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Comment on “Evolutionary method for finding communities in bipartite networks”
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In a recent paper, Zhan, Zhang, Guan, and Zhou [Phys. Rev. E 83, 066120 (2011)] presented a modified
adaptive genetic algorithm (MAGA) tailored to the discovery of maximum modularity partitions of the node set
into communities in unipartite, bipartite, and directed networks. The authors claim that “detection of communities
in unipartite networks or in directed networks can be transformed into the same task in bipartite networks.”
Actually, some tests show that it is not the case for the proposed transformations, and why. Experimental results
of MAGA for modularity maximization of untransformed unipartite or bipartite networks are also discussed.
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Networks, or graphs, are increasingly used for modeling
and optimization of complex systems in many fields [1]. A
network G = (V,E) consists of a set V of nodes, represented
by points, and a set E of edges, represented by lines joining
pairs of points. A simple, unipartite network has no multiple
edges or loops. A bipartite network G = (V1,V2,E) has two
subsets of nodes V1 and V2 and all its edges join pairs of nodes
in different subsets. A network is directed if its edges have an
orientation, i.e., go from an initial node to a terminal one.

A basic problem is to find communities, or modules, in such
networks, i.e., subsets of nodes that are more likely to be joined
pairwise by an edge than nodes in different modules. Various
authors have given mathematical expressions for this problem.
In particular, Newman and Girvan [2] have proposed an
attractive objective function called modularity, and defined it as

Q = (fraction of edges within communities)

− (expected fraction of such edges).

Modularity maximization has been extensively studied, first
in unipartite networks, and more recently, in bipartite networks
and other generalizations. Scores of heuristics have been
proposed as well as a few exact algorithms. Heuristics rely
on a large variety of approaches. In a recent paper [3], Zhan,
Zhang, Guan, and Zhou present a modified adaptive genetic
algorithm (MAGA) and apply it to modularity maximization
in unipartite and bipartite networks. Moreover, these authors
claim that “detection of communities in unipartite networks
or in directed networks can be transformed into the same task
in bipartite networks.” In order to discuss this claim, we first
recall the definition of modularity [2]:

Q = 1

2M

N∑
i=1

N∑
j=1

[
Ai,j − kikj

2M

]
δ(gi,gj ), (1)

where M is the number of edges of the network, N is the num-
ber of nodes, Ai,j is an element of the adjacency matrix equal
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to 1 if nodes i and j are joined by an edge and 0 otherwise, and
ki and kj are, respectively, the degrees of nodes i and j , that is,
the number of edges incident with i and with j . Finally, gi and
gj are the communities to which belong nodes i and j , and δ is
the Kronecker symbol equal to 1 if gi and gj are the same and
0 otherwise. The values of Q range from −1/2 to 1 (Ref. [4],
Lemma 1). Modularity maximization in unipartite networks is
NP-complete in the strong sense (Ref. [4], Theorem 3). To the
best of our knowledge, the complexity status of modularity
maximization in bipartite networks is an open problem.

Consider now a bipartite network. According to Barber [5]
and Leicht and Newman [6], modularity becomes

Qb = 1

M

p∑
i=1

N∑
j=p+1

[
Ãi,j − kikj

M

]
δ(gi,gj ), (2)

where V1 = {1, . . . ,p}, V2 = {p + 1, . . . ,N}, and the adja-
cency matrix Ab is

Ab =
[

0p×p Ãp×q

(ÃT)q×p 0q×q

]
.

Optimization problems with or without constraints can
either be solved directly or transformed into another problem
and then solved. Such transformations must be justified in
every case. They have two advantages, which would be, for
modularity maximization, to unify somewhat the field and
to bring to bear heuristics for bipartite maximization on the
solution of modularity maximization problems in unipartite or
directed networks.

Zhan et al. [3] propose the following transformation from a
unipartite to a bipartite network: each node i of the original net-
work is represented by two nodes Ai and Bi , and each edge i −
j is represented by two edges Ai − Bj and Aj − Bi . This trans-
forms a unipartite network with N nodes and M edges into a
corresponding bipartite network with 2N nodes and 2M edges.
An illustration is given in Fig. 1, borrowed from their paper.

In order to check for equivalence, the maximum modularity
of the network in Fig. 1(a) has been computed with the
clique-partitioning algorithm [7,8]. This maximum modularity
is equal to 0.111 111, and corresponds to a partition in two
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FIG. 1. Transformation of a simple unipartite network into a
bipartite one. (a) A unipartite network with five nodes and six edges.
(b) The bipartite network corresponding to (a).

modules g1 = {1,2,4} and g2 = {3,5}. To the best of our
knowledge there is, as yet, no exact algorithm for modularity
maximization in bipartite networks. Therefore we used a
heuristic, i.e., LPAb’ [9], to compute the maximum modularity
of network 1(b). The near-optimal (or possibly optimal) parti-
tion obtained has a modularity of Qb = 0.347 222 correspond-
ing to a partition in two modules g1 = {A1,A3,B2,B4,B5}
and g2 = {A2,A4,A5,B1,B3} (this solution is not unique;
another near-optimal one is g1 = {A1,A2,A3,B4,B5} and g2 =
{A4,A5,B1,B2,B3}). This example refutes the claim cited
above.

Justification of the authors’ claim is based on the three
equations:

Qb = 1

2M

N∑
i=1

2N∑
j=N+1

[
Ãi,j − kikj

2M

]
δ(gi,gj )

= 1

2M

N∑
i=1

N∑
j ′=1

[
Ãi,N+j ′ − kikN+j ′

2M

]
δ(gi,gN+j ′ )

= 1

2M

N∑
i=1

N∑
j=1

[
Ai,j − kikj

2M

]
δ(gi,gj ) = Q. (3)

The first line of (3) follows from the definition of Qb, taking
into account that the bipartite network (b) has 2N nodes and
2M edges. Going from the first equation to the second one is
a standard change of indices. The last equation is obtained by
going back from Ab to A (or, in other words, focusing on the
right upper square submatrix Ã of Ab). It is implicitly assumed
that the partition into communities does not change. This is
expressed by the statement “where we have made use of the fact

FIG. 2. Transformation of a simple directed network into a
bipartite one. (a) A directed network with five nodes and six edges.
(b) The bipartite network corresponding to (a).

that the node Ai and Bi should be in an identical community,”
but as clearly shown by the example, this is not always true.
Ai and Bi can be in different communities of the bipartite
network. Indeed, it is likely to be so as, by construction, they
are never joined by an edge.

One could then add explicit constraints specifying that
each pair of nodes Ai and Bi must belong to the same
community. Such constraints are usually easy to express, e.g.,
by identifying boolean variables for the assignment of entities
to communities. However, if one adds some constraints,
one gets into a different class of problems than modularity
maximization in bipartite networks. This optimization problem
with constraints will need a new or modified heuristic, as the
heuristics for modularity maximization in bipartite networks
of the literature do not apply anymore. Of course, one could
use the constraints for each pair of nodes to merge them, but
that brings one back to the original unipartite case.

It is hard to see what advantage there would be to transform
a unipartite network into a larger bipartite one with constraints.
Indeed, in the paper upon which we comment, when consid-
ering unipartite networks in their computational experiments,
the authors apply MAGA directly to these networks without
transforming them into bipartite ones.

TABLE I. Maximum values of modularity Q for real-world
bipartite networks obtained by heuristics LPAb+ and MAGA.

Network Nodes Edges Q LPAb+ Q MAGA

Southern women 18 + 14 89 0.3455 0.3455
Scotland interlock 86 + 131 348 0.7091 0.7093
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TABLE II. Maximum values of modularity Q for real-world unipartite networks obtained by heuristics SS-ML, LPAm+, and MAGA.
Computing times for LPAm+ on a 2.53-GHz Intel Core 2 Duo CPU and MAGA on a PC with two 2.93-GHz Intel processors.

SS-ML LPAm+ MAGA

Network Nodes Edges Q Q Time Q Time

Zachary 34 78 0.420 0.420 0.014 s 0.420 0.1 s
Jazz 198 2742 0.445 0.445 0.368 s 0.445 19 min
C. elegans 453 2025 0.446 0.452 1.247 s 0.452 12 min
e-mail 1133 5451 0.577 0.582 3.589 s 0.581 72 min
PGP 10680 24316 0.884 0.884 114.221 s 0.881 610 min
Cond-mat 27519 116181 0.814 0.755 461.599 s 0.802 3517 min

Zhan et al. [3] (see also [10]) propose a transformation
analogous to the previous one of a directed network into
a bipartite one. A node i is represented by two nodes Ai

and Bi and a directed edge from i to j as an (undirected)
edge between Ai and Bj . This transforms a directed network
with N nodes and M directed edges into a corresponding
bipartite network with 2N nodes and M undirected edges.
An illustration is given in Fig. 2. The argument defending the
claim that this transformation does not change the modularity
value is similar to the case of the transformation from the
unipartite to the bipartite. It relies on the three equations (4):

Qb = 1

M

N∑
i=1

2N∑
j=N+1

[
Ãi,j − kikj

M

]
δ(gi,gj )

= 1

M

N∑
i=1

N∑
j ′=1

[
Ãi,N+j ′ − kikN+j ′

M

]
δ(gi,gN+j ′ )

= 1

M

N∑
i=1

N∑
j=1

[
Ai,j − kout

i kin
j

M

]
δ(gi,gj ) = Q, (4)

where the symbols are defined above, except for the
half-degrees kout

i and kin
j , which are equal to the number of

directed edges going out of i and into j , respectively. Once
more, it is assumed that each pair of nodes Ai and Bi belongs
to the same community.

Optimizing modularity of network 2(a), with the clique
partitioning algorithm previously mentioned, gives an optimal
partition into two communities g1 = {3,5} and g2 = {1,2,4}
with a modularity of Q = 0.111 111. Computing the
maximum modularity of the network 2(b) with LPAb’
leads to a partition into four communities g1 = {A1,B2},
g2 = {A2,B4}, g3 = {A3,B5}, and g4 = {A4,A5,B1,B3} with
a modularity of Qb = 0.666 667.

Zhan et al. [3] mention that MAGA can be applied directly
to modularity maximizing in unipartite or bipartite networks
without transforming them, and in their abstract they claim
“Experimental results show that the MAGA outperforms
existing methods in terms of modularity for both bipartite and
unipartite networks.” They report empirical results for both
kinds of problems. In the bipartite case, they compare the
results of MAGA with a standard genetic algorithm (SGA)
and with a multiobjective genetic algorithm (MOGA) [11].
The superiority of MAGA and SGA over MOGA is very
clear for artificial bipartite networks. Moreover, they studied

two real-world networks, namely, the southern women [12]
and Scotland corporate interlock [13] networks. For the first
network MAGA gives the same modularity value as BRIM [5],
while MAGA gives better results than BRIM, SGA, and
MOGA in the second case. Recently, Liu and Murata [9]1

obtained an almost as good partition than Zhan et al. [3] for
the second case (the difference in value is in the fourth decimal
place), with an improved version of the label propagation
algorithm for bipartite networks (LPAb+), as shown in Table I.

Six well-known unipartite networks were also used (i.e.,
Zachary karate club [14], jazz musicians [15], C. elegans
metabolic [16], e-mail [17], PGP [18], and Cond-mat [19]
networks). Results are compared with those of the Girvan New-
man heuristic [20], extremal optimization [21], spectral relax-
ation [22,23], and simulated annealing [24]. MAGA obtained
the best results in all cases, improving the records for the three
largest ones (e-mail, PGP, and Cond-mat). However, other
researchers did recently obtain equally good results for the
first three problems and better ones for the three last ones [i.e.,
Liu and Murata’s label propagation algorithm for unipartite
networks (LPAm+) [25], and Noack and Rotta with the single-
step multi-level (SS-ML) algorithm [26]], as shown in Table II.

The comparison of results of MAGA and state-of-the-art
heuristics for unipartite modularity maximization reported
on in this Comment shows that MAGA gets a solution
equal to the best previously known in half of the cases
and worse in the other cases. The differences in value are
twice in the third decimal place and once in the second.
Moreover, the computing time of MAGA is quite large and
increases rapidly. On comparable computers, MAGA takes 7
to 3000 times more time than LPAm+ to solve the problems
of Table II. Nevertheless, MAGA has some advantages:
mainly, robustness. Indeed, as other evolutionary algorithms,
it provides several near-optimal solutions instead of a single
one, as done by most heuristics of other families.

Financial support by Grants Digiteo 2009-14D
“RMNCCO” and Digiteo 2009-55D “ARM” is gratefully
acknowledged.

1In Liu and Murata [9], report a best-known value of 0.7194 for the
full Scotland interlock network. The value they found for the main
connected component of that network, which was also studied by
Zhan et al., reported in this Comment, was kindly communicated by
Mr. Liu on August 7, 2011.
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