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Josephson junctions loaded by transmission lines: A revisited problem
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The problem of evaluating dissipative effects in Josephson junctions loaded by transmission lines is reexamined,
for either the symmetric or the asymmetric case, with particular consideration of the time domain in which the
interaction between junction and load system occurs.
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Several works devoted to the problem of dissipation in
macroscopic quantum tunneling have become available in
the literature since the 1980s. In particular, the case of the
Josephson junction has received special attention [1]. This
argument has continued to attract interest even in recent years,
either from the fundamental point of view or from the one
of applications [2]. However, in spite of the numerous efforts
made, certain aspects in the theory remained to be clarified,
as has recently been evidenced in a paper dealing with a com-
parison of the theoretical predictions with some experimental
results: i.e., those relative to the semiclassical traversal time of
the barrier, as modified by dissipative effects [3].

Among the several theoretical approaches to the problem
[4], a paper by Chakrawarty and Schmidt, dealing with
Josephson junction loaded by transmission lines [5], deserved
particular consideration. The peculiarity of this work consisted
of the incorporation of a distributed circuit model—a trans-
mission line that determines the dissipative effects—within
the bounce formalism and, avoiding any ad hoc assumption,
sometimes adopted in other methodics [4]. In a subsequent
work dedicated to the same subject [6], an attempt was
made searching for an agreement with the results of different
approaches, that is, those relative to the phenomenological
analyses reported in Ref. [4]. The purpose of the present paper
is a reexamination of the problem in view of the possible
obtainment of a better matching with the results relative to
different methods. As will be demonstrated, a crucial role
to this purpose is played by the temporal domain in which
the processes are considered to occur. Already in Refs. [4,6],
the halving of the time domain—there considered as an
artifice—was assumed in order to obtain the above-mentioned
agreement. Now, we intend to demonstrate that such an
assumption is physically grounded.

The physical system. It is constituted by a Josephson
junction coupled symmetrically to two open transmission lines
(case of Ref. [5]), or asymmetrically to one open line (case
of Ref. [6]); in both cases the total length of lines is L.
By adopting the same notations of Refs. [5,6], let us denote
by ρ and σ the capacitance and the inductance per unity of
length, respectively. The characteristic impedance of the lines
is Z0 = (σ/ρ)1/2 and the wave velocity is c = (σρ)−1/2, the
delay time is τ0 = L/2c for each line in the symmetric case,
and τ0 = L/c in the asymmetric one. Without going into the
details of the relative analysis based on the Green’s function

method [7], the action integral Sint, due to the interaction
between junction and the line system, is given by [5,8]

Sint =
(

�0

2π

)2 ∫ ∞

−∞

dω

2π

|ϕ(ω)|2
2g(ω)

, (1)

where �0 (=2πλ in Ref. [5]) is the flux quantum, ϕ(ω)
is the Fourier transform of the bounce trajectory ϕ(τ ) =
ϕBsech2(
τ/2), with ϕB the bounce amplitude and 
 the
plasma frequency of the junction, and g(ω) is the Fourier
transform of the Green’s function for the transmission line.
According to Ref. [5], g(ω), in the case of symmetric line,
turns out to be

g(ω) = Z0

2|ω|coth(kL/2), (2)

with kL/2 = |ω|τ0. In the case of an asymmetric line, g(ω)
should be given by

g(ω) = Z0

|ω|coth(kL). (3)

However, following the reasoning in Ref. [6], based on a
property of the δ function applied to the present case in which
the line runs from z = 0 to z = L, we have that Eq. (3) must be
halved; that is, apart from the argument of coth, g(ω) would
be formally identical to Eq. (2) of the symmetric case [see
Eq. (4) in Ref. [6]]. Still in Ref. [6], and following the criterion
adopted in Ref. [4] where the time domain was necessarily
halved [9], the agreement with other treatments was obtained
by introducing a factor 1/2 in Eq. (1), as due to the halving
of the temporal domain, thus compensating for the halving of
Eq. (3) above mentioned. This procedure could appear only as
a formal artifice, but this is not the case, as will be explained in
the following. In summary, we have that, with Eq. (1) rewritten
in the form

Sint =
(

�0

2π

)2 ∫ ∞

−∞

dω

2π
|ϕ(ω)|2H (ω), (4)

H (ω) is given by

H (ω) = |ω|
(2)Z0

tanh(|ω|τ0) −−−−→
|ω|τ0�1

{|ω|/Z0, symm. line,

|ω|/2Z0, asymm. line,

(5)

where the factor (2) in the denominator is required for the case
of an asymmetric line, while the limit |ω|τ0 � 1 is considered
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FIG. 1. Voltage pulse V ∝ ϕ̇(τ ) generated by a Josephson junc-
tion loaded by transmission lines with characteristic impedance
Z0. In (a), the pulse V (τ ) is represented as a function of time at
z = 0. In (b), the pulse V (z − cτ ) traveling for z � 0 and the pulse
V (−z − cτ ) = −V (z + cτ ) traveling for z � 0 are represented as a
function of the spatial coordinate z of the line, at different instants
−τ2 < −τ1 < τ0 < τ1 < τ2. However, the pulses represented in the
negative region of z are not appropriate for negative times, whereas
they are so for positive times.

in both cases, that is for lines sufficiently long. The results
expressed by Eqs. (4) and (5) agree with Refs. [5,6].

Time domain and action variation. Turning now to the
question of the temporal domain above mentioned, we have to
consider the spatial-temporal evolution of the voltage pulse
V (z,τ ) ∝ ϕ̇(τ ) generated by the junction while performing
the bounce trajectory. In the upper part of Fig. 1, the pulse
V (τ ) is represented as a function of the time, at z = 0 where
the junction is situated. In the lower part, the pulse V (z − cτ ),
which travels in the direction of increasing z, is represented
as a function of the spatial coordinate of the line at different
instants τ0 < τ1 < τ2. The curves situated in the z < 0 region
and relative to −τ1 and −τ2 instants would belong to the same
progressive wave, provided that the z < 0 region is accessible,
but they cannot be generated by the junction acting as a
generator situated at z = 0 and centered around τ0 = 0. Rather,
they belong to another progressive wave −V (z + cτ ) running
in the direction of z < 0, and corresponding to the same
instants τ0 < τ1 < τ2 of the other progressive wave running
in the direction of z > 0.

From these considerations, it follows that not only in the
case of an asymmetric line, but also in that of a symmetric
line, the active time domain is only the half-positive one. In
this case, the result for Sint is obviously twice the one of the
asymmetric line, since Z0 is now halved by the parallel of the
two lines, in agreement with Eq. (5).

By substituting from Eq. (5), Sint ≡ �S can be rewritten as

�S = η

∫ ∞

−∞
|χ (ω)|2ω tanh(|ω|τ0)dω, (6)

where η = (�0/2π )2 /Z0 and χ (ω) is the Fourier transform of
the bounce trajectory defined [that is, eliminating a factor 2π

in the denominator of Eq. (4)] as

χ (ω) = ϕB
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. (7)

In the limit of |ω|τ0 � 1, Eq. (6) gives as a result (in the case
of a symmetric line) [4]

�SS � 0.93ηϕ2
B, (8)

while, in the case of an asymmetric line, the resulting �S is
obviously halved:

�SA � 0.465ηϕ2
B. (9)

An identical result was also obtained in Ref. [10]. Therefore,
the results obtained for �S are formally identical to the
ones reported in all the previously given treatments [3–6].
However, according to the procedure here adopted, there is an
important difference, especially for the case of a symmetric
line, which is due to the use of halving the temporal domain in
which the processes—namely the junction-lines interaction—
occur.

In fact, it is true that the load impedance seen by the
junction is equal to Z0/2 for |ω|τ0 � 1, thus reobtaining
H (ω) = |ω|/Z0 analogously to what happens if the Leggett’s
prescription, requiring the halving of the load admittance
[11], is adopted [see Eq. (26) in Ref. [5]]. However, we
remark that there is a noteworthy difference if our criterion
is followed. Because of the use of transmission lines coupled
in parallel to the junction, the load impedance is indeed
halved to Z0/2, but this is “seen” by the junction only
in a half-temporal domain, that is for τ � 0, and it is for
this reason that a factor 1/2 enters Eq. (1), thus giving
the identical result with an “effective” admittance equal to
1/Z0.

As explained before, the pulse images represented in Fig. 1
at negative instants (−τ1, − τ2, . . .) are improper; rather, they
have to be attributed to the same positive instants (τ1,τ2, . . .)
for the opposite going wave, since they cannot be propagated
before being generated by the junction around τ = 0. This
situation is evidently relative to the cases of sufficiently long
line (|ω|τ0 � 1 and short pulses), such that the traveling
progressive waves are the only to be considered, while the
waves reflected from the mismatched ends of the lines are
less important, especially when we are in the presence of
appreciable inherent losses in the line [12], or quite absent
if the lines are terminated with Z0 [13].

Different also is the case in the opposite (capacitive)
limit (|ω|τ0 	 1), in which the result turns out to be the
same, independently of the position of the junction, that is
proportional to the total capacitance C = ρL of the line in
both cases [6]. However, see also Fig. 4 in Ref. [4] where, in
the small 
 limit, the results [14] tend to be coincident with
those of Ref. [5].

Still more different is the case of a purely resistive load
Z0 directly connected to the junction. In this case, we have
to consider the complete temporal domain and the result
obtained should be exactly the same of Eq. (8) [15]. This
would confirm the nearly equal result of the phenomenological
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analysis [9], which supplied �S � 0.87ηϕ2
B (see point e) of

Table I in Ref. [4]). This issue was, in a sense, anticipated
in Ref. [4] where Fig. 3, relative to the case of an artificial
asymmetric line terminated with the characteristic impedance
Z0, demonstrated the obtainment of results [14] tending, in the
small 
 limit (long pulse duration or short line), to be twice the
expected ones obtained dividing by two the results of Ref. [5]
relative to the case of a symmetric line. In other terms, the �S

values in Fig. 3 of Ref. [4] should be doubled if the complete
time domain was adopted, thus obtaining results that can be
considered as roughly representative for the case of a purely
resistive load Z0.

From the above arguments, it seems we can safely conclude
that the consideration of the true temporal domain, in which
the junction-load interaction occurs when the load consists
of transmission lines, allows for a very good agreement of
the results obtained by the different approaches, including the
phenomenological ones. These conclusions also find confirma-
tion by the results of Ref. [3], where the best agreement with
experimental results, concerning the semiclassical traversal-
time relative variation �τ/τ , was obtained by considering the
ratio �S/S0 [see Eq. (13) in Ref. [3]], with �S as given by
Eq. (9) and S0, the half-bounce action in absence of dissipation,
being SJ /2 in the present notations.
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