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Nonmonotonic settling of a sphere in a cornstarch suspension
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Cornstarch suspensions exhibit remarkable behavior. Here, we present two unexpected observations for a
sphere settling in such a suspension: In the bulk of the liquid the velocity of the sphere oscillates around a
terminal value, without damping. Near the bottom the sphere comes to a full stop, but then accelerates again
toward a second stop. This stop-go cycle is repeated several times before the object reaches the bottom. We show

that common shear thickening or linear viscoelastic models cannot account for the observed phenomena, and
propose a minimal jamming model to describe the behavior at the bottom.
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Concentrated particulate suspensions consist of a homoge-
neous fluid containing particles, larger than 1 wm. They can
be found everywhere, and their flow is important in nature,
industry, and even health care [1]. In spite of their significance,
many aspects of the flow of these dense suspensions remain
poorly understood. In order to study these materials, people
have used methods inspired by classical rheology, and typically
characterized them in terms of a constitutive relation of stress
versus shear rate [2-6]. A general result is that, when increas-
ing the shear rate, dense suspensions first tend to become less
viscous (shear thinning) and subsequently shear thicken.

Probably the most conspicuous example of a dense suspen-
sion is formed by a high concentration of cornstarch in water.
Recent rheological experiments in cornstarch have revealed
the existence of a mesoscopic length scale [6,7], a shear
thinning regime that terminates in a sudden shear thickening
[8], a dynamic jamming point [4], and fracturing [9]. Merkt
et al. [10] observed in a vertically shaken, thin layer of
cornstarch suspension that, among other exotic phenomena,
stable oscillating holes can be formed at certain frequencies
and amplitudes [10,11], which were subsequently described
using a phenomenological model based on a hysteretic
constitutive equation [12]. At present, however, we are still
far from a detailed understanding of dense suspensions.

In this Rapid Communication we subject a cornstarch
suspension to a basic experiment, in which we observe and
describe the settling of a spherical object in a deep bath of
suspension. This yields two interesting observations. In the
bulk, we find that the object velocity is oscillating in addition
to going toward a terminal value. Near the bottom we observe
a second phenomenon: The object comes to a full stop before
the bottom, but then accelerates again, and this stop-go cycle
can repeat up to seven times. We will show that both bulk and
bottom behavior are conceptually different from that observed
in a wide range of other fluids. We propose a jamming model
for the stop-go cycles near the bottom that specifically includes
the liquid-grain interactions.

Experiment. Our experimental setup is shown in Fig. 1(a).
It consists of a 12 x 12 x 30 cm? glass container containing a
mixture of cornstarch and liquid. For the liquid we use either
demineralized water or an aqueous solution of CsCl with a
density of 1.5 g/cm?, matching the density of the cornstarch
particles. Experiments actually showed negligible differences
between the density-matched and the unmatched liquid, except
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that for the unmatched liquid the suspension has to be stirred
well prior to the experiment to counteract sedimentation.
The cornstarch particles [Fig. 1(b)] are irregularly shaped and
have a relatively flat size distribution of 5-20 um. Although
we have varied the packing fraction ¢ of the cornstarch, for
the data presented here we have fixed it to the high value of
¢ = 0.44, for which the phenomena of interest are particularly
pronounced. All phenomena actually appear when ¢ > 0.38.
In a suspension of similarly sized spherical particles, we did
not observe the phenomena reported here.

The settling sphere isad = 4 cm diam pingpong ball, which
is filled with copper beads to vary the buoyancy corrected mass
= Msphere — psnd3/6 from O up to 137 g. Here, pgs is the
density of the suspension. To measure the trajectory of the
object inside the suspension, we follow tracers on a thin, rigid
metal wire that is attached to the top of the ball (as in Ref. [13])
with a high-speed camera imaging at 5000 frames/s. From
the trajectories the velocity and acceleration are determined
at each time ¢ using a local quadratic fit around 7 in a time
interval of 12 ms, corresponding to 60 measurement points.

In Fig. 2(a) we plot the time evolution of the velocity for
three different, buoyancy-corrected masses . For the smallest
mass (green/light gray curve), after some transient directly
following the impact (at t = 0), there is an approximately
exponential decay toward a terminal velocity, as would be
found in a Newtonian liquid. When we increase i1, we observe
a much more abrupt decrease toward a terminal velocity, but
in addition there are oscillations around this terminal value.
This is seen most clearly for the highest mass in Fig. 2(a)
(point 1). Second, instead of stopping at or very close to the
bottom—as would happen in a Newtonian liquid—the object
actually comes to a sudden, full stop (point 3) at ~10 mm
above the bottom for the highest n [Fig. 2(a), inset].!
Surprisingly, the object subsequently reaccelerates (4), only
to come to another stop slightly closer to the bottom. This
process is repeated several times until the bottom is reached.
The observed phenomena are also present when we release the
sphere from rest, but to avoid the long acceleration trajectory

! Careful examination of the data even reveals a very small negative
velocity, corresponding to a tiny bounce upward, which can be
interpreted as the elastic response of the jammed region of cornstarch
underneath the sphere.
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FIG. 1. (Color online) (a) Schematic view of the setup, consisting
of the container filled with the suspension, the settling sphere with
tracers attached, and a high-speed camera. For convenience, the
positive direction of the vertical coordinate x is chosen downward,
with x = 0 located at the bottom of the container. (b) Microscopic
picture of the cornstarch grains.

for small © we chose to impact the spheres with nonzero
initial velocities to maximize the time in which the bulk
effect is observable. To check that the bulk oscillations are
not caused by interactions with the side walls, we changed the
ratio of container to ball size, qualitatively leading to the same
phenomena.

The motion of the settling sphere is described by

mxX = pug + D, (D
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FIG. 2. (Color online) (a) Settling velocity x(¢) of the settling
sphere for three different masses u = 10, 52, and 122 g. The inset
shows the last part of the trajectory |x(¢)| for u = 122 g. (b) Drag D vs
velocity X of the heaviest sphere in (a) (u = 122 g). Note the different
scales in the right and left half of the plot, which correspond to the
bulk oscillations and the stop-go cycles at the bottom, respectively.
In the latter, the drag force that causes the ball to come to an abrupt
stop is up to ten times as large as gravity, and since it is limited by
our fitting procedure, in reality it could be even higher. The numbers
correspond to those in (a).
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where D is the drag the sphere experiences inside the
suspension and 7 = M phere + Magded 18 the total inertial mass,
including the added mass for which we will take the standard
result maqqeq = 0.5psd> /6. For a Newtonian fluid with a
high dynamic viscosity n we have D = 3mndx, leading
to an exponential decay toward the terminal velocity X7 =
ng/(Brnd). When we estimate the effective viscosity of our
cornstarch suspension by identifying the (average) plateau
velocities in Fig. 2(a), we find values between n = 0.87 and
3.96 Pa s, which are of the same order as found in Ref. [8],
leading to Reynolds numbers on the order of Re = 10. This
excludes that we are dealing with path instabilities associated
with wake instabilities at Re > 100 in Newtonian fluids (see,
e.g., Ref. [14]). In addition, we can also rule out a dominant
influence from history forces arising from the buildup of the
boundary layer for an accelerating object (e.g., the Basset
force), as these are expected to be more pronounced for the
lighter objects, in contrast to our observations.

We use Eq. (1) to determine the drag D on the sphere as a
function of its velocity [Fig. 2(b)]. From this plot it is clear that
a given velocity in general corresponds to more than one value
of the drag. Since non-Newtonian fluids with a monotonic
stress-strain curve—as, e.g., power-law models for shear
thickening and thinning fluids or yield stress fluid models—
will lead to a single-valued drag-velocity curve, we necessarily
need to turn to a model that includes some history dependence.

Bulk oscillations. The behavior in the bulk is reminiscent of
that of an object sinking in viscoelastic or stratified liquids for
which oscillations are known to occur [15-17], albeit with
two major experimental differences: First, for viscoelastic
fluids there is an elastic rebound (oscillations in the position),
whereas for our suspension the object continues to sink, with
oscillations in the velocity. Second, in viscoelastic fluids the
oscillation is observed to be strongly damped. From a modeling
perspective, the damping term in linear viscoelastic fluid
models accounts for both the decay of the oscillations and
the approach of a terminal velocity.?> Clearly, such models fail
to describe our observations: The terminal velocity is reached
very rapidly after impact, while the oscillations persist without
measurable damping.

Another approach is to consider a hysteretic model, such as
the one proposed by Deegan [12] to explain why the “persistent
holes” in vertically shaken cornstarch [10] do not collapse
under hydrostatic pressure. We adapt this model by using a
drag force D in Eq. (1) which displays two states of damping
with different effective viscosities: D = — B;x when |x| falls
below x; and D = — B»x when |x| rises above x,. Here, B; <
B and X; < X,, such that there exists a hysteresis loop. Such
a model is capable of at least qualitatively describing any
of our measurement series, with oscillations occurring when
|B1x| < ug < |Byx|: After impact, the object decelerates in
the direction of a terminal velocity ug/B; until it reaches x,
after which a jump to the lower drag force branch occurs.
Then it starts to accelerate toward a second terminal value
g/ B, until X, is reached and the system jumps back to the

2We have used the Maxwell model and variations thereof with one
spring and up to two dashpots.
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FIG. 3. (Color online) Bulk oscillations: Average (terminal)
velocity, maximum and minimum velocity (when discernible), and
equivalent amplitude of the oscillations, all as a function of the
buoyancy-corrected sphere mass . Oscillations are only discernible
for u > 50 g. Clearly, the minimum and maximum velocities—
which should be identified with x; and x, in the model (see text),
respectively—depend on .

higher branch (D = —B,x). This cycle repeats indefinitely,
producing undamped oscillations all the way up to the bottom.

An important drawback of the model, however, is that the
experimental findings can only be reproduced by adjusting X;
and x, for every w. This can be appreciated from Fig. 3, where
we plot the average (terminal) velocity and the equivalent
oscillation amplitude® of the object in the bulk versus . We see
that both the terminal velocity, which should be identified with
(%1 + X2)/2 in the model, and the equivalent amplitude (=X, —
X1) increase with the buoyancy corrected mass. A similar trend
was observed in Deegan’s rtheometer experiments [12]. This
implies that the model for the drag force cannot be interpreted
as a constitutive model for the cornstarch suspension, therewith
greatly diminishing its predictive value.

Stop-go cycles at the bottom. Near the bottom we find a
clear hysteresis between a situation with a sudden, violent
deceleration [the large semicircular excursions of the drag
force in the left-hand side of Fig. 2(b)] and a reacceleration
period with a small, Stokes-like drag force D [the almost
horizontal parts in the same plot; also see the corresponding
X(t) curves in Fig. 2(a)]. We interpret these stop-go cycles
as follows: While the sphere is moving down, the cornstarch
below it is slowly being compressed such that at a certain
moment a jammed network of particles forms between the
object and the container bottom. This jammed layer is
responsible for the large force that brings the sphere to a full
stop. Stresses build up in the network and therefore also within
the interstitial fluid, which triggers a Darcy’s flow in the porous
medium formed by the cornstarch grains, allowing the network
to relax through (small) particle rearrangements. This causes
the jammed region to unjam and the object will start moving
again. Such hardening of a cornstarch suspension has also
been reported in Ref. [18], where a ball was pushed toward the
bottom, leaving an indent on a clay layer on the bottom. This
was attributed to forces being transmitted through a hardened
layer beneath the ball.

3The equivalent oscillation amplitude is defined as +/2 times the
standard deviation of the velocity signal, which would be equal to the
amplitude for a sinusoidal signal.
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We model this process by coupling Eq. (1) to an equation
for an order parameter which indicates whether or not the
cornstarch suspension layer between the sphere and the bottom
is jammed. We will take this to be the local particle volume
fraction ¢. When ¢ exceeds a critical value ¢, the layer is
jammed and the drag force D is assumed to become infinitely
large until the sphere comes to a standstill. This leads to the
following modification of Eq. (1):

mi =ug+ D when ¢ < @ 2
x=0 when ¢ > ¢ |’
with D = —Bx. The equation for the time rate of change of

the packing fraction ¢ should contain a term that increases
¢ proportional to the compression rate —x/x of the—
cylindrical—layer of cornstarch below the sphere, which is
the process by which the layer jams. Second, there should be
a term that decreases ¢ through a relaxation process toward its
equilibrium, bulk value ¢¢q. This yields

b= ‘Cf‘c — k(¢ — eg)- 3)

in which ¢ and « are the proportionality constants of the
compression and relaxation processes, respectively. Note that
k! constitutes a time scale for the relaxation dynamics. The
critical packing fraction ¢, is the value at which the cornstarch

suspension dynamically jams. It must lie in between the
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FIG. 4. (Color online) (a) Stop-go cycles: Comparison of the
experimental velocity (solid lines) and that in the model (dashed
blue lines) vs time for three different masses (u = 17, 77, and
132 g from top to bottom). Note that the time axis has the same scale
in all three plots. (b) Stop-go cycles: Comparison of the reacceleration
time At (blue squares) and the maximum velocity X,y (red crosses)
reached after the first stop as a function of the buoyancy corrected
mass [, for both the experiment (symbols) and model (lines).
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static, sedimented (0.44) and the maximally compacted (0.57)
value [19]. From creating the densest, still flowing cornstarch
suspension in our laboratory, we estimate that ¢, = 0.46 at
most. As a result, ¢ only varies marginally during the process,
in agreement with recent research where during jamming of a
cornstarch suspension in a Couette cell no density differences
were measured within experimental accuracy (0.01) of the
Magnetic Resonance Imaging (MRI) device used [8].

In Fig. 4(a) we compare the above model to our experiments
for three different masses. We find that for a single value
for &« = 40 s~! and ¢ = 0.025,* the model provides a reason-
ably good description of the stop-go cycles for all masses.
Moreover, plotting the duration Ar of a stop-go cycle and the
maximum velocity Xma.x reached after the first stop yields the
correct trend [Fig. 4(b)]. The fact that the second and higher
stop-go cycles seem to be predicted too strong and fast by the
model may be partly explained from the one dimensionality
of the model, which does not fully describe the geometry of
the settling sphere. Indeed, the model matches even better to
preliminary experiments with a cylinder.

Finally, we connect the relaxation time scale x~' from
Eq. (3) to Darcy’s law which, combined with continuity for an
incompressible medium, leads to the porous medium equation
0¢/dt = (k/n,)V>A P (see Ref. [20]). Here 1, is the dynamic
viscosity of water, AP the pressure, and k the permeability,
which is estimated using the Kozeny-Carman relation k =
d;(l — ¢)?/(150¢%), with d, the average grain diameter and
¢ ~ ¢eq. The left-hand side of the porous media equation is
equal to the relaxation term in Eq. (3), i.e., k A¢. The Laplacian

4The value B we found near the bottom was fixed at 10 kg/s. The
best fit for the parameters B; and B, lies at 5 and 15 kg/s if we look
at the experiment with the highest mass, thus in the same order of
magnitude.
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V2 A P can be estimated as the ratio of the pressure generated in
the packing due to the buoyancy-corrected weight of the sphere
[AP = 4ug/(wd?)] divided by the square of the typical length
scale L over which the relaxation flow needs to take place to
unjam the suspension. Taking the best-fit value k = 40 s~
and A¢ = ¢ — eq = 0.02 yields L ~ 100d,. This is of the
same order as the mesoscopic length scale found by Bonnoit
et al. [7], dominating the dynamics of highly concentrated
cornstarch suspensions.

In conclusion, we presented experiments of objects set-
tling into a bed of a cornstarch suspension, which revealed
pronounced non-Newtonian behavior: Instead of reaching a
terminal velocity and monotonously stopping at the bottom,
the object’s velocity oscillates within the bulk and goes
through a series of stop-go cycles at the bottom. Common
shear thickening and linear viscoelastic models fail to account
for the observed phenomena, and we proposed a jamming
model to describe the behavior at the bottom, which is in
fair agreement with the experiment. A remaining question
is to what extent a similar model would be able to explain
the oscillations in the bulk. One could imagine that during
the downward motion a layer of (nearly) jammed cornstarch
forms around the sphere, as also proposed recently in Ref. [18],
which somewhat increases drag and slows it down. This
lower velocity, in turn, would allow the relaxation process
to dissolve part of the jammed layer and the object would
start to accelerate again. These competing effects would thus
induce the oscillatory motion observed in the bulk. Clearly,
more research is necessary to quantitatively substantiate such
a mechanism.
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