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Casimir force induced by an imperfect Bose gas
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We present a study of the Casimir effect in an imperfect (mean-field) Bose gas contained between two infinite
parallel plane walls. The derivation of the Casimir force follows from the calculation of the excess grand-canonical
free energy density under periodic, Dirichlet, and Neumann boundary conditions with the use of the steepest
descent method. In the one-phase region, the force decays exponentially fast when distance D between the walls
tends to infinity. When the Bose-Einstein condensation point is approached, the decay length in the exponential
law diverges with critical exponent νIMP = 1, which differs from the perfect gas case where νP = 1/2. In the
two-phase region, the Casimir force is long range and decays following the power law D−3, with the same
amplitude as in the perfect gas.
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I. INTRODUCTION

We present a study of the Casimir effect [1–7] occurring
when an imperfect Bose gas fills a region between two infinite
parallel plane walls separated by distance D. In particular,
we are interested in the properties of the fluctuation-induced
force between the walls as a function of distance D, and
the thermodynamic state of the imperfect Bose gas in the
vicinity of the Bose-Einstein condensation point. Our work
is thus a contribution to the theory of critical Casimir effects
in condensed matter physics.

The case of a perfect Bose gas has been analyzed by
Martin and Zagrebnov [8]. The authors considered the grand-
canonical potential �(T ,L,D,μ) of a perfect Bose gas filling
a box (rectangular parallelepiped) with linear dimensions
L × L × D. The temperature and the chemical potential are
denoted by T and μ, respectively. Periodic, Dirichlet, and
Neumann boundary conditions were considered. The main
result of their study was the determination of the large D

asymptotics of the grand-canonical potential per unit wall area,

ω(T ,D,μ) = lim
L→∞

�(T ,L,D,μ)

L2
. (1)

It turns out that Bose-Einstein condensation induces a qualita-
tive change in the behavior of the excess grand-canonical free
energy ωs(T ,D,μ),

ωs(T ,D,μ) = [ω(T ,D,μ) − Dωb(T ,μ)], (2)

where ωb denotes the potential � per unit volume evaluated
in the thermodynamic limit. The excess grand-canonical free
energy ωs(T ,D,μ) contains contributions due to each single
wall confining the system and the interaction between the
confining walls.

In the one-phase region corresponding to μ < 0, the force

F (T ,D,μ) = −∂ωs(T ,D,μ)

∂D
(3)
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decays exponentially fast for D → ∞, whereas in the presence
of a condensate, when μ = 0, there appears a long-range
Casimir force

F (T ,D,0)

kBT
= �

D3
. (4)

The Casimir force as defined in Eq. (3) is evaluated per unit
area and has the dimension of pressure. The amplitude �

depends on the type of boundary conditions imposed at the
walls and is otherwise universal. For example, in the case of
periodic boundary conditions, the amplitude � is negative
and corresponds to attractive Casimir forces. The analysis
presented in [8] was extended in [9], where the dependence
of the Casimir force on thickness D and temperature was
presented with the help of the universal scaling function of
variable D/ξ , where ξ is the bulk correlation length of density
fluctuations. This extension contains both the Casimir effect at
criticality and its asymptotic behavior off criticality as special
cases.

Our object in the present study is to generalize the above
analysis to the case of an imperfect (mean-field) Bose gas. The
repulsive pair interaction between identical bosons is described
in this model by associating with each pair of particles the same
mean energy (a/V ), where a > 0, and V denotes the volume
occupied by the system. The Hamiltonian of the imperfect
Bose gas [10] composed of N particles,

H = H0 + Hmf , (5)

is the sum of the kinetic energy,

H0 =
∑

k

h̄2k2

2m
n̂k, (6)

and the term representing the mean-field approximation to the
interparticle interaction,

Hmf = a

V

N2

2
. (7)

The symbols {n̂k} denote the particle number operators and
the summation is over one-particle states {k}. We follow here
the generally adopted definition of the imperfect Bose gas
where the exact number of pairs N (N − 1)/2 is replaced in
Hmf by N2/2 (see the corresponding comment in [11]). As
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far as the applicability of the mean-field approximation is
concerned, an important rigorous result is to be noted. It turns
out that the mean-field theory can be equivalently formulated
with the help of a repulsive binary potential subject to the
so-called Kac’s scaling, Vγ (r) = γ 3v(γ r), where v(r) is the
actual binary potential. When the dimensionless parameter
γ approaches zero, the potential Vγ (r) becomes weak and
long range, leading exactly to the mean-field theory based
on the Hamiltonian in Eq. (5), with constant a equal to the
γ -independent space integral of the potential Vγ [12]. This
remarkable connection clarifies the physical content of the
mean-field model studied here.

The thermodynamics of the imperfect Bose gas has been
rigorously studied and has shown that Bose-Einstein conden-
sation persists in the presence of a mean-field interaction [13].
The corresponding critical density nc and critical temperature
Tc are the same as in the perfect gas case. Only the critical
chemical potential is shifted from μ = 0 in the perfect gas
case to a positive value, μc = anc. We can thus expect the
appearance of Casimir forces much as in the case of the
perfect gas. However, the imperfect Bose gas is a qualitatively
different system, which motivates the present study. Indeed,
the presence of the term Hmf makes the system’s Hamiltonian
superstable, which, in turn, implies equivalence between
canonical and grand-canonical ensembles [10,11]. This is
not the case for the perfect gas, where the grand-canonical
description leads to unphysical macroscopic fluctuations in
the overall density in the ground state, whereas the canonical
ensemble predicts physically satisfactory behavior [14,15].
Moreover, the thermodynamics of the imperfect Bose gas is
defined for all values of the chemical potential, whereas the
states of an ideal Bose gas are confined to the region μ � 0.
In the present paper, we thus investigate Casimir forces in
the physically more satisfactory case of interacting mean-field
Bose gas.

In Sec. II, we present a derivation of the bulk grand-
canonical free energy density ωb(T ,μ) using the steepest
descent method. The same method is then applied to determine
the Casimir force and study its scaling properties, which
is presented in Sec. III. Section IV contains concluding
comments.

II. BULK PROPERTIES OF THE IMPERFECT BOSE GAS
VIA THE STEEPEST DESCENT METHOD

We consider the imperfect Bose gas composed of N

identical particles of mass m contained in an L × L × D

rectangular parallelepiped box of volume V = L2D; D is the
distance between two L × L walls.

Owing to the structure of the Hamiltonian (5), the grand-
canonical partition function 	(T ,L,D,μ) can be conveniently
written in the occupation numbers representation,

	(T ,L,D,μ) =
∞∑

N=0

exp(βμN)

×
∑′

{nk} exp

[
−β

(∑
k

nkεk + a

2

N2

V

)]
,

(8)

where
∑′

{nk} denotes summation over all sets {nk} of occupa-
tion numbers of one-particle states {k} under the constraint
N = ∑

k nk. The kinetic energy in state k equals εk =
h̄2|k|2/2m = h̄2k2/2m, and β = 1/kBT .

The partition function can be rewritten as

	(T ,L,D,μ) = exp

(
βV

2a
μ2

)

×
∞∑

N=0

exp

[
− βa

2V

(
N − V μ

a

)2
]

×Z0(T ,L,D,N ), (9)

where Z0(T ,L,D,N ) denotes the canonical partition function
of a perfect Bose gas,

Z0(T ,L,D,N ) =
∑′

{nk} exp

(
−β

∑
k

nkεk

)
. (10)

It is useful to rewrite Eq. (9) by introducing an arbitrary real
parameter α in the following way:

	(T ,L,D,μ) = exp

[
βV

2a
(μ − α)2

]

×
∞∑

N=0

exp

{
− βa

2V

[
N − V

a
(μ − α)

]2
}

× exp(βNα)Z0(T ,L,D,N ), (11)

where the right-hand side (rhs) of Eq. (11) actually does
not depend on α. Such a representation of 	(T ,L,D,μ) has
already been used in the proof of condensation taking place in
the imperfect Bose gas [13].

The identity

exp

(
−γ 2

4δ

)
=

√
δ

π

∫ ∞

−∞
dq exp(−δq2 + iγ q), (12)

valid for arbitrary δ > 0, permits one to establish a relation
between 	(T ,L,D,μ) and the grand partition function of a
perfect gas 	0(T ,L,D,μ),

	0(T ,L,D,μ) =
∞∑

N=0

exp(βμN)Z0(T ,L,D,N ), (13)

evaluated for a complex value of the chemical poten-
tial (α + iq). Indeed, the following sequence of equalities
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holds:

	(T ,L,D,μ) = exp

[
βV

2a
(μ − α)2

] ∞∑
N=0

√
Vβ

2πa

×
∫ ∞

−∞
dq exp

{
−Vβ

2a
q2 + iqβ

[
N − V

a
(μ − α)

]
+ βαN

}
Z0(T ,L,D,N )

= exp

(
βV

2a
μ2

) √
Vβ

2πa

∫ ∞

−∞
dq exp

[
Vβ

2a
(iq + α)2 − (iq + α)

Vβμ

a

]
×	0(T ,L,D,α + iq)

= (−i) exp

(
βV

2a
μ2

)√
Vβ

2πa

∫ α+i∞

α−i∞
dt exp

[
βV

a

(
t2

2
− tμ

)]
	0(T ,L,D,t). (14)

Relation (14) between 	(T ,L,D,μ) and 	0(T ,L,D,t) will
be the basis for our subsequent analysis. The parameter α

appears here only in the contour of integration. Due to its
arbitrariness, we can choose α < 0 to ensure the convergence
of the series defining the analytic continuation of the perfect
gas partition function (13).

We will apply here the method of steepest descent (saddle
point method) to determine the large L and large D asymp-
totics of the partition function 	(T ,L,D,μ). This, in turn, will
yield the bulk free energy density (per unit volume) as well as
the excess grand-canonical free energy density (per unit area).

To illustrate the method, we begin by evaluating in this
section the bulk free energy density. This is conveniently
done by considering a cubic volume V = L3. We choose the
coordinate system with axes oriented along the edges of the
cube adopting in each direction periodic boundary conditions.
The rhs of Eq. (14) can be then rewritten in the following way:

	(T ,L,L,μ) = −i exp

(
βV

2a
μ2

) √
V

2πβa

∫ βα+i∞

βα−i∞
ds

× exp[−V ϕb(s)], (15)

where

ϕb(s) = 1

βa

(
− s2

2
+ sβμ

)
− 1

λ3
g5/2[exp(s)]

+ 1

V
ln[1 − exp(s)]. (16)

Here, λ = h/
√

2πmkBT denotes the thermal de Broglie
wavelength, and gκ (z) is the Bose function,

gκ (z) =
∞∑

k=1

zk

kκ
. (17)

Equation (16) follows directly from the formula

1

V
ln 	0(T ,L,L,μ) = 1

λ3
g5/2[exp(βμ)]

− 1

V
ln[1 − exp(βμ)], (18)

which is valid for V/λ3 � 1 [see, e.g., [11,15]]. It is well
known that the theory of Bose-Einstein condensation in a
perfect gas requires a separate examination of the contribution

{− ln[1 − exp(s)]/V } stemming from the one-particle ground
state.

In the steepest descent method [16], one has to find the
saddle point s0 at which the derivative of the analytic function
ϕb(s) vanishes,

0 = ϕ′
b(s0) = 1

βa
(−s0 + βμ) − 1

λ3
g3/2[exp(s0)]

− 1

V

exp(s0)

1 − exp(s0)
. (19)

This equation can be rewritten with the help of the critical
density nc for the perfect Bose gas,

λ3nc = g3/2(1) = ζ (3/2) = 2.612 . . . , (20)

in the following way:

− s0

βanc

+ μ

anc

= g3/2[exp(s0)]

g3/2(1)
+ 1

V nc

[
exp(s0)

1 − exp(s0)

]
.

(21)

Depending on the value of parameter (μ/anc), one has to
consider separately two cases: (μ/anc) < 1 and (μ/anc) > 1.

In the first case, when (μ/anc) < 1, there exists a unique
real negative solution (s0 < 0) satisfying the equation

− s0

βanc

+ μ

anc

= g3/2[exp(s0)]

g3/2(1)
. (22)

This follows directly from the analysis of the point of
intersection of the straight line,

f (s0) = − s0

βanc

+ μ

anc

, (23)

with the curve

g(s0) = g3/2[exp(s0)]

g3/2(1)
(24)

represented in Fig. 1. Clearly, when s0 < 0, the second term on
the rhs of (21) does not contribute in the bulk limit V → ∞.
We also note that the saddle point s0(T ,μ) tends to zero from
below when approaching the imperfect gas condensation point
μ = anc.
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FIG. 1. Graphical solution of Eq. (21). The two straight lines
represent the left-hand side (lhs) of Eq. (22) in two cases: the dotted
line corresponds to μ

anc
= 0.9 and βanc = 0.5 (one-phase region), and

the dashed line corresponds to μ

anc
= 1.1 and βanc = 0.5 (two-phase

region). The solid line corresponds to the rhs of Eq. (21) in the limit
V → ∞. The density of the condensate μ/a − nc is proportional to
the segment denoted by the bracket on the vertical axes.

By applying the method of steepest descent [16] to
determine the large V asymptotics of the integral in Eq. (15),
we find that the bulk free energy density

ωb(T ,μ) = − lim
L→∞

1

L3
kBT ln 	(T ,L,L,μ) = −p (25)

is given by

ω<
b (T ,μ) = −μ2

2a
− 1

β2a

(
s2

0

2
− s0βμ

)
− 1

βλ3
g5/2[exp(s0)],

(26)

where p denotes the pressure and the superscript < indicates
that we consider the case of μ < anc.

The bulk density ω<
b (T ,μ) can be equivalently rewritten as

ω<
b (T ,μ) = −p<(T ,μ) = −a

2
x2(T ,μ)

− 1

βλ3
g5/2( exp {β[μ − ax(T ,μ)]} ), (27)

where x(T ,μ) satisfies the equation

x = 1

λ3
g3/2 {exp[β(μ − ax)]} . (28)

In fact, a straightforward calculation shows that

∂

∂μ
ω<

b (T ,μ) = −x(T ,μ), (29)

so that x(T ,μ) = n(T ,μ) is the number density of the gas
expressed as a function of chemical potential and temperature.

In the complementary case (μ/anc) > 1, the solution of
Eq. (21) is obtained by taking the limit s0 → 0,L → ∞, and
requiring the equality

μ

a
= nc + lim

s0→0,L→∞
1

L3

[
exp(s0)

1 − exp(s0)

]

= nc + lim
s0→0,L→∞

1

L3

[
1

1 − exp(s0)

]
= nc + (density of condensate) (30)

(see the dashed line in Fig. 1). The precise meaning of
the double limit s0 → 0,L → ∞ defining the density of the
condensate in the perfect gas theory can be found in [11,15].

The bulk free energy density in the region (μ/anc) > 1 is
thus obtained by taking the limit s0 → 0 in Eq. (26), so that

ω>
b (T ,μ) = −μ2

2a
− 1

βλ3
ζ (5/2), (31)

or

p>(T ,μ) = μ2

2a
+ p0(T ,μ = 0), (32)

where p0(T ,μ = 0) is the perfect gas pressure in the presence
of a condensate. Equation (32) implies the relation n = μ/a,
which is valid in the presence of a condensate.

The above results for the bulk density of the grand-
canonical potential yield equations of state (27),(28), and (32),
which are in full agreement with rigorous results derived by
more complex methods (see, e.g., [17]).

III. CASIMIR FORCE BETWEEN PARALLEL
PLANE WALLS

In order to evaluate the Casimir force (per unit area) acting
between infinite parallel plane walls separated by distance D,
one has to determine the corresponding excess grand-canonical
free energy density (per unit area) defined by

ωs(T ,D,μ) = lim
L→∞

[
�(T ,L,D,μ)

L2

]
− Dωb(T ,μ). (33)

The system surface properties, and the excess grand-canonical
free energy in particular, depend on the boundary conditions
imposed on the confining walls. Here we concentrate on the
case of periodic boundary conditions, although the generaliza-
tion to the Dirichlet and Neumann cases is straightforward. We
choose the coordinate system whose z axis is perpendicular to
the confining walls.

It is convenient to rewrite the partition function (14) in the
following way:

	(T ,L,D,μ) = exp

[
−�(T ,L,D,μ)

kBT

]

= −i exp

(
βL2D

2a
μ2

) √
L2D

2πβa

∫ βα+i∞

βα−i∞
ds

× exp[−L2Dϕ(s)], (34)

where

ϕ(s) = ϕb(s)

− 1

λ3

(
λ

D

∑
kz

g2 {exp[s − βε(kz)]} − g5/2[exp(s)]

)

+ 1

L2D

(∑
kz

ln {1 − exp[s − βε(kz)]}

− ln[1 − exp(s)]

)
. (35)

Here, ε(kz) = h̄2k2
z /2m, and kz = 2πn/D,n = 0,±1,

±2, . . ., due to periodic boundary conditions. Equation (35)
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follows directly from the equality

ln 	0(T ,L,D,s/β) = −
∑
kz �=0

ln{1 − exp[s − βε(kz)]}

−
∑
kz

(
L

λ

)2

g2 {exp[s − βε(kz)]} ,

(36)

which is valid for L/λ � 1. The first term on the rhs of
(36) corresponds to the kx = ky = 0 contribution to the series
defining the logarithm of the perfect gas partition function,

ln 	0(T ,L,D,s/β) = −
∑

k

ln {1 − exp[s − βε(k)]} . (37)

Finally, the bulk density ϕb(s), which we added and subtracted
when writing (35), has been defined in Eq. (16).

By taking in Eq. (35) the L → ∞ limit, we obtain the
formula

ϕ(s) = ϕb(s)

− 1

λ3

⎛
⎝ λ

D

∑
kz

g2 {exp[s − βε(kz)]} − g5/2[exp(s)]

⎞
⎠ ,

(38)

corresponding to infinite walls. With the help of the Jacobi
identity [8,15],

∞∑
n=−∞

exp(−πκn2) = 1√
κ

∞∑
n=−∞

exp(−πn2/κ), (39)

which is valid for κ > 0, and relation

βε(kz) =
(

λ

D

)2

πn2, (40)

Eq. (38) can be rewritten in the following form:

ϕ(s) = ϕb(s) − 2

λ3

∞∑
r=1

∞∑
n=1

1

r
5
2

exp

(
sr − D2πn2

λ2r

)
. (41)

The saddle point s̄ of function ϕ(s) satisfies the equation

0 = ϕ′(s̄) = ϕ′
b(s̄) − 2

λ3

∞∑
r=1

∞∑
n=1

1

r
3
2

exp

(
s̄r − D2πn2

λ2r

)
.

(42)

In fact, we are interested in the behavior of s̄ for large values
of the dimensionless width D/λ, and the sole property of s̄

that we will need is the fact that in the limit D/λ → ∞, the
point s̄ approaches the bulk saddle point s0. Indeed, within
the steepest descent method, the solution s̄ is inserted into
ϕ(s) in order to evaluate the surface contribution (33) to the
grand-canonical potential. In the case of periodic boundary
conditions, the excess grand-canonical free energy density
ωs(T ,D,μ) represents exclusively the fluctuation-induced
interaction between the walls; there is no contribution to
ωs(T ,D,μ) stemming from two noninteracting wall-boson gas
interfaces.

The above remarks combined with Eq. (41) imply that for
large D/λ, the dominant contribution to ωs(T ,D,μ) has the
form

ωs(T ,μ,D) = −2DkBT

λ3

∞∑
r=1

∞∑
n=1

1

r
5
2

exp

(
s0r − D2πn2

λ2r

)
,

(43)

where s0 is the bulk saddle point defined by Eq. (19). From
the previous analysis, we know that for μ/anc < 1, s0 takes
a negative value, ensuring the convergence of the series in
Eq. (43).

For D/λ � 1, the sum over r on the rhs of Eq. (43) can be
transformed as [8,18]

∞∑
r=1

1

r
5
2

exp

(
s0r − D2πn2

λ2r

)

�
∫ ∞

0
dρ

1

ρ
5
2

exp

(
s0ρ − D2πn2

λ2ρ

)

= 1

2π

λ3

D3

1

n3

(
1 + 2n

D

κper

)
exp

(
−2n

D

κper

)
, (44)

where

κper = λ√
π |s0|

(45)

is the characteristic decay length.
We have already noticed that s0 → 0 when the condensation

point μ = anc is approached from below. It is instructive
to determine the structure of the the solution of Eq. (22) in
the vicinity of the condensation point. With the help of the
asymptotic relation [15]

g3/2[exp(s0)] ≈ −2
√

π (−s0)1/2 + ζ (3/2), (46)

we find from Eq. (22) that

|s0|1/2 = (anc − μ)

anc

ζ (3/2)

2π1/2
. (47)

Near the condensation point, the behavior of the decay length
(45) is thus described by

κper = λ
anc

(anc − μ)

2π1/2

ζ (3/2)
. (48)

Thus, upon approaching the condensation point from the one-
phase region, the decay length κper diverges like (anc − μ)−1.
We notice that the value of the relevant critical exponent
νIMP = 1 differs from that corresponding to the perfect Bose
gas, where κper ∼ (−μ)−1/2, with the corresponding critical
exponent νP = 1/2 (see [8]).

For the imperfect Bose gas, the Casimir force

F (T ,D,μ) = −∂ω<
s (T ,D,μ)

∂D

= kBT
∂

∂D

[
1

πD2

∞∑
n=1

1 + 2nD/κper

n3

× exp

(
−2n

D

κper

)]
(49)
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can be rewritten with the help of the scaling function [9],

�(x) = −
∞∑

n=1

1 + 2nx

πn3
exp(−2nx), (50)

such that �(0) = −ζ (3)/π , � ′(0) = 0, and �(x � 1) ≈
−2/πxe−2x . By putting x = D/κper, we find in the one-phase
region (normal phase) near the condensation point,

F (T ,D,μ)

kBT
= 1

D3
[2�(x) − x� ′(x)]. (51)

We note that the scaling function 2�(x) − x� ′(x) in Eq. (51)
depends on the ratio x = D/κper of the width D and the decay
length κper; see Eq. (45). An interesting problem is to determine
the correlation length ξ characterizing the decay of the density-
density correlation function of the imperfect Bose gas, and then
to express the variable x as a function of D/ξ . This would allow
one to calculate the universal scaling function for the Casimir
force [5,9].

On the other hand, in the two-phase region (in the presence
of a condensate), one observes the power-law decay

F (T ,D,μ > anc)

kBT
= −2ζ (3)

π

1

D3
, (52)

which is exactly the same, and with the same amplitude
(universal when divided by kBT ) as in the perfect Bose gas [8]
at μ = 0. For comparisons with analytical and numerical
results for the Casimir amplitude and the scaling function
for the XY universality class, which have been obtained via
various methods, inter alia via Monte Carlo simulations and
the field-theoretical renormalization-group theory for O(N )
symmetric systems, see Refs. [5,19–24].

The above analysis can be straightforwardly extended to
the case of Dirichlet and Neumann boundary conditions. We
thus present here only the final results. In these cases—
contrary to the case of periodic boundary conditions—one
obtains nonzero values for the single wall-Bose gas surface
free energy density σ (T ,μ). The excess grand-canonical free
energy density is the sum of 2σ (T ,μ), and the contribution
due to the effective interaction between the walls.

For σ<(T ,μ), one finds

σ<(T ,μ) = ±kBT

4λ2
g2[exp(s0)], (53)

where s0 is the solution of Eq. (22), and the (+) and (−) signs
correspond to the Dirichlet and Neumann boundary conditions,
respectively. The expressions (53) for the surface free energy
density should be compared with the corresponding results
obtained for the perfect Bose gas; see Chap. 5 in [15].
One concludes that although in general these expressions
are different, they become identical when evaluated in the
two-phase region, i.e., μ = 0 for the perfect gas and μ � anc

for the imperfect gas.
The contribution to the excess grand-canonical free energy

density due to the effective interaction between the walls is
given by

− kBT

8 πD2

∞∑
n=1

1 + 2nD/κD,N

n3
exp(−2nD/κD,N ), (54)

where the expression for the decay length κD,N is the same in
the Dirichlet and Neumann cases,

κD,N = λ

2
√

π |s0|
, (55)

and differs by a factor of 2 from the corresponding expression
κper in the periodic case [see Eq. (45)].

In the presence of a condensed phase, where μ � μc = anc,
one observes, both in the Dirichlet and in the Neumann case,
the same power-law decay of the corresponding Casimir force,

F (T ,D,μ � anc)

kBT
= −ζ (3)

4π

1

D3
, (56)

with the same amplitude (universal when divided by kBT ) as
in the perfect Bose gas for these boundary conditions (see [8]).

IV. CONCLUDING COMMENTS

The aim of our study was to investigate Casimir forces
induced by fluctuations of an imperfect Bose gas contained
between two infinite parallel plane walls situated at distance
D, and compare the results with those obtained previously in
Ref. [8] for a perfect gas. We based our approach on the exact
relation (14) between the grand-canonical partition function
of an imperfect (mean-field) gas and that of a perfect gas.
The derivation of Eq. (14) was based on the fact that the
mean-field Hamiltonian, given by Eq. (5), allowed the use
of the occupation number representation (for a systematic
description of the so-called diagonal models, see the review
[11]).

We first applied to Eq. (14) the steepest descent method
to determine the bulk free energy density. In this way,
we obtained the mean-field equation of state, previously
established rigorously by other methods. It might be interesting
to note that the self-consistent relation (28) has been derived
and studied for an interacting Bose gas in a much more general
context [25].

The evaluation of the excess grand-canonical free energy
density under periodic boundary conditions, presented in
Sec. III, used in an essential way the fact that the saddle point
corresponding to finite distance D approached the bulk saddle
point when D → ∞. Our final results, given by Eqs. (51) and
(52), confirmed the appearance of power-law decay (∼D−3) of
the Casimir force in the presence of a condensate (μ � anc),
and of exponential decay in the one-phase region (μ < anc).
Here our predictions reproduced exactly the situation in a
perfect Bose gas. However, we noticed a difference in the value
of exponent ν governing the divergence of the characteristic
length scale at the approach from below to the critical value of
the chemical potential, μc = anc. In a perfect gas, νP = 1/2,
whereas in the presence of the repulsive mean-field, νIMP = 1,
as shown in Eq. (48). This difference seems to be the only
manifestation of the mean-field coupling between the bosons,
as far as the Casimir effect is concerned.

Finally, let us make the following comment. Because
of the nonequivalence of the grand-canonical and canonical
ensembles of a perfect gas, one could wonder how the results
derived in Ref. [8] would compare with calculations based on
the canonical free energy. It turns out that the answer to this
important question can be readily derived from the remarkable,
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rigorous analysis of the properties of a perfect Bose gas in a
finite volume given in Ref. [15] (see especially Sec. 3). We
checked that as far as the Casimir force is concerned, both the
grand-canonical and canonical ensemble give exactly the same

results. The anomalies of the grand-canonical fluctuations in
the total occupation number of the ground state in the presence
of a condensate have thus no effect on the large distance
behavior of the Casimir force.
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[17] J. V. Pulè and V. A. Zagrebnov, J. Phys. A 37, 8929 (2004).
[18] Handbook of Mathematical Functions, edited by

M. Abramowitz and I. A. Stegun (Dover, New York,
1972).

[19] A. Maciołek, A. Gambassi, and S. Dietrich, Phys. Rev. E 76,
031124 (2007).

[20] R. Zandi, A. Shackell, J. Rudnick, M. Kardar, and L. P. Chayes,
Phys. Rev. E 76, 030601 (2007).

[21] O. Vasilyev, A. Gambassi, A. Maciołek, and S. Dietrich,
Europhys. Lett. 80, 60009 (2007).

[22] O. Vasilyev, A. Gambassi, A. Maciołek, and S. Dietrich, Phys.
Rev. E 79, 041142 (2009).

[23] M. Hasenbusch, Phys. Rev. B 81, 165412 (2010).
[24] A. Hucht, Phys. Rev. Lett. 99, 185301 (2007).
[25] P. A. Martin and J. Piasecki, Phys. Rev. E 68, 016113 (2003).

061105-7

http://dx.doi.org/10.1088/1742-6596/161/1/012037
http://dx.doi.org/10.1039/c0sm00635a
http://dx.doi.org/10.1016/0550-3213(81)90482-X
http://dx.doi.org/10.1103/PhysRevA.46.1886
http://dx.doi.org/10.1103/RevModPhys.71.1233
http://dx.doi.org/10.1103/RevModPhys.71.1233
http://dx.doi.org/10.1103/PhysRevLett.95.145303
http://dx.doi.org/10.1103/PhysRevLett.95.145303
http://dx.doi.org/10.1209/epl/i2005-10357-x
http://dx.doi.org/10.1209/epl/i2005-10357-x
http://dx.doi.org/10.1209/epl/i2006-10021-1
http://dx.doi.org/10.1007/BF02099372
http://dx.doi.org/10.1016/S0370-1573(00)00132-0
http://dx.doi.org/10.1007/BF01010502
http://dx.doi.org/10.1007/BF01010502
http://dx.doi.org/10.1063/1.525855
http://dx.doi.org/10.1016/0370-1573(77)90052-7
http://dx.doi.org/10.1016/0370-1573(77)90052-7
http://dx.doi.org/10.1088/0305-4470/37/38/002
http://dx.doi.org/10.1103/PhysRevE.76.031124
http://dx.doi.org/10.1103/PhysRevE.76.031124
http://dx.doi.org/10.1103/PhysRevE.76.030601
http://dx.doi.org/10.1209/0295-5075/80/60009
http://dx.doi.org/10.1103/PhysRevE.79.041142
http://dx.doi.org/10.1103/PhysRevE.79.041142
http://dx.doi.org/10.1103/PhysRevB.81.165412
http://dx.doi.org/10.1103/PhysRevLett.99.185301
http://dx.doi.org/10.1103/PhysRevE.68.016113

