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The continuous-time random walk (CTRW) is a model of anomalous subdiffusion in which particles are
immobilized for random times between successive jumps. A power-law distribution of the waiting times, ψ(τ ) ∼
τ−(1+α), leads to subdiffusion (〈x2〉 ∼ tα) for 0 < α < 1. In closed systems, the long stagnation periods cause
time averages to divert from the corresponding ensemble averages, which is a manifestation of weak ergodicity
breaking. The time average of a general observable U (t) = 1

t

∫ t

0 U [x(τ )]dτ is a functional of the path and
is described by the well-known Feynman-Kac equation if the motion is Brownian. Here, we derive forward
and backward fractional Feynman-Kac equations for functionals of CTRW in a binding potential. We use our
equations to study two specific time averages: the fraction of time spent by a particle in half-box, and the time
average of the particle’s position in a harmonic field. In both cases, we obtain the probability density function of
the time averages for t → ∞ and the first two moments. Our results show that both the occupation fraction and
the time-averaged position are random variables even for long times, except for α = 1, when they are identical
to their ensemble averages. Using our fractional Feynman-Kac equation, we also study the dynamics leading to
weak ergodicity breaking, namely the convergence of the fluctuations to their asymptotic values.
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I. INTRODUCTION

The time average of an observable U (x) of a diffusing
particle is defined as

U (t) = 1

t

∫ t

0
U [x(τ )]dτ, (1)

where x(t) is the particle’s trajectory. For Brownian motion
in a binding potential V (x) and in contact with a heat bath,
ergodicity leads to

lim
t→∞ U (t) = 〈U 〉th =

∫ ∞

−∞
U (x)Geq(x)dx, (2)

where Geq(x) = e−V (x)/(kBT )/Z is the Boltzmann distribution
and 〈U 〉th is the thermal average. The equality of the time
and ensemble averages in ergodic systems is one of the basic
presuppositions of statistical mechanics.

In the past few decades, it was found that in many systems,
the diffusion of particles is anomalously slow, 〈x2〉 ∼ tα

with 0 < α < 1 [1–4]. Anomalous subdiffusion is commonly
modeled as a continuous-time random walk (CTRW): nearest-
neighbor hopping on a lattice, with waiting times between
jumps distributed as a power-law with infinite mean [5,6].

For closed systems, the long immobilization periods of
CTRW result in a deviation of time averages from ensemble
averages even for long times [7–10]. Although there are no
inaccessible regions in the phase space (i.e., there is no strong
ergodicity breaking), the divergence of the mean waiting time
results in some waiting times of the order of magnitude of
the entire experiment. Therefore, particles do not sample the
phase space uniformly in any single trajectory, leading to weak
ergodicity breaking [11].

Two examples of particularly interesting time averages,
which we study in this paper, are given below. For a particle
in a bounded region, the occupation fraction is defined as
λ(t) = 1

t

∫ t

0 �[x(τ )]dτ , where �(x) is the Heaviside function.
In other words, λ is the fraction of time spent by the particle
in the positive side of the region [12,13]. Generally, the

occupation fraction can be defined for any given subspace.
Consider, for example, a particle in a sample illuminated
by a laser, where the particle emits photons only under
the laser’s focus. The occupation fraction is proportional
to the total emitted light [14,15]. Next, the time-averaged
position of a particle is defined as x(t) = 1

t

∫ t

0 x(τ )dτ . Recent
advances in single-particle tracking technologies enable the
experimental determination of this quantity for beads in
polymer networks [16,17] and for biological macromolecules
and small organelles in living cells [18–21]. Since in many
physical and biological systems the diffusion is anomalous,
the study of occupation fractions or time-averaged positions
in subdiffusive processes such as CTRW is of current
interest.

Time averages are closely related to functionals, which are
defined as A = ∫ t

0 U [x(τ )]dτ and have many applications
in physics, mathematics, and other fields [22]. Denote by
G(x,A,t) the joint probability density function (PDF) of
finding, at time t , the particle at x and the functional at A.
The Feynman-Kac equation states that for a free Brownian
particle [23],

∂

∂t
G(x,p,t) = K1

∂2

∂x2
G(x,p,t) − pU (x)G(x,p,t), (3)

where G(x,p,t) is the Laplace transform A → p of G(x,A,t)
and K1 is the diffusion coefficient. Recently, we developed
a fractional Feynman-Kac equation for anomalous diffusion
of free particles [24,25]. As time averages are in fact scaled
functionals, U = A/t , a generalized Feynman-Kac equation
for anomalous functionals in a binding field would be invalu-
able for the study of weak ergodicity breaking. Currently, no
such equation exists, and weak ergodicity breaking has been
investigated only in the t → ∞ limit or using functional- and
potential-specific methods [7–10].

In this paper, we obtain an equation for functionals of
anomalous diffusion in a force field F (x). The equation takes

061104-11539-3755/2011/84(6)/061104(12) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.84.061104


SHAI CARMI AND ELI BARKAI PHYSICAL REVIEW E 84, 061104 (2011)

the following form (reported without derivation in Ref. [24]):

∂

∂t
G(x,p,t) = Kα

[
∂2

∂x2
− ∂

∂x

F (x)

kBT

]
D1−α

t G(x,p,t)

−pU (x)G(x,p,t). (4)

The symbol D1−α
t is a fractional substantial derivative, equal

in Laplace t → s space to [s + pU (x)]1−α [26,27], and Kα is a
generalized diffusion coefficient. Solving Eq. (4) for G(x,p,t),
inverting p → A, and integrating over all x yields G(A,t), the
PDF of A at time t . Changing variables A → A/t = U , one
finally comes by G(U,t), the (time-dependent) PDF of U .
Weak ergodicity breaking can then be determined by looking
at the long-times properties of G(U,t): if U is not identically
equal to 〈U 〉th for t → ∞, ergodicity is broken. Moreover, if
G(U,t) or the moments of U can be found also for t < ∞, the
kinetics of weak ergodicity breaking can be uncovered.

In the rest of the paper, we derive Eq. (4) as well as a
backward equation and an equation for time-dependent forces.
We then apply our equation to the two examples given above:
the occupation fraction (in a box) and the time-averaged
position (in a harmonic potential). In both cases, we calculate
the long-times limit of G(U,t) and the fluctuations 〈(�U )2〉t =
〈U 2〉t − 〈U 〉2

t (the subscript t indicates the time). We
demonstrate that for subdiffusion, both systems exhibit weak
ergodicity breaking, and that the fluctuations decay as t−α to
their asymptotic limit. Part of the results for the fluctuations of
the time-averaged position were briefly reported in Ref. [24].

II. DERIVATION OF THE FRACTIONAL EQUATIONS

A. The forward equation

1. Continuous-time random walk

In the continuous-time random walk model, a particle is
placed on a one-dimensional lattice with spacing a and is
allowed to jump to its nearest neighbors only. The probabilities
of jumping left L(x) and right R(x) depend on F (x), the force
at x (see the next subsection for a derivation of these proba-
bilities). If F (x) = 0, then R(x) = L(x) = 1/2. Waiting times
between jump events are independent identically distributed
random variables with PDF ψ(τ ), and are independent of
the external force. The initial position of the particle, x0, is
distributed according to G0(x). The particle waits in x0 for
time τ drawn from ψ(τ ), and then jumps to either x0 + a

[with probability R(x)] or x0 − a [with probability L(x)], after
which the process is renewed. We assume that the waiting time
PDF scales as

ψ(τ ) ∼ Bα

|	(−α)|τ
−(1+α), (5)

with 0 < α < 1. With this PDF, the mean waiting time diverges
and the process is subdiffusive: for F (x) = 0, x0 = 0, and
an infinite open system, 〈x2〉 ∼ tα [28]. We also consider
a finite mean waiting time, e.g., an exponential distribution
ψ(τ ) = e−τ/〈τ 〉/〈τ 〉. This leads to normal diffusion 〈x2〉 ∼ t ,
and we therefore refer to this case as α = 1. For a discussion
on the effect of an exponential cutoff on Eq. (5), see [29].
Below, we derive the differential equation that describes the
distribution of functionals in the continuum limit of this model.

2. Derivation of the equation

Define A = ∫ t

0 U [x(τ )]dτ and define G(x,A,t) as the joint
PDF of x and A at time t . For the particle to be at (x,A) at
time t , it must have been at [x,A − τU (x)] at time t − τ when
the last jump was made. Let χ (x,A,t)dt be the probability of
the particle to jump into (x,A) in the time interval [t,t + dt].
We have

G(x,A,t) =
∫ t

0
W (τ )χ [x,A − τU (x),t − τ ]dτ, (6)

where W (τ ) = 1 − ∫ τ

0 ψ(τ ′)dτ ′ is the probability for not
moving in a time interval of length τ .

To calculate χ , note that to arrive at (x,A) at time t , the
particle must have arrived at either [x − a,A − τU (x − a)] or
[x + a,A − τU (x + a)] at time t − τ when the previous jump
was made. Therefore,

χ (x,A,t) = G0(x)δ(A)δ(t)

+
∫ t

0
ψ(τ )L(x + a)χ [x + a,A − τU (x + a),t − τ ]dτ

+
∫ t

0
ψ(τ )R(x − a)χ [x − a,A − τU (x − a),t − τ ]dτ.

(7)

The term G0(x)δ(A)δ(t) corresponds to the initial condition,
namely that at t = 0, A = 0 and the particle’s position is
distributed as G0(x).

Assume that U (x) � 0 for all x and thus A � 0 (an
assumption we will relax in Sec. II A 3). Let χ (x,p,t) =∫∞

0 e−pAχ (x,A,t)dA be the Laplace transform A → p of
χ (x,A,t) (throughout this work, we use the convention that
the variables in parentheses define the space in which we are
working). Laplace transforming Eq. (7) from A to p, we find

χ (x,p,t) = G0(x)δ(t)

+L(x + a)
∫ t

0
ψ(τ )e−pτU (x+a)χ (x + a,p,t − τ )dτ

+R(x − a)
∫ t

0
ψ(τ )e−pτU (x−a)χ (x − a,p,t − τ )dτ. (8)

Laplace transforming Eq. (8) from t to s using the convolution
theorem,

χ (x,p,s) = G0(x)

+L(x + a)ψ̂[s + pU (x + a)]χ (x + a,p,s)

+R(x − a)ψ̂[s + pU (x − a)]χ (x − a,p,s), (9)

where ψ̂(s) is the Laplace transform of the waiting time PDF.
Let χ (k,p,s) = ∫∞

−∞ eikxχ (x,p,s)dx be the Fourier transform
x → k of χ . Fourier transforming Eq. (9) and changing
variables x ± a → x,

χ (k,p,s) = Ĝ0(k)

+ e−ika

∫ ∞

−∞
eikxL(x)ψ̂[s + pU (x)]χ (x,p,s)dx

+ eika

∫ ∞

−∞
eikxR(x)ψ̂[s + pU (x)]χ (x,p,s)dx, (10)

where Ĝ0(k) is the Fourier transform of the initial condition.
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We now express L(x) and R(x) in terms of the potential
V (x). Assuming the system is coupled to a heat bath at
temperature T and assuming detailed balance, we have [10,28]

L(x) exp

[
−V (x)

kBT

]
= R(x − a) exp

[
−V (x − a)

kBT

]
. (11)

If the lattice spacing a is small, we can expand

exp

[
−V (x − a)

kBT

]
≈ exp

[
−V (x)

kBT

] [
1 − aF (x)

kBT
+ O(a2)

]
,

(12)

where we used F (x) = −V ′(x). Expanding R(x) and L(x)
for aF (x)

kBT
	 1, using the fact that R(x) = L(x) = 1/2 for

F (x) = 0,

R(x) ≈ 1

2

[
1 + c

aF (x)

kBT

]
= 1 − L(x), (13)

where c is a constant to be determined. Substituting Eqs. (12)
and (13) in Eq. (11), we have, up to first order in a,

1 − c
aF (x)

kBT
≈
[

1 − aF (x)

kBT

] [
1 + c

aF (x)

kBT

]
.

This gives, again up to first order in a, c = 1/2. We can thus
write

R(x) ≈ 1

2

[
1 + aF (x)

2kBT

]
, L(x) ≈ 1

2

[
1 − aF (x)

2kBT

]
. (14)

Substituting Eq. (14) in Eq. (10), we obtain

χ (k,p,s) ≈ Ĝ0(k)

+1

2
e−ika

∫ ∞

−∞
eikxψ̂[s + pU (x)]χ (x,p,s)dx

− 1

2
e−ika

∫ ∞

−∞
eikx aF (x)

2kBT
ψ̂[s+pU (x)]χ (x,p,s)dx

+ 1

2
eika

∫ ∞

−∞
eikxψ̂[s + pU (x)]χ (x,p,s)dx

+ 1

2
eika

∫ ∞

−∞
eikx aF (x)

2kBT
ψ̂[s+ pU (x)]χ (x,p,s)dx.

Applying the Fourier transform identity F{xf (x)} =
−i ∂

∂k
f (k), the last equation simplifies to

χ (k,p,s) ≈ Ĝ0(k) +
[

cos(ka) + i sin(ka)
aF

(−i ∂
∂k

)
2kBT

]

× ψ̂

[
s + pU

(
−i

∂

∂k

)]
χ (k,p,s). (15)

The symbols F (−i ∂
∂k

) and U (−i ∂
∂k

) represent the original
functions F (x) and U (x), but with −i ∂

∂k
as their argument.

Note that the order of the terms is important: for example,
cos(ka) does not commute with ψ̂[s + pU (−i ∂

∂k
)]. The formal

solution of Eq. (15) is

χ (k,p,s) ≈
{

1 −
[

cos(ka) + i sin(ka)
aF

(−i ∂
∂k

)
2kBT

]

× ψ̂

[
s + pU

(
−i

∂

∂k

)]}−1

Ĝ0(k). (16)

We next use our expression for χ to calculate G(x,A,t).
Transforming Eq. (6) (x,A,t) → (k,p,s),

G(k,p,s) = 1 − ψ̂
[
s + pU

(−i ∂
∂k

)]
s + pU

(−i ∂
∂k

) χ (k,p,s), (17)

where we used the fact that Ŵ (s) = [1 − ψ̂(s)]/s. Substituting
Eq. (16) into (17), we have

G(k,p,s) ≈ 1 − ψ̂
[
s + pU

(−i ∂
∂k

)]
s + pU

(−i ∂
∂k

)
×
{

1 −
[

cos(ka) + i sin(ka)
aF

(−i ∂
∂k

)
2kBT

]

× ψ̂

[
s + pU

(
−i

∂

∂k

)]}−1

Ĝ0(k). (18)

To derive a differential equation for G(x,p,t), we take the
small s and k limit of Eq. (18). For 0 < α < 1, the waiting
time PDF is ψ(τ ) ∼ Bατ−(1+α)/|	(−α)| [Eq. (5)], which, for
small s, has the Laplace transform [3]

ψ̂(s) ≈ 1 − Bαsα. (19)

The case α = 1 is also described by Eq. (19) if we identify
B1 with the mean waiting time 〈τ 〉. Substituting Eq. (19) in
Eq. (18), expanding cos(ka) ≈ 1 − k2a2/2 and sin(ka) ≈ ka,
and neglecting high-order terms, Eq. (18) becomes

G(k,p,s) ≈
[
s + pU

(
−i

∂

∂k

)]α−1

×
{
Kα

[
k2 − ik

F
(−i ∂

∂k

)
kBT

]
+
[
s+pU

(
−i

∂

∂k

)]α}−1

Ĝ0(k).

(20)

In the preceding equation, we used the generalized diffusion
coefficient [28]

Kα ≡ lim
a2,Bα→0

a2

2Bα

, (21)

with units m2/sα . Rearranging Eq. (20),

sG(k,p,s) − Ĝ0(k) = −pU

(
−i

∂

∂k

)
G(k,p,s)

−Kα

[
k2−ik

F
(−i ∂

∂k

)
kBT

] [
s+pU

(
−i

∂

∂k

)]1−α

G(k,p,s).

Inverting k → x,s → t , we finally obtain our fractional
Feynman-Kac equation:

∂

∂t
G(x,p,t) = KαLFPD1−α

t G(x,p,t) − pU (x)G(x,p,t).

(22)

The symbol LFP represents the Fokker-Planck operator,

LFP = ∂2

∂x2
− ∂

∂x

F (x)

kBT
, (23)

and the initial condition is G(x,A,t = 0) = G0(x)δ(A),
or G(x,p,t = 0) = G0(x). The symbol D1−α

t represents
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the fractional substantial derivative operator introduced in
Refs. [26,30]:

L
{
D1−α

t G(x,p,t)
} = [s + pU (x)]1−αG(x,p,s), (24)

whereL{f (t)} = ∫∞
0 e−stf (t)dt is the Laplace transform t →

s. In t space,

D1−α
t G(x,p,t)

= 1

	(α)

[
∂

∂t
+ pU (x)

] ∫ t

0

e−(t−τ )pU (x)

( t− τ )1−α
G(x,p,τ )dτ. (25)

Thus, due to the long waiting times, the evolution of G(x,p,t)
is non-Markovian and depends on the entire history.

3. Special cases and extensions

(a) Normal diffusion. For α = 1, or normal diffusion, the
fractional substantial derivative equals unity and we have

∂

∂t
G(x,p,t) = K1LFPG(x,p,t) − pU (x)G(x,p,t). (26)

This is simply the (integer) Feynman-Kac equation (3),
extended to a general force field F (x).

(b) The fractional Fokker-Planck equation. For p =
0, G(x,p = 0,t) = ∫∞

0 G(x,A,t)dA reduces to G(x,t), the
marginal PDF of finding the particle at x at time t regardless
of the value of A. Correspondingly, Eq. (22) reduces to the
fractional Fokker-Planck equation [28,31,32]:

∂

∂t
G(x,t) = KαLFPD1−α

RL,tG(x,t), (27)

where D1−α
RL,t = D1−α

t |p=0 is the Riemann-Liouville fractional
derivative operator. In Laplace s space, D1−α

RL,tG(x,s) =
s1−αG(x,s).

(c) Free particle. For F (x) = 0, LFP = ∂2

∂x2 . Several appli-
cations of this special case were treated in Ref. [25].

(d) A general functional. When the functional is not
necessarily positive, the Laplace transform A → p is replaced
by a Fourier transform G(x,p,t) = ∫∞

−∞ eipAG(x,A,t)dA. The
fractional Feynman-Kac equation looks like (22), but with p

replaced by −ip,

∂

∂t
G(x,p,t) = KαLFPD1−α

t G(x,p,t) + ipU (x)G(x,p,t),

(28)

where D1−α
t → [s − ipU (x)]1−α in Laplace s space. The

derivation of Eq. (28) is similar to that of Eq. (22) (see [25]
for more details).

(e) Time-dependent force. Anomalous diffusion with a
time-dependent force is of recent interest [33–37]. In a
corresponding CTRW model, the probabilities of jumping left
and right are determined by the force at the end of the waiting
period [33,36]. As we show in Appendix A, the equation for
G(x,p,t) is similar to Eq. (22):

∂

∂t
G(x,p,t) = KαL(t)

FPD1−α
t G(x,p,t) − pU (x)G(x,p,t),

(29)

but where

L(t)
FP = ∂2

∂x2
− ∂

∂x

F (x,t)

kBT

is the time-dependent Fokker-Planck operator. For p = 0,
Eq. (29) reduces to the recently derived equation for the PDF
of x [36].

B. The backward equation

The forward equation describes G(x,A,t), the joint PDF
of x and A. Consequently, if we are interested only in the
distribution of A, we must integrate G over all x, which could
be inconvenient. We therefore develop below an equation for
Gx0 (A,t)—the PDF of A at time t , given that the process
has started at x0. This equation, which is called the backward
equation, turns out to be very useful in practical applications
(see, e.g., [22,25] and Sec. IV A).

According to the CTRW model, the particle starts at x = x0

and jumps at time τ to either x0 + a or x0 − a. Alternatively,
the particle does not move at all during the measurement time
[0,t]. Hence,

Gx0 (A,t) = W (t)δ[A − tU (x0)]

+
∫ t

0
ψ(τ )R(x0)Gx0+a[A − τU (x0),t − τ ]dτ

+
∫ t

0
ψ(τ )L(x0)Gx0−a[A − τU (x0),t − τ ]dτ.

(30)

Here, τU (x0) is the contribution to A from the pausing time
at x0 in the interval [0,τ ]. The first term on the right-hand
side (rhs) of Eq. (30) describes a motionless particle, for
which A(t) = tU (x0). We now transform Eq. (30) (x0,A,t) →
(k0,p,s), using techniques similar to those used in Sec. II A 2.
In the continuum limit, a → 0, this leads to

Gk0 (p,s)

≈
1 − ψ̂

[
s + pU

(−i ∂
∂k0

)]
s +pU

(−i ∂
∂k0

) δ(k0) + ψ̂

[
s + pU

(
−i

∂

∂k0

)]

×
[

cos(k0a) −
aF

(−i ∂
∂k0

)
2kBT

i sin(k0a)

]
Gk0 (p,s).

We then expand ψ̂(s) ≈ 1 − Bαsα , cos(k0a) ≈ 1 − k2
0a

2/2,
and sin(k0a) ≈ k0a. After some rearrangements,

sGk0 (p,s) − δ(k0)

= −pU

(
−i

∂

∂k0

)
Gk0 (p,s) − Kα

[
s + pU

(
−i

∂

∂k0

)]1−α

×
[
k0

2 +
F
(−i ∂

∂k0

)
kBT

ik0

]
Gk0 (p,s).

Inverting k0 → x0 and s → t , we obtain the backward frac-
tional Feynman-Kac equation:

∂

∂t
Gx0 (p,t) = KαD1−α

t L(B)
FP Gx0 (p,t) − pU (x0)Gx0 (p,t),

(31)

061104-4



FRACTIONAL FEYNMAN-KAC EQUATION FOR WEAK . . . PHYSICAL REVIEW E 84, 061104 (2011)

where

L(B)
FP = ∂2

∂x2
0

+ F (x0)

kBT

∂

∂x0
(32)

is the backward Fokker-Planck operator. The initial condition
is Gx0 (A,t = 0) = δ(A), or Gx0 (p,t = 0) = 1. Note the (+)
sign in L(B)

FP and the order of the operators in its second term,
which are opposite to those of LFP [Eq. (23)]. Here, D1−α

t

equals in Laplace t → s space to [s + pU (x0)]1−α . In Eq. (22),
the operators depend on x while in Eq. (31) they depend on x0.
Therefore, Eq. (22) is a forward equation while Eq. (31) is a
backward equation. Notice also that in Eq. (31), the fractional
derivative operator appears to the left of the Fokker-Planck
operator, in contrast to the forward equation (22).

III. THE PDF OF U FOR LONG TIMES

Consider a general time average:

U =
∫ t

0 U [x(τ )]dτ

t
= A

t
.

For t → ∞, the PDF of U becomes time-independent, and
can be obtained from the fractional Feynman-Kac equation.
Let us first write the forward equation (22) in Laplace (p,s)
space:

[s + pU (x)]G(x,p,s) − G0(x)

= Kα

[
∂2

∂x2
− ∂

∂x

F (x)

kBT

]
[s + pU (x)]1−αG(x,p,s). (33)

For long times, CTRW functionals scale linearly with the
time, A ∼ t , and therefore, as shown in Ref. [38], G(p,s) =
g(p/s)/s, where g is a scaling function. In the t → ∞ limit,
we take s and p to be small, with their ratio finite, and we
therefore expect G(x,p,s) ∼ s−1 [indeed, see Eq. (36) below].
Consequently, both terms on the left-hand side (lhs) of Eq. (33)
scale as s0. However, the rhs of Eq. (33) scales as s−α , and
therefore for small s the lhs is negligible. The forward equation
thus reduces to

Kα

[
∂2

∂x2
− ∂

∂x

F (x)

kBT

]
[s + pU (x)]1−αG(x,p,s) = 0.

The solution of the last equation is

G(x,p,s) = C(p,s)[s + pU (x)]α−1 exp

[
−V (x)

kBT

]
, (34)

where C(p,s) is independent of x. To find C, we integrate
Eq. (33) over all x:∫ ∞

−∞
[s + pU (x)] G(x,p,s)dx − 1 = 0, (35)

which is true, because for a binding field, G(x,p,s) and its
derivative vanish for large |x|. Substituting G from Eq. (34)
into Eq. (35) gives

C(p,s) =
{∫ ∞

−∞
[s + pU (x)]α exp

[
−V (x)

kBT

]
dx

}−1

.

Therefore,

G(x,p,s) = [s + pU (x)]α−1 exp
[−V (x)

kBT

]
∫∞
−∞[s + pU (x)]α exp

[−V (x)
kBT

]
dx

. (36)

Integrating Eq. (36) over all x,

G(p,s) =
∫∞
−∞[s + pU (x)]α−1 exp

[−V (x)
kBT

]
dx∫∞

−∞[s + pU (x)]α exp
[−V (x)

kBT

]
dx

, (37)

where G(p,s) is the double Laplace transform of G(A,t), the
PDF of A at time t . The last equation is the continuous version
of the result derived using a different approach in Refs. [9,10].
As in Refs. [9,10], Eq. (37) can be inverted, using the method
of Ref. [38], to give the equilibrium PDF of U = A/t ,

G(U ) = sin(πα)

π

× I<
α−1(U )I>

α (U ) + I>
α−1(U )I<

α (U )

[I>
α (U )]2 + [I<

α (U )]2 + 2 cos(πα)I>
α (U )I<

α (U )
,

(38)

where

I<
α (U ) =

∫
U<U (x)

exp

[
−V (x)

kBT

]
[U (x) − U ]αdx

and

I>
α (U ) =

∫
U>U (x)

exp

[
−V (x)

kBT

]
[U − U (x)]αdx.

For normal diffusion, α = 1, the PDF is a delta function,
G(U ) = δ[U − 〈U 〉th] [Eq. (37) and [9,10]]. For anomalous
subdiffusion, α < 1, U is a random variable, different from the
ensemble average. This behavior of the time average results
from the weak ergodicity breaking of the subdiffusing system.
Similar results hold when U (x) is not necessarily positive: the
Laplace transform A → p is replaced by a Fourier transform,
and in Eq. (37) p is replaced by −ip.

IV. APPLICATIONS: WEAK ERGODICITY BREAKING

In this section, we present two applications of the fractional
Feynman-Kac equation: the occupation fraction in a box
and the time-averaged position in a harmonic potential. We
demonstrate weak ergodicity breaking in both cases and
investigate the convergence to the asymptotic limits.

A. The occupation fraction in the positive half of a box

We study the problem of the occupation time in x > 0 for
a subdiffusing particle moving freely in the box extending
between [−L

2 ,L
2 ] [7,8,10].

1. The distribution

Define the occupation time in x > 0 as T+(t) =∫ t

0 �[x(τ )]dτ [namely U (x) = �(x)]. To find the PDF of T+,
we write the backward fractional Feynman-Kac equation (31)
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in Laplace s space:

sGx0 (p,s) − 1

=
⎧⎨
⎩

Kαs1−α ∂2

∂x2
0
Gx0 (p,s), x0 < 0,

Kα(s + p)1−α ∂2

∂x2
0
Gx0 (p,s) − pGx0 (p,s), x0 > 0.

(39)

Equation (39) is subject to the following boundary conditions:

∂

∂x0
Gx0 (p,s)

∣∣∣∣
x0=± L

2

= 0.

The solution of the preceding equation is

Gx0 (p,s) =
⎧⎨
⎩

C0 cosh
[(

L
2 + x0

)
sα/2√
Kα

]+ 1
s
, x0 < 0,

C1 cosh
[(

L
2 − x0

) (s+p)α/2√
Kα

]+ 1
s+p

, x0 > 0.

(40)

Matching G and its derivative at x0 = 0 yields the following
equations:

C0 cosh

(
Lsα/2

2
√

Kα

)
+ 1

s
= C1 cosh

[
L(s + p)α/2

2
√

Kα

]
+ 1

s + p
,

C0s
α/2 sinh

(
Lsα/2

2
√

Kα

)
= −C1(s + p)α/2 sinh

[
L(s + p)α/2

2
√

Kα

]
.

Solving these equations for C0 and C1 and substituting x0 = 0
in Eq. (40) yields, after some algebra,

G0(p,s)

= sα/2−1 tanh[(sτ )α/2] + (s + p)α/2−1 tanh{[τ (s + p)]α/2}
sα/2 tanh[(sτ )α/2] + (s + p)α/2 tanh{[τ (s +p)]α/2} ,

(41)

where we defined τα ≡ L2/(4Kα). This equation was previ-
ously derived in Ref. [8] using a different method. Equation
(41) describes the PDF of T+ for all times, but cannot be
directly inverted. For long times, or (sτ )α/2 	 1,

G0(p,s) ≈ sα−1 + (s + p)α−1

sα + (s + p)α
. (42)

This can be inverted to give the equilibrium PDF of λ ≡ T+/t ,
or the occupation fraction [8,38],

G(λ) = sin(πα)

π

λα−1(1 − λ)α−1

λ2α + (1 − λ)2α + 2 cos(πα)λα(1 − λ)α
.

(43)

Equation (43) is called Lamperti’s PDF [39]. Note that
Eqs. (42) and (43) can also be derived directly from the general
long-times limit, Eqs. (37) and (38), respectively. Whereas
the PDF of the occupation fraction for a free particle is also
Lamperti’s [8,25], in the free-particle case the exponent is α/2,
compared to α here. An equation for Gx0 (p,s) for x0 �= 0 can
be derived in exactly the same manner, leading, for long times,
to Eqs. (42) and (43), as expected.

For α = 1, it is easy to see from Eq. (42) that G(T+,t) =
δ(T+ − t/2) or λ = 1/2. This is the expected result based on
the ergodicity of normal diffusion. As α decreases below 1, the
delta function spreads out to form a W shape. For even smaller

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

λ

G
(λ

)

α = 1
α = 0.75
α = 0.5
α = 0.25

α=0.75

α=1

α=0.5 α=0.25

FIG. 1. (Color online) The PDF of the occupation fraction in
half-space for a particle in the box [−1,1]. CTRW trajectories
were generated as explained in Appendix B, with x0 = 0. For
each trajectory, the total time in x > 0, T+, was recorded, and the
occupation fraction, λ = T+/t , was calculated. The figure shows the
long-times PDF of the occupation fraction λ for α = 1, 0.75, 0.5,
and 0.25 (symbols). Lamperti’s PDF, Eq. (43), is plotted as lines (for
α = 1, the PDF of both simulations and theory was scaled by 3 for
visibility). While for α = 1, λ is very narrowly distributed around
1/2, for α < 1, the PDF becomes wider and even attains a U shape
for small enough α.

values of α (� 0.59 [40]), the peak at λ = 1/2 disappears
and the PDF attains a U shape, indicating that the particle
spends almost its entire time in one side only. For α → 0,
G(λ) = δ(λ)/2 + δ(λ − 1)/2, as expected. This behavior is
demonstrated and compared to simulations in Fig. 1. Details
on the simulation method are given in Appendix B.

For short times, (t/τ )α/2 	 1, we substitute in Eq. (41) the
limit (sτ )α/2  1,

G0(p,s) ≈ sα/2−1 + (s + p)α/2−1

sα/2 + (s + p)α/2
. (44)

In t space, this gives again the Lamperti PDF, but now with
index α/2. This is exactly the PDF of the occupation fraction
of a free particle, which is expected, because for short times
the particle does not interact with the boundaries [8]. It can
be shown that for short times, Gx0>0(T+,t) = δ(T+ − t), and
Gx0<0(T+,t) = δ(T+), as expected.

2. An application of the occupation time functional—The
first-passage time PDF

As a side note, we demonstrate how the fractional Feynman-
Kac equation for the occupation time can be applied in an
elegant manner to the problem of the first-passage time (FPT).
The FPT in the box [−L

2 ,L
2 ] is defined as the time tf it takes

a particle starting at x0 = −b (0 < b < L/2) to reach x =
0 for the first time [41]. A relation between the occupation
time functional of the previous subsection and the FPT was
proposed by Kac [42]:

Pr{tf > t} = Pr
{

max
0�τ�t

x(τ ) < 0
}

= lim
p→∞ Gx0 (p,t),

where as in the previous subsection, Gx0 (p,s) is the Laplace
transform of the PDF of T+ = ∫ t

0 �[x(τ )]dτ . The last equation
is true since Gx0 (p,t) = ∫∞

0 e−pT+Gx0 (T+,t)dT+, and thus,
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if the particle has never crossed x = 0, we have T+ = 0
and e−pT+ = 1, while otherwise T+ > 0, and for p → ∞,
e−pT+ = 0. Substituting x0 = −b and p → ∞ in Eq. (40) of
the previous subsection gives

lim
p→∞ G−b(p,s) = 1

s

⎧⎨
⎩1 −

cosh
[(

L
2 − b

)
sα/2√
Kα

]
cosh

(
Lsα/2

2
√

Kα

)
⎫⎬
⎭ . (45)

The first-passage time PDF satisfies f (t) = ∂
∂t

[1 − Pr{tf > t}].
We therefore have in Laplace space

f (s) =
cosh

[ (
L
2 − b

)
sα/2√
Kα

]
cosh

(
Lsα/2

2
√

Kα

) .

For long times, the small-s limit yields

f (s) ≈ 1 − b(L − b)

2Kα

sα.

For 0 < α < 1, inverting s → t ,

f (tf ) ≈ b(L − b)

2Kα|	(−α)| t
−(1+α)
f . (46)

Therefore, f (tf ) ∼ t
−(1+α)
f [compared to f (tf ) ∼ t

−(1+α/2)
f for

a free particle [25,32]], indicating that for α < 1,
〈
tf
〉 = ∞.

Equations (45) and (46) agree with previous work [8,43].

3. The fluctuations

Equation (41), giving G0(p,s) for the occupation time
functional, cannot be directly inverted. It can nevertheless be
used to calculate the first few moments using

〈T n
+〉s = (−1)n

∂n

∂pn
G0(p,s)

∣∣∣∣
p=0

,

where the subscript s indicates the equation is in Laplace
space. The first moment (for x0 = 0) is of course 〈T+〉 = t/2
or 〈λ〉 = 1/2. For the second moment,

〈T 2
+〉s = 4 − α

4s3
− α(sτ )α/2

2s3 sinh[2(sτ )α/2]
. (47)

For the long times, we take the limit of small s,

〈T 2
+〉s ≈ 2 − α

2s3
+ ατα

6s3−α
.

Inverting and dividing by t2, we obtain the fluctuations of the
occupation fraction, 〈(�λ)2〉t = 〈λ2〉t − 〈λ〉2

t ,

〈(�λ)2〉t ≈ 1 − α

4
+ α

6	(3 − α)

(
t

τ

)−α

. (48)

For α < 1 and t → ∞, we see from Eq. (48) that 〈(�λ)2〉 =
1−α

4 > 0. For α = 1, 〈(�λ)2〉 → 0 as t → ∞. The conver-
gence to the long-times limit exhibits a t−α decay. For x0 �= 0,
the first moment approaches 1/2 as 〈λ〉t ≈ 1/2 + x0(L−|x0|)

4Kα	(2−α) t
−α

and the fluctuations remain the same as in Eq. (48) up to order
t−α .

For short times (and x0 = 0), taking the limit (sτ )α/2  1
in Eq. (47) gives 〈T 2

+〉s ≈ 4−α
4s3 , from which

〈(�λ)2〉t ≈ 1 − α/2

4
. (49)
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FIG. 2. (Color online) The fluctuations of the occupation fraction
in half-box. CTRW trajectories were generated as explained in
Appendix B (with x0 = 0), and the occupation fraction in half-box,
λ = T+/t , was calculated. The figure shows the fluctuations 〈(�λ)2〉
vs t for α = 0.4, 0.7, and 1 (symbols). Theory for long times, Eq. (48),
is plotted as dotted lines. The fluctuations are initially equal to their
free-particle counterpart, (1 − α/2)/4 [Eq. (49), indicated as dashed
lines], and then decay to their asymptotic value, (1 − α)/4 (also
indicated as dashed lines), as t−α . Only for α = 1 do the fluctuations
vanish for t → ∞.

This is the expected result, since for short times the PDF is
Lamperti’s with index α/2 [Eq. (44)].

The fluctuations 〈(�λ)2〉 are plotted versus t in Fig. 2 and
agree well with Eq. (49) for short times and with Eq. (48) for
long times. As expected, the approach to the asymptotic limit
is slower as α becomes smaller.

B. The time-averaged position in a harmonic potential

We consider the time-averaged position, x(t) =
1
t

∫ t

0 x(τ )dτ , for a subdiffusing particle in a harmonic
potential, V (x) = mω2x2/2 (fractional Ornstein-Uhlenbeck
process [31,44]).

1. The distribution

We first study the PDF in the long-times limit using the
general equation (38). Define the second moment in thermal
equilibrium as 〈x2〉th = kBT /(mω2). Measuring x in units of√

〈x2〉th, we have for t → ∞,

G(x) = 1√
〈x2〉th

g

(
x√

〈x2〉th

)
,

where

g(y) = sin(πα)

π

I<
α−1(y)I>

α (y) + I>
α−1(y)I<

α (y)

[I>
α (y)]2 + [I<

α (y)]2 + 2 cos(πα)I>
α (y)I<

α (y)
,

(50)

with

I<
α =

∫ ∞

y

e− x2

2 (x − y)αdx, I>
α =

∫ y

−∞
e− x2

2 (y − x)αdx.

Using MATHEMATICA, we could express the solution of the
integrals in Eq. (50) in terms of Kummer’s functions. The
full expression is given in Appendix C [Eq. (C1)]. It can be
shown that for α = 1, G(x) = δ(x), as expected for an ergodic
system [9,10]. For α < 1, G(x) has a nonzero width, and when
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FIG. 3. (Color online) The PDF G(x,t) for a particle in a binding
harmonic field. CTRW trajectories were generated using the method
described in Appendix B, with x0 = 0. Top panel: Simulation results
for long times for α = 0.25, 0.5, 0.75, and 1 (symbols). Theory for
t → ∞, Eq. (50), is plotted as solid lines (for α = 1, the PDF of both
simulations and theory was scaled by 2 for visibility). For α = 1,
the distribution is a delta function, whereas for α < 1, x is a random
variable even for long times, indicating ergodicity breaking. Bottom
panel: Simulation results for the PDF of x for a number of short
times and for α = 0.25, 0.5, and 1 (symbols). The plot illustrates the
free-particle scaling form, Eq. (51).

α → 0, G(x) =
√

mω2

2πkBT
exp[−mω2x2

2kBT
], which is the Boltzmann

distribution, since for α → 0, x → x [9,10]. For x 	
√

〈x2〉th

(y 	 1), g(y) has a Taylor expansion around y = 0 of the
form g(y) = 	( α

2 ) tan( πα
2 )√

2π	( 1+α
2 )

+ O(y2). For x 
√

〈x2〉th (y  1),

g(y) ∼ 	(α) sin(πα)√
2π3

y−2αe−y2/2, which gives the expected results
for α → 0 and α = 1. Equation (50) is plotted and compared
to simulations in the top panel of Fig. 3.

For short times, tα 	 〈x2〉th/Kα , and for x0 = 0, the
particle is at the minimum of the potential and therefore
behaves as a free particle. For the free-particle case, we have
previously shown the scaling form [25]

G(x,t) = 1√
Kαtα/2

h

(
x√

Kαtα/2

)
, (51)

where h(y) is a dimensionless scaling function. This behavior
is numerically demonstrated in the bottom panel of Fig. 3.

2. The fluctuations

The PDF of the time-averaged position was shown in the
previous subsection to have a nontrivial limiting form for t →
∞ [Eq. (50)] and t → 0 [Eq. (51)]. However, the shape of

the PDF for other times is unknown. In this subsection, we
show that using the fractional Feynman-Kac equation, we can
determine the width of the distribution for all times.

Let us write the forward equation in (p,s) space for the
functional A = xt = ∫ t

0 x(τ )dτ and for x0 = 0. Since A is not
necessarily positive, p here is the Fourier pair of A and we use
Eq. (28) of Sec. II A 3:

sG(x,p,s) − δ(x) = ipxG(x,p,s)

+Kα

[
∂2

∂x2
+ ∂

∂x

mω2x

kBT

]
[s − ipx]1−αG(x,p,s). (52)

To find 〈A2〉, we use the relation

〈A2〉s = −
∫ ∞

−∞

∂2

∂p2
G(x,p,s)

∣∣∣∣
p=0

dx.

Operating on both sides of Eq. (52) with − ∂2

∂p2 , substituting
p = 0, and integrating over all x, we obtain, in s space,

s〈A2〉s = 2 〈Ax〉s , (53)

where we used the fact that the integral over the Fokker-Planck
operator vanishes. Equation (53) can be intuitively understood
by noting that ∂

∂t
〈A2〉 = 2〈AȦ〉 and that Ȧ = x. We next use

Eq. (52) and

〈Ax〉s = −i

∫ ∞

−∞
x

∂

∂p
G(x,p,s)

∣∣∣∣
p=0

dx

to obtain

s 〈Ax〉s = [1 + (1 − α)(sτ )−α]〈x2〉s − s(sτ )−α 〈Ax〉s ,

where we defined the relaxation time τα = kBT /(Kαmω2) =
〈x2〉th/Kα . Thus,

s 〈Axx〉s = (1 − α) + (sτ )α

1 + (sτ )α
〈x2〉s . (54)

Finally, to find 〈x2〉s , we use 〈x2〉s = ∫∞
−∞ x2G(x,p = 0,s)dx,

s〈x2〉s = 2Kαs−α − 2s(sτ )−α〈x2〉s ,
where we used the normalization condition

∫
G(x,p =

0,s)dx = 1/s. Thus,

s〈x2〉s = 2〈x2〉th

2 + (sτ )α
. (55)

Combining Eqs. (53), (54), and (55), we find

〈A2〉s = 4

s3

(1 − α) + (sτ )α

1 + (sτ )α
〈x2〉th

2 + (sτ )α
.

To invert to the time domain, we write 〈A2〉s as partial fractions,

〈A2〉s = 2〈x2〉th

s3

[
(1−α) + 2α

(sτ )α

1 + (sτ )α
− (1 + α)

(sτ )α

2 + (sτ )α

]
.

(56)

Inverting the last equation, we find

〈A2〉t = 〈x2〉tht
2

×{(1 − α) + 4αEα,3[−(t/τ )α] − 2(1 + α)Eα,3[−2(t/τ )α]},
(57)
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where we used the Laplace transform relation [45]∫ ∞

0
e−st t2Eα,3[−c(t/τ )α] dt = 1

s3

(sτ )α

c + (sτ )α
,

and Eα,3(z) is the Mittag-Leffler function, defined as [45]

Eα,3(z) =
∞∑

n=0

zn

	(3 + αn)
.

To obtain the fluctuations of the time-averaged position,
〈(�x)2〉t = 〈x2〉t − 〈x〉2

t , we use 〈x2〉t = 〈A2〉/t2 and 〈x〉t =
0 (since x0 = 0). This gives

〈(�x)2〉t = 〈x2〉th

×{(1−α) + 4αEα,3[−(t/τ )α]−2(1 + α)Eα,3[−2(t/τ )α]}.
(58)

Equation (58) is compared to simulations in the top panel of
Fig. 4.
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FIG. 4. (Color online) The fluctuations 〈(�x)2〉t for a particle in
a harmonic potential. Top panel: CTRW trajectories were generated
using the method described in Appendix B, with x0 = 0. Symbols
represent simulation results for α = 0.25, 0.5, 0.75, and 1. Theory,
Eq. (58), is plotted as solid lines (with the Mittag-Leffler functions
computed using the program of Ref. [46]). The straight dashed lines
are limt→∞〈(�x)2〉t = (1 − α)〈x2〉th. Except for α = 1, the fluctua-
tions do not vanish when t → ∞ and thus ergodicity is broken. The
dotted lines represent the long-times and short-times approximations,
Eqs. (59) and (60), respectively. Bottom panel: The fluctuations,
Eq. (58), plotted for a wide time range [10−15,1030]. Shown are 20
curves for α = 0.05,0.1,0.15, . . . ,1 (top to bottom). The fluctuations
display a maximum when α > 1/3 and a crossover when α � 0.15.
As expected, the fluctuations approach their asymptotic value slower
for smaller values of α.

To find the long-times behavior of the fluctuations (58), we
expand Eq. (56) for small s, invert, and divide by t2,

〈(�x)2〉t ≈ (1 − α)〈x2〉th + (3α − 1)〈x2〉th

	(3 − α)

(
t

τ

)−α

. (59)

Thus, for α < 1 and t → ∞, 〈(�x)2〉 = (1 − α)〈x2〉th > 0 and
ergodicity is broken. Only when α = 1 do we have ergodic
behavior 〈(�x)2〉 = 0. As we observed for the occupation
fraction [Eq. (48)], Eq. (59) also exhibits a t−α convergence
of the fluctuations to their asymptotic limit.

For short times,

Eα,3[−(t/τ )α] ≈ 1

2
− (t/τ )α

	(3 + α)
.

Therefore,

〈(�x)2〉t ≈ 4〈x2〉th

	(3 + α)

(
t

τ

)α

. (60)

Noting that 〈x2〉th/τ
α = Kα , we can rewrite Eq. (60) as

〈(�x)2〉t ≈ 4Kα

	(3+α) t
α , which is, as expected, equal to the

free-particle expression [25].
The bottom panel of Fig. 4 presents the fluctuations of

the time average (for x0 = 0) for a wide range of times and
for α = 0.05,0.1,0.15, . . . ,1. As expected from Eqs. (59) and
(60), the fluctuations increase from 〈(�x)2〉 = 0 at t → 0 to
their asymptotic value at t → ∞, (1 − α)〈x2〉th. However, as
can be seen also in Eq. (59), for α > 1/3 the fluctuations
display a maximum and decay to their asymptotic limit from
above. We found numerically that the value of the maximal
fluctuations scales roughly as α−1/2 (not shown). It can also
be seen that for almost all times and all values of α, the
fluctuations 〈(�x)2〉 decrease as the diffusion becomes more
“normal” (increasing α), as expected. However, this pattern
surprisingly breaks down for α � 0.15, for which there is a
time window when the fluctuations increase with α.

It is straightforward to generalize our results to any initial
condition with first moment 〈x0〉 and second moment 〈x2

0 〉. The
first moment of the time average is 〈x〉t = 〈x0〉Eα,2[−(t/τ )α],
which decays for long times as 〈x〉t ≈ 〈x0〉

	(2−α) (
t
τ

)−α . The
second moment is

〈x2〉t = (1 − α)〈x2〉th + 2α
[
2〈x2〉th − 〈

x2
0

〉]
Eα,3 [−(t/τ )α]

+ 2(1 + α)
[〈
x2

0

〉− 〈x2〉th
]
Eα,3 [−2(t/τ )α] , (61)

from which the fluctuations directly follow. For long times,

〈(�x)2〉t ≈ (1 − α)〈x2〉th

+ (3α − 1)〈x2〉th + (1 − α)
〈
x2

0

〉
	(3 − α)

(
t

τ

)−α

.

For short times,

〈(�x)2〉t ≈ 〈(�x0)2〉 − 2

[ 〈(�x0)2〉
	(2 + α)

− 2〈x2〉th

	(3 + α)

](
t

τ

)α

,

where 〈(�x0)2〉 = 〈x2
0 〉 − 〈x0〉2. According to the last two

equations, if the system is already in equilibrium at t = 0
such that 〈x2

0 〉 = 〈x2〉th, the fluctuations decay monotonically,
for all α, from 〈x2〉th at t = 0 to (1 − α)〈x2〉th at t → ∞.
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For α = 1 (and x0 = 0), we find the known result [47]:

〈(�x)2〉t = 〈x2〉th

(
t

τ

)−2(
4e−t/τ − e−2t/τ + 2t

τ
− 3

)
(62)

To derive the preceding equation, we used Eq. (58) and the
relation E1,3(z) = [ez − z − 1]/z2. Since the ordinary (α = 1)
Ornstein-Uhlenbeck process is a Gaussian process [48], the
PDF of x is a Gaussian too, with the variance indicated by
Eq. (62).

3. Fractional Kramers equation

Finally, we remark on the connection between the fractional
Feynman-Kac equation of this section and an important class
of processes in which the velocity of the particle is the quantity
undergoing subdiffusion. For example, consider a Rayleigh-
like model in which a free, heavy test particle of mass M

collides with light bath particles at random times, but where the
times between collisions are distributed according to ψ(τ ) ∼
τ−(1+α). The PDF of the velocity of the test particle, G(v,t),
satisfies the fractional Fokker-Planck equation [44]:

∂

∂t
G(v,t) = γα

[
kBT

M

∂2

∂v2
+ ∂

∂v
v

]
D1−α

RL,tG(v,t),

where D1−α
RL,t is the Riemann-Liouville fractional derivative op-

erator (see Sec. II A 3) and γα is the damping coefficient. Since
in the collisions model x(t) = ∫ t

0 v(τ )dτ , x is a functional of
v(τ ), and therefore the joint PDF of v and x, G(v,x,t), is
described by our fractional Feynman-Kac equation. Denoting
the Fourier transform x → p of G(v,x,t) as G(v,p,t), we have
[see Eq. (28)]

∂

∂t
G(v,p,t) = ipvG(v,p,t)

+ γα

[
kBT

M

∂2

∂v2
+ ∂

∂v
v

]
D1−α

t G(v,p,t), (63)

where D1−α
t is the fractional substantial derivative, which here

is equal in Laplace s space to (s − ipv)1−α . Within this model,
for 0 < α < 1 the motion is ballistic, 〈x2〉 ∼ t2, while for
α = 1 it is diffusive, 〈x2〉 ∼ t [see Eq. (59)]. Equation (63)
is exactly equal to the fractional Kramers equation derived by
Friedrich and co-workers [26,27], and in that sense, our results
generalize their pioneering work.

V. SUMMARY AND DISCUSSION

Time averages of subdiffusive continuous-time random
walks (CTRW’s) in binding fields are known to exhibit weak
ergodicity breaking and were thus a subject of recent interest.
In this paper, we developed a general equation for time
averages of CTRW [Eq. (22)], which can be seen as a fractional
generalization of the Feynman-Kac equation, and is good
for all observables, potentials, and times. We also derived a
backward equation (31), which is useful in practical problems.

We investigated two applications of our equations: the
occupation fraction in the positive half of a box, and the
time-averaged position in a harmonic potential. In both
cases, we obtained expressions for the PDF for long times
and short times and calculated the fluctuations. We found
that the fluctuations decay as t−α to their asymptotic

limit, which is nonzero for anomalous diffusion, α < 1.
Our fractional Feynman-Kac equation thus provides a gen-
eral tool for the study of the kinetics of weak ergodicity
breaking.

Recently, the occupation time functional has been stud-
ied in the context of dynamical systems with an infi-
nite (non-normalizable) invariant measure [49]. It remains
to be seen whether a framework similar to that of the
fractional Feynman-Kac equation could be developed for
general functionals of these processes. We also note that
while a derivation of the (integer) Feynman-Kac equation
using path integrals is long known [22], a path integral
approach to the fractional Feynman-Kac equation is only now
emerging [50].

ACKNOWLEDGMENTS

We thank David Kessler and Lior Turgeman for discussions
and the Israel Science Foundation for financial support. S. C.
thanks Erez Levanon for his hospitality during the course of
this project.

APPENDIX A: TIME-DEPENDENT FORCE

In our model of CTRW with a time-dependent force, the
jump probabilities are determined according to the force at the
time of the jump. To derive an equation for G(x,A,t) in that
case, we rewrite Eq. (7) as follows:

χ (x,A,t) = G0(x)δ(A)δ(t)

+
∫ t

0
ψ(τ )L(x + a,t)χ [x + a,A − τU (x + a),t − τ ]dτ

+
∫ t

0
ψ(τ )R(x − a,t)χ [x − a,A − τU (x − a),t − τ ]dτ.

(A1)

Note that the jump probabilities are time-dependent (but have
no memory). Laplace transforming A → p and t → s, using
the Laplace identity L{tf (t)} = − ∂

∂s
f (s),

χ (x,p,s) = G0(x)

+L

(
x + a, − ∂

∂s

)
ψ̂ [s + pU (x + a)]χ (x + a,p,s)

+R

(
x − a, − ∂

∂s

)
ψ̂ [s + pU (x − a)]χ (x − a,p,s).

Fourier transforming x → k,

χ (k,p,s) = Ĝ0(k) +
[

cos(ka) + i sin(ka)
aF

(−i ∂
∂k

, − ∂
∂s

)
2kBT

]

× ψ̂

[
s + pU

(
−i

∂

∂k

)]
χ (k,p,s).

Continuing as in Sec. II A 2, we find the formal solutions for
χ (k,p,s) and G(k,p,s) and then take the continuum limit. This
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gives

sG(k,p,s) − Ĝ0(k) = −pU

(
−i

∂

∂k

)
G(k,p,s) − Kα

[
k2 − ik

F
(−i ∂

∂k
, − ∂

∂s

)
kBT

][
s + pU

(
−i

∂

∂k

)]1−α

G(k,p,s).

Inverting k → x,s → t , we obtain the fractional Feynman-
Kac equation for a time-dependent force:

∂

∂t
G(x,p,t) = KαL(t)

FPD1−α
t G(x,p,t) − pU (x)G(x,p,t),

(A2)

where

L(t)
FP = ∂2

∂x2
− ∂

∂x

F (x,t)

kBT

is the time-dependent Fokker-Planck operator.

APPENDIX B: THE SIMULATION METHOD

The fractional Feynman-Kac equation describes the joint
PDF of x and A in the continuum limit of CTRW. In this
limit, a → 0 and Bα → 0, but the generalized diffusion
coefficient Kα = a2/(2Bα) [Eq. (21)] is kept finite [28].
We simulate trajectories of this process as follows [51].
We place a particle on a one-dimensional lattice in initial
position x0, where usually x0 = 0. We set the lattice spacing a

and the generalized diffusion coefficient Kα and determine
Bα = a2/(2Kα). Waiting times are then drawn, for α = 1,
from an exponential distribution, ψ(τ ) = e−τ/τ0/τ0, with mean
τ0 = B1. This is implemented by setting τ = −τ0 ln(u), where
u is uniformly distributed in [0,1]. For α < 1, we set τ0 =
[Bα/	(1 − α)]1/α and τ = τ0u

−1/α , which corresponds to
ψ(τ ) = Bα

|	(−α)|τ
−(1+α) with τ � τ0 [Eq. (5)]. After waiting

time τ , we move the particle right or left with probabilities
R(x) or L(x), respectively, as given by Eq. (14). For the har-
monic potential, Eq. (14) gives R(x) = [1 − ax/(2〈x2〉th)]/2

and L(x) = [1 + ax/(2〈x2〉th)]/2. Since the typical x is of
the order of

√
〈x2〉th, it is sufficient to choose a 	

√
〈x2〉th

to guarantee that 0 < R(x),L(x) < 1 (see discussion in Ref.
[43]). For the box, R(x) = L(x) = 1/2 and we make the
boundaries at x = ±L

2 reflecting.
The parameters we used in the simulations were as follows.

In all simulations, we used a = 0.1 or smaller, and each curve
represents at least 104 trajectories. For the occupation time
in a box, we set L = 2 and Kα = 1, and the final simulation
time in Fig. 1 was t = 103. For the time-averaged position in
the harmonic potential, we set Kα = 1/2 and 〈x2〉th = 1/2 (or
τα = 1). In Fig. 3, the final simulation times were as follows.
For the long-times limit (top panel), we used t = 107, 104,
103, and 103 for α = 0.25, 0.5, 0.75, and 1, respectively. For
the short times (bottom panel), we used t = 10−3, 10−2, and
10−1 for α = 1; t = 10−5, 10−4, and 10−3 for α = 0.5; and
t = 10−6, 10−5, and 10−4 for α = 0.25.

APPENDIX C: THE t → ∞ DISTRIBUTION
OF THE TIME-AVERAGED POSITION

IN A HARMONIC POTENTIAL

Consider the time-averaged position, x = 1
t

∫ t

0 x(τ )dτ ,
for a subdiffusing particle in a harmonic potential, V (x) =
mω2x2/2. Using the thermal second moment, 〈x2〉th =
kBT /(mω2), and for t → ∞, we have

G(x) = 1√
〈x2〉th

g

(
x√

〈x2〉th

)
,

where

g(y) = sin(πα)

π

{
ey2/2y	

(
α

2

)
	(1 + α)

[
M

(
1 − α

2
,
1

2
, − y2

2

)
U

(
1 + α

2
,
3

2
,
y2

2

)
+ 2M

(
1 − α

2
,
3

2
, − y2

2

)
U

(
α

2
,
1

2
,
y2

2

)]

+
√

2	(α)	

(
1 + α

2

)[
y2αM

(
1 + α

2
,
3

2
,
y2

2

)
U

(
1 + α

2
,
3

2
,
y2

2

)
+ 2M

(
1 + α

2
,
1

2
,
y2

2

)
U

(
α

2
,
1

2
,
y2

2

)]}

×
{

22+αy2	2

(
1 + α

2

)[
ey2

M2

(
1 − α

2
,
3

2
, − y2

2

)
− 2 cos(πα)M2

(
1 + α

2
,
3

2
,
y2

2

)]

+ 4
√

2ey2√
πy	(1 + α)M

(
1 − α

2
,
3

2
, − y2

2

)
M

(
−α

2
,
1

2
, − y2

2

)

+21+α	2

(
1 + α

2

)[
ey2

M2

(
−α

2
,
1

2
, − y2

2

)
+ 2 cos(πα)M2

(
1 + α

2
,
1

2
,
y2

2

)]

+ 2−αy2	2(1 + α)U2

(
1 + α

2
,
3

2
,
y2

2

)}−1

. (C1)

In the last equation, M(a,b,z) is the confluent hypergeometric (or Kummer’s) function of the first kind and U(a,b,z) is the
confluent hypergeometric (or Kummer’s) function of the second kind [52]. Equation (C1) is valid for y > 0. Due to the symmetry
of the potential, g(−y) = g(y).
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[21] I. M. Tolić-Nørrelykke, E.-L. Munteanu, G. Thon,

L. Oddershede, and K. Berg-Sørensen, Phys. Rev. Lett.
93, 078102 (2004).

[22] S. N. Majumdar, Curr. Sci. 89, 2076 (2005).
[23] M. Kac, Trans. Am. Math. Soc. 65, 1 (1949).
[24] L. Turgeman, S. Carmi, and E. Barkai, Phys. Rev. Lett. 103,

190201 (2009).
[25] S. Carmi, L. Turgeman, and E. Barkai, J. Stat. Phys. 141, 1071

(2010).
[26] R. Friedrich, F. Jenko, A. Baule, and S. Eule, Phys. Rev. Lett.

96, 230601 (2006).

[27] R. Friedrich, F. Jenko, A. Baule, and S. Eule, Phys. Rev. E 74,
041103 (2006).

[28] E. Barkai, R. Metzler, and J. Klafter, Phys. Rev. E 61, 132
(2000).

[29] T. Miyaguchi and T. Akimoto, Phys. Rev. E 83, 062101 (2011).
[30] I. M. Sokolov and R. Metzler, Phys. Rev. E , 67, 010101(R)

(2003).
[31] R. Metzler, E. Barkai, and J. Klafter, Phys. Rev. Lett. 82, 3563

(1999).
[32] E. Barkai, Phys. Rev. E 63, 046118 (2001).
[33] I. M. Sokolov and J. Klafter, Phys. Rev. Lett. 97, 140602 (2006).
[34] E. Heinsalu, M. Patriarca, I. Goychuk, and P. Hänggi, Phys. Rev.

Lett. 99, 120602 (2007).
[35] M. Magdziarz, A. Weron, and J. Klafter, Phys. Rev. Lett. 101,

210601 (2008).
[36] B. I. Henry, T. A. M. Langlands, and P. Straka, Phys. Rev. Lett.

105, 170602 (2010).
[37] S. Eule and R. Friedrich, Europhys. Lett. 86, 30008 (2009).
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