
the transitions becomes continuous; the volume fraction of one
phase continuously changes from zero to unity between the two
edges of the coexisting phase. It is pointed out, however, that
a droplet, which is a condensed domain of the minority state
in phase separation, is not stable unless its volume is larger
than a certain threshold, and therefore there is a discontinuous
droplet condensation transition [4,5]. This is basically due
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to the fact that the surface free energy of the droplet is not
negligible in a finite-size system. Therefore the threshold
volume of a d-dimensional droplet depends on the system
size, proportional to Ld2/(d+1), where L is a linear dimension
of the system [6]. Although this threshold can be neglected
in comparison with the whole system volume Ld in an
infinite-size system, it actually diverges with L. Consequently,
the infinite-size limit of the droplet condensation transition is
well defined if we observe the phenomena with the proper size
scale. It should be noted that equilibrium coexisting states
always contain only one large droplet, in contrast with a
nonequilibrium transition where multiple droplets appear. The
supersaturation state, where condensation is avoided due to
small volume of minority state, is related to the metastable
state under a fixed intensive parameter condition.

Biskup et al. [4] and Binder [5] made quantitative analysis
of the equilibrium droplet condensation transition, which is
supported by a number of numerical studies of Lenard-Jones
particles [7–9] and lattice gas [10–13], where particle-density-
driven transitions at given temperature are investigated. In
this paper we consider a simpler situation, an internal-energy-
driven transition in a microcanonical ensemble [14,15], where
density (magnetization) is not explicitly taken account of. By
large-scale numerical simulations of the two-dimensional Potts
model with the Wang-Landau sampling, we try to determine
the large-size limit of the droplet condensation transition,
which has been rather difficult in small-size systems [10].

II. MODEL

We investigate the ferromagnetic q-state Potts model [16]
on a L × L square lattice with a periodic boundary condition.
The interaction energy with nearest neighbor (NN) couplings
is written as

E =
∑

〈i,j〉∈NN

(1 − δσiσj
), (1)

where δαβ means Kronecker’s delta and the spin variable σi

takes an integer value, 1,2, . . . ,q. This model in a canonical
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FIG. 1. Typical spin configuration of the system with q =
8 (top) and q = 21 (bottom) for L = 256. The different spin
states are denoted by different gray scales. The energy is
E/N = 0.3750,0.4500,0.5250, and 0.7125 (top) and E/N =
0.1500,0.2250,0.2625, and 0.6750 (bottom) from left to right. The
black region is occupied by spins of the most major state, and the
dappled gray region is an assemblage of tiny domains with various
states.

ensemble exhibits a paramagnetic-ferromagnetic transition at
β = βc ≡ ln(1 + 1/

√
q), where β = 1/kBT is the inverse

temperature. The transition is of second order for q � 4 and
of first order for q > 4. When q is not sufficiently larger
than 4, the correlation length of fluctuation is considerably
large around the transition point, and critical-like fluctuation
is observed to some extent. It is better to choose large q to
investigate the pure nature of a first-order transition. But the
amount of computation for equilibration becomes larger with
increasing q. Typical spin configurations are shown in Fig. 1.

III. METHOD

We perform the Wang-Landau sampling simulations
[17,18], which yield the density (number) of states g(E),
as a result of a learning process to realize a flat energy
histogram. The density of states enables us to calculate the
Helmholtz’s free energy in canonical ensemble as F (β) =
β−1 ln[

∑
E g(E)e−βE], and its derivatives, i.e., mean energy

and specific heat. The energy with maximum or minimum real-
ization probability is given as a solution of ∂[g(E)e−βE]/∂E =
0, i.e., ∂ ln g(E)/∂E = β.

On the other hand, in a microcanonical ensemble for
given internal energy, a fundamental thermodynamic function
is microcanonical entropy S(E) = kB ln g(E), and (inverse)
microcanonical temperature is a quantity to be observed, which
is defined as a response to an energy perturbation as

β(E) = 1

kB

∂S(E)

∂E
= ∂

∂E
ln g(E). (2)

This is equivalent to the extremal condition for the free energy
in a canonical ensemble. The E dependence of β in a micro-
canonical ensemble is not exactly related to the β dependence
of expectation value of E in a canonical ensemble except in the
thermodynamic limit but is exactly related to the β dependence
of the extremal value of E even in the finite-size system.

We perform parallel computation to treat a large-size system
as done in Ref. [18]. The energy region is divided into a number
of parts with constant width, and each part is associated to a
different thread. The spin flip trials that make the energy of the

FIG. 2. Schematic diagram of dividing the energy region into
eight threads and spin configuration exchange.

system go out of the given range is always rejected. Since the
time needed to diffuse over the energy range �E by a random
walk is proportional to �E2, the time needed to obtain the
flat histogram is inversely proportional to the square of the
number of threads. Although this method drastically reduces
the total Monte Carlo steps (MCSs), we have to care about
the possibility that a flat histogram is established in MCSs
shorter than the relaxation time of the system. This occurs
when the energy region is divided into too small parts. Another
problem of the division of the energy region is that it possibly
causes the segmentation of the phase space; i.e., there are spin
configurations that cannot be visited depending on the initial
condition.

In order to enhance the relaxation and guarantees ergodicity,
we make an overlapping energy region for neighboring threads
as illustrated in Fig. 2, where exchange of spin configurations
is allowed, satisfying a detailed balance condition:

W ({X,Y } → {Y,X})
W ({Y,X} → {X,Y }) = gi(E(X))gj (E(Y ))

gi(E(Y ))gj (E(X))
,

where X and Y are indices of microscopic states, in the
same spirit with the replica exchange method [19]. Here
gi is a density of states calculated by the ith thread,
and W ({X,Y } → {Y,X}) means the transition probability
from a compound state: X for the ith thread and Y for
the j th thread, to its exchanged state. Practically the ex-
change is accepted with a probability, W ({X,Y } → {Y,X}) =
min{1,gi[E(Y )]gj (E(X))/gi[E(X)]gj [E(Y )]}, similarly with
the Metropolis method.

In order to check the efficiency of the replica exchange
method, the sample-to-sample deviations of temperature, δβ ≡√

β2−|β|2, where . . . means average over samples, are shown
in Fig. 3. The conditions of simulations are described in
its caption. The peaks are observed in the system without
exchange. The amplitudes of the peaks become smaller as
the exchange frequency increases. The peaks exist at the
seam points, which are the edges of the divided region.
Except around the seam points, the reduction of fluctuations is
moderate. This is because the present system does not exhibit
large fluctuation for a microcanonical state. The improvement
by the exchange will be more remarkable for the system with
a more complicated landscape in phase space.

IV. RESULTS

We perform a simulation with q = 8 and 21 for system size
L = 32–1024 by using 4–64 threads. The density of states is
calculated not for all energy regions but for a restricted region
of interest. The numerical data shown below are averaged over
2–8 samples with different realizations of the random number.
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FIG. 3. (Color online) The standard deviation of microcanonical
temperature among samples with different realizations of random
number. The data without exchange and exchanges in every 16 and
4 MCSs per spin are plotted together. The simulation condition is
q = 8, L = 512, 16 samples, and the modification constant is down
to ln g(E) = 2−20. The energy region, 0.36 < E < 0.56, is distributed
to 64 threads, and each thread handles the energy points about
666 × 2. Smoothing is done by averaging for 128 energy points after
calculating deviation. For comparison, the difference between the
transition temperature and the spinodal temperature, a characteristic
scale of our interest, is about 0.001 for this size, as shown in Fig. 4(a).

In the Wang-Landau sampling we decrease the modification
constant for ln g(E) step by step, 1,2−1,2−2, . . . ,2−30 (except
for q = 8 with L = 1024 and q = 21 with L = 512, where
the modification constant is decreased down to 2−25) with
achieving 90% flatness of energy histogram for all threads in
every step. The typical number of total MCSs is 106–107 per
spin in the final step of simulations. The replica exchange is
attempted in every 16 MCSs per spin.

A. Temperature versus internal energy characteristics

Figure 4 shows the inverse microcanonical temperature
β(E) = ln g(E + 1) − ln g(E) for q = 8 and 21 for various
system size. While β(E) should be a monotonically decreasing
function of E to make the free energy a convex function
of E, it is not for the finite-size system. In the region with
positive derivative, i.e., negative specific heat, phase coexisting
is observed as shown in Fig. 1. This state corresponds to
the free-energy maximum in the canonical ensemble. A
dip and a peak exist inside the coexisting region in the
thermodynamic limit, ε−

c < E/N < ε+
c , where ε−

c ∼ 0.403
and ε+

c ∼ 0.888 for q = 8 and ε−
c ∼ 0.171 and ε+

c ∼ 1.392 for
q = 21. We note the bottom (top) position of the dip (peak) as
(E,β) = [E−

spi(L),β−
spi(L)] and [E+

spi(L),β+
spi(L)], respectively.

These points are regarded as the equilibrium spinodal points,
i.e., saddle-node bifurcation points, where the second free-
energy minimum in canonical distribution annihilates together
with the free-energy maximum. With increasing system size,
E±

spi/N approaches ε±
c and β approaches βc for all E with

ε−
c � E/N � ε+

c .
For q = 21, a plateau, where β almost equals βc, is

obviously observed in the middle of coexisting region. In this

(a)

(b)

FIG. 4. (Color online) Inverse temperature as a function of
internal energy for (a) q = 8 and (b) q = 21. Smoothing is performed
by averaging over the range

√
N/4 of E. The horizontal line indicates

β = ln(1 + 1/
√

q). The vertical lines indicate E/N = ε−
c (left) and

ε+
c (right). The arrows indicate the direction that L becomes larger.

plateau region, the two coexisting phases form strips parallel
to the horizontal or longitudinal axis, while the minority phase
forms a droplet in the side regions (Fig. 1). With increasing sys-
tem size, it is observed that the plateau region becomes wider,
and the steplike change of β(E) on the edge becomes sharper
as a consequence of the droplet-strip (slab) transition [10].

With increasing system size, the two spinodal points,
[E±

spi(L),β±
spi(L)], approach (E±

c ,βc) ≡ (Nε±
c ,βc), respec-

tively. The deviation |β±
spi(L) − βc| and |E±

spi(L) − E±
c | de-

creases as a power function of L [20]. To show it clearly,
we perform finite-size scaling in Fig. 5 with expectation in a
formula:

|β(E) − βc| = L−d/(d+1)F

( |E − E±
c |

Ld2/(d+1)

)
, (3)

with a scaling function F (·). The formula for the isotherm
lattice gas model is derived in Ref. [5], where β and E are
replaced with magnetic field and magnetization, respectively.
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(a)

(b)

FIG. 5. (Color online) Finite-size scaling results of the excess
temperature. (a) q = 8 and (b) q = 21. The arrows indicate the
direction that L becomes larger. The thick gray curve is a guide
for the eye. The vertical line in the bottom panel indicates E − E−

c =
1.507L4/3 as well as in Fig. 8.

For q = 21, it is observed that the scaled curve approaches a
large-size limit; |β − βc| linearly increases as (kBβ2

c /C±)
|E − E±

c |, where C± is a specific heat −kBβ2[d2 ln g(E)/
dE2]−1 at E = E±

c in the evaporation phase, and
discontinuously drops when entering the condensation
phase. Note that this scaling does not target the collapse of
data to a universal curve as in standard finite-size scaling
for second-order transitions, but it is intended to show the
conversion to the large-size limit by blowing up the transition
region, which vanishes in macroscopic scale. (Scaling of
finite-size rounding may be a challenging problem.) On the

FIG. 6. (Color online) Probability distribution function of the
energy density of subsystems for q = 21, L = 512. Each curve
corresponds to E/N = 0.12–0.52 (0.02 step).

other hand, discontinuous behavior is rarely observed yet in
the system with q = 8 even for L = 1024. This is because
correlation length is rather large, and the used sample size is
effectively much smaller than that for q = 21.

B. Volume fraction of a droplet

To observe the nature of droplet formation more directly, we
evaluate the ratio of condensation volume to the whole system
volume. To this end, we divide a sample into L square-shaped
subsystems with size

√
L × √

L (
√

L is approximated by the
closest integer if necessary). This resolution is fine enough
to capture the shape of the critical droplet with a size of
O(Ld2/(d+1)). We calculate energy per spin εL for each square,
whose distribution function P (εL) is shown in Fig. 6. Hereafter
we show only the results for q = 21. Bimodal distribution is
observed in the condensed regime, E−

spi(L) < E < E+
spi(L).

The width of peaks becomes narrower as
√

εLL/L ∼ L−1/2,
and the integral of bridge component between the two
peaks corresponding to the perimeter of the droplet becomes
smaller with (2πL × √

L)/N = L−1/2. The positions of the
peaks hardly change with E, but only heights change for
E−

spi(L) < E < E+
spi(L), which means that the change of state

in this regime can be described only by the change of mixing
ratio of the two phases. We determine a subsystem with
energy below (above) εm = (ε+

c + ε−
c )/2 = (1 − 1/

√
q) [16]

belongs to the ferro (para) domain.
The volume fraction of the para phase, P (εL > εm), is

plotted in Fig. 7. In the thermodynamic limit, P (εL > εm)
equals zero for E � E−

c , unity for E � E+
c , and linearly

increases in between as (E − E−
c )/(E+

c − E−
c ). Finite-size

deviation is observed on the edge of the coexisting region
as shown in the insets of Fig. 7. The fraction of condensed
phase for a finite-size system is smaller than that for L = ∞.
The normalized condensation ratio

λ ≡ P (εL > εm)

(E − E−
c )/(E+

c − E−
c )

� 1 (4)
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FIG. 7. (Color online) Internal energy dependence of the volume
fraction of the high-energy domain. The insets are the blowups of the
edges of the coexisting phase, where the arrows indicate the direction
that L becomes larger.

is expected to be a function of a dimensionless variable:

� = a
(E − E−

c )(d+1)/d

Ld
(5)

with a = βc(ε+ − ε−)(d−1)/d

2C−τW

(6)

for L → ∞. Here τW is an interface free energy per volume of
an optimally shaped large Wulff droplet [21]. The derivation
of this formulas is described in Appendix. The behavior
in the thermodynamic limit is exactly known [4] as λ = 0

FIG. 8. (Color online) Finite-size scaling result of the volume
fraction of a condensed droplet. The data for E/N < 0.40 are
used. The solid gray curve indicates theoretical prediction, a|E −
E−

c |3/2/L2 = 1/4
√

λ(1 − λ) for λ > 2/3, where we set a = 0.44.
The vertical line indicates E − E−

c = 1.507L4/3 as well as in Fig. 5.

for � < �c ≡ (1/2)(3/2)3/2 and 1/4
√

λ(1 − λ) = � for � >

�c. While C− is estimated as 5.41, τW is the only unknown
quantity needed to calculate �. By only assuming τW = 0.40
(then a = 0.44), however, our numerical result shows good
agreement with theory as shown in Fig. 8. While λ decreases
to zero with increasing L for � < �c, very little finite-size
dependence is observed, � > �c. The gap of λ at �c also
coincides with the predicted value 2/3.

V. CONCLUSION

We have investigated the condensation-evaporation transi-
tion of the Potts model in microcanonical ensemble. Interesting
property of this transition is that it becomes impossible to
be found in the true thermodynamic limit; the width of the
supersaturation regime disappears, but discontinuity of scaled
quantities becomes clear with increasing system size. The
present numerical results with q = 21 show good agreement
with the theoretical prediction of the system-size dependence
both for temperature [5] and for the condensation ratio [4].
Both of them mean that a droplet with size smaller than
O(Ld2/(d+1)) is unstable.

For a finite-size system in a microcanonical ensemble, we
observe negative (inverse) specific heat in the coexisting region
and over- or under-hang of temperature, which corresponds to
the thermodynamic spinodal point in a canonical ensemble.
The scaling behavior |βspi − βc| ∝ L−d/(d+1) suggests an ex-
istence of a diverging length scale, Rs(β) ∝ |β − βc|−(d+1)/d .
This means that a supersaturation state at given temperature
β becomes unstable at a length scale above Rs . Although this
length is related to the equilibrium spinodal point, it is not
clear whether it also has some meanings in nonequilibrium
dynamics, which may be an interesting open problem.

Last, let us note the difficulty of the simulation of first-order
transitions. We suffered from slow relaxation for large system
size in the present study as well as that discussed in Ref. [10].
It is considered that the Wang-Landau sampling is quite
efficient for first-order transitions with discontinuity O(Ld )
as well as some other extended ensemble methods, such as the
multicanonical method [22], because it provides additional
probability weight on coexisting states to bridge the divide
between two distinct homogeneous states, such as para and
ferro phases. However, there are still discontinuous transitions
in the coexisting phase, that is, a evaporation-condensation
transition with O(Ld2/(d+1)) discontinuity and droplet-slab
transition [10,11]. This behavior is general for first-order
transitions. Since the problem is that the two states are
energetically degenerate in these transitions, one fundamental
solution to this problem may be to employ another argument
that corresponds to the shape of domains for the joint density
of state [18,23]. Although it requires a considerable amount of
computation, massive parallel computation makes it feasible.
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APPENDIX: FINITE-SIZE EFFECT ON DROPLET
CONDENSATION RATIO

Here we derive the condensation rate of a droplet for
a energy-driven phase transition by translating the result
for a magnetization-driven transition [4,13]. We consider a
canonical ensemble at the bistable point β = βc and its energy
distribution function around a peak at E−

c . (The case around
the other peak E+

c is derived in the same way.)
We note the excess energy in fluctuation beyond the

peak as δE = E − E−
c and divide it into two parts, δE =

δEb + δEd , where δEb is due to small bubble excitation
and δEd is due to a large droplet of disordered phase. If
introducing the condensation ratio λ as δEd ≡ λδE, the rest
is given by δEb = (1 − λ)δE. The volume of the droplet,
Vd ≡ λVL, can be smaller than that in the thermodynamic
limit, VL = δE/(ε+

c − ε−
c ), for a finite-size system. By using

these quantities, the energy distribution function P (βc; E) is
proportional to e−βcF , where

F = βc(δEb)2

2LdC− + τWV
(d−1)/d
d (A1)

= τWV
(d−1)/d
L [�(1 − λ)2 + λ(d+1)/d ] (A2)

with � ≡ βc(ε+
c − ε−

c )(d−1)/d

2C−τW

(δE)(d+1)/d

Ld
. (A3)

The first term indicates the fluctuation without phase co-
existence characterized by specific heat C−, and the sec-
ond term indicates the surface free energy of a large
droplet.

The condensation rate λ depends only on the dimensionless
parameter �, which is related to the excess energy. For given
�, free energy F is minimized at

λ = 0 for � � �c ≡ (1/2)(3/2)3/2, (A4)

which means a supersaturation regime, while λ for minimum
F is given by a solution of

1/4
√

λ(1 − λ) = � for � � �c, (A5)

which means a condensation regime. The two states with λ = 0
and λ ≡ λc = 2/3 are equivalently stable at �c.

This discontinuous change at �c is directly observed
as an internal energy-driven transition in microcanonical
ensemble.
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