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The scattered wave formalism developed for a quantum subsystem interacting with reservoirs through open
boundaries is applied to one- or two-dimensional barrier scattering and quantum transistors. The total wave
function is divided into incident and scattered components. Markovian outgoing wave boundary conditions
are imposed on the scattered or total wave function by either the ratio or polynomial methods. For barrier
scattering problems, accurate time-dependent transmission probabilities are obtained through the integration of
the modified time-dependent Schrodinger equations for the scattered wave function. For quantum transistors, the
time-dependent transport is studied for a quantum wave packet propagating through the conduction channel of
a field effect transistor. This study shows that the scattered wave formalism significantly reduces computational
effort relative to other open boundary methods and demonstrates wide applications to quantum dynamical

processes.
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I. INTRODUCTION

When solving the time-dependent Schrodinger equation
(TDSE) in a finite computational region, great care must
be exercised to avoid spurious reflections of the reflected
and transmitted waves at the boundaries. Various approaches
have been developed to mimic a spatial domain of infinite
extent using boundary conditions at the edges of a finite
computational grid. For example, absorbing potentials at the
edges of grids can be used but they may perturb the dynamics
of the solution near the boundary [1-3]. Exact non-Markovian
open-system boundary conditions, exact boundary conditions
at finite distance, and discrete transparent boundary conditions
have been formulated for outgoing solutions of the TDSE
[4-6]. However, these methods are either too complicated to
be implemented or their evaluation is too time consuming for
complex multidimensional quantum systems.

In our previous study [7], we developed the scattered
wave formalism with Markovian outgoing wave boundary
conditions for open quantum systems. In this formalism, the
total wave function is split into the incident and scattered
parts, and outgoing wave boundary conditions are applied
to the scattered wave function. The scattered wave function
describes the outgoing waves generated by the interaction
between the incident wave and the potential. Assuming the
scattered wave function has the form of an outgoing wave near
open boundaries, we derived a simple equation relating the
scattered wave function at the boundary to the scattered wave
function at interior points. Thus, the scattered wave function
at a few interior grid points can be used to determine the
scattered wave function at the boundary. Here, these boundary
conditions are not treated using negative imaginary absorbing
potentials, Green functions, or memory kernels, and they are
Markovian boundary conditions which require only the form of
the scattered wave at the current time in the internal region near
the open boundaries. Therefore, the scattered wave function
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significantly reduces computational effort relative to other
open boundary methods.

The scattered wave formalism has been applied to the
scattering of a Gaussian wave packet from a symmetric Eckart
barrier and to the three-dimensional field effect transistor [7].
In this study, we first propose another method, called the
polynomial method, for imposing open boundary conditions
at the edges of the system. This method employs the least
squares method to fit the scattered or total wave functions
at the boundary by extrapolation. In addition, we extend our
previous analysis to barrier scattering, including a general one-
dimensional potential barrier with different asymptotic ener-
gies and a two-dimensional system involving an Eckart barrier
along the reaction coordinate coupled to a harmonic oscillator.

Moreover, the scattered wave formalism will be applied
to the nanoscale field effect transistor (FET). In this device,
the electron current flowing from the source to the drain is
modulated by passage through a gate region where the electric
potential can be altered. Due to the very small length of the
conduction channel, quantum effects become significant and
the TDSE must be solved in the conduction channel with open
boundary conditions applied at interfaces between the device
and the external contacts. The quantum dynamics will be
studied for wave packets propagating through the channel for
specified gate and drain voltages (the source lead is grounded).
A computational grid will be introduced in the channel and
open boundary conditions will be applied at the source-channel
and drain-channel contacts. Any form of incident wave packet
can be considered, but in this study the incident current pulse
is a Gaussian wave packet. Accurate computational results for
these examples illustrate the stability, efficiency, and accuracy
of the open boundary conditions used in the scattered wave
formalism. Therefore, the current study demonstrates that
the scattered wave formalism is suitable for studying various
time-dependent quantum dynamical processes.

The organization of the remainder of this study is as
follows. In Sec. II, we briefly introduce the scattered wave
formalism and the ratio and polynomial methods for imposing
open boundary conditions. Then, the scattered wave formalism

©2011 American Physical Society


http://dx.doi.org/10.1103/PhysRevE.84.056707

CHIA-CHUN CHOU AND ROBERT E. WYATT

is applied to barrier scattering in Sec. III and to quantum
transistors in Sec. IV. In Sec. V, we summarize our results,
conclude with some comments, and suggest directions for
further research in this field.

II. SCATTERED WAVE FORMALISM
A. Modified time-dependent Schrodinger equation
for the scattered wave function
The TDSE governing the time evolution of a quantum
system is given by
ov(rr)
ar

In the scattered wave formalism, we separate the total wave
function into incident and scattered parts,

2
i —h—Vzll-'(r,t) + V(r)W(r,1). (1)
2m

W(r,t) = O(r,1) + Y(r,1), )

and the initial condition for the wave function is given by
W(r,0) = ®(r,0). We assume that the incident wave function
satisfies the free-space TDSE
2
00D W ), 3)
ot 2m
The incident wave function describes a wave propagating in
free space with the same initial condition as that for the total
wave function. Substituting the decomposition of the total
wave function in Eq. (2) and the free-space TDSE in Eq. (3)
into the TDSE for the total wave function in Eq. (1), we obtain
the modified TDSE for the scattered wave function

Y (r,0) o,
ih——= = —%v Y(r,t) + V()Y (r,1) + V(r)d(r,1),

ot
“4)

where the initial condition is given by Y'(r,0) = 0. As indi-
cated in this equation, the scattered wave function is initially
equal to zero, and then the scattered wave is generated by the
interaction between the incident wave and the potential. Thus,
the last term in the modified TDSE serves as an inhomogeneous
source term or a driving term for the scattered wave function.
The scattered wave function describes the scattered outgoing
waves created in the interaction region of the potential. In
general, the incident wave function can be easily obtained by
solving the free-space TDSE in Eq. (3). Then, substituting the
incident wave function into the source term in Eq. (4), we can
solve the modified TDSE for the scattered wave function. The
total wave function is given by the sum of the incident and
scattered wave functions.

B. Boundary conditions for the scattered wave function
1. Ratio method for imposing boundary conditions

It seems that there is no advantage to solving two equations
(the free-space TDSE and the modified TDSE) instead of
directly solving the TDSE. However, open boundary con-
ditions can be applied to the scattered wave function to
significantly reduce the size of the computational domain.
Without loss of generality, we consider the one-dimensional
case. First, the computational domain [, 8] for the scattered
wave function is discretized by N + 1 grid points x, = nAx
with xg = « and xy = B. Outgoing wave boundary conditions
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are applied to the scattered wave function at the left and
right boundaries. At the left boundary, the scattered wave
function is assumed to have the form of an outgoing wave,
Y (x) = Yy exp(—ikx), provided that we have a constant
potential near the boundaries of the computational domain.
Here, the coefficient Y, and the wave vector k may be
complex valued. Thus, the scattered wave function at the
left three grid points are given by Y(xg) = Yo exp(—ikxp),
T(x1) = Yo exp(—ikx;),and Y (x) = Yy exp(—ikx,), where
X1 = X0 + Ax and x, = x¢ + 2Ax. From these equations, we
can derive an equation associated with the scattered wave at
the left three grid points,

T(xo) = ) (&)

Thus, the scattered wave function at the interior grid points x
and x, can be used to determine the scattered wave function at
the left boundary. Analogously, the scattered wave function
is assumed to have the form of an outgoing wave at the
right boundary, Y (x) = Y, exp(ikx). We can derive a similar
condition for the scattered wave function

Y(xy-1)?
YT(xy_2)

The scattered wave function at the interior grid points xy_»
and xy_; can be used to determine the scattered wave
function at the right boundary. In addition, the ratio method
for the outgoing wave boundary conditions has previously
been imposed on the numerical solution of the TDSE for
the total wave function to study the decay dynamics of
low-lying unbound proton states and deep tunneling during
proton emission from nuclei [§-10].

T(xy) = Q)

2. Polynomial method for imposing boundary conditions

The second method for imposing open boundary conditions
at the edges of the system also requires only information
on the internal wave function close to the boundaries. In
order to simplify the notation, the polynomial method will be
introduced for a one-dimensional example. Assume again that
the system grid points are labeled x( to x and that the wave
function has been advanced one time step at the internal grid
points x; to xy—_;. The problem again is how to update values
of the wave function at the two boundary points. The method
is introduced by invoking the polar decomposition of the wave
function, ¥ (x,t) = R(x,t)expli¢(x,?)], where R and ¢ are
the amplitude and phase, respectively. The amplitude satisfies
the condition R > 0 and the phase is continuous and single
valued. At the internal grid points, the amplitude is obtained
from the equation R = (*v)'/? and the phase is given by
¢ = —i In(¢¥y/R). However, the latter relation usually returns
a jagged saw-toothed function with values in the range —m
to 7, but these segments may be linked together to produce
a continuous function. (In MATLAB, these two operations may
be performed with the functions angle and unwrap.) At this
stage, we have the continuous functions R(x,t) and ¢(x,t) at
the internal grid points. The basis for the polynomial method
described below is that even when ¥/ (x,¢) is rapidly oscillating,
R and ¢ are frequently slowly varying with respect to the x
coordinate.
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Near the system boundaries, R and ¢ can be least squares
fit to a polynomial with a low degree (denoted by n),

R(x) = _"aj(x = xp)/
j=0

and  ¢(x) =Y b;(x — xo).
j=0

)

These fits utilize the known values of R and ¢ at n,, internal
grid points located near the left boundary. For least squares
fitting, it is required that n, > n + 1. Then, using these fits,
function values at the boundary are obtained by extrapolation,
R(x¢) = ap and ¢(xp) = by. (In MATLAB, least squares fitting
and extrapolation may be performed with the functions polyfit
and polyval.) A similar procedure yields the amplitude and
phase at the right boundary. For the computations reported
in Sec. IV C, linear fits with input data at four points were
used: n = 1 and n, = 4. If we use these values for the fitting
parameters, the wave function near the left boundary has the
form

Y (x,1) = {[ag + a1 (x — xp)e/ o=y (8)

Of course, higher-order fits may be used in Eq. (7), but the
computational effort increases correspondingly.

The relationship between the polynomial and ratio methods
isreadily obtained. Using Eq. (8), at the first two internal points
Xxo + & and x¢ + 28 we obtain the ratio

Y(x1)? _ (ag + 8ay)* oibo
Y(x2)  (ao+28ay)

In addition, since Eq. (8) also gives ¥/ (xg) = ag exp(iby), we
observe that the right side of Eq. (9) is equal to ¥/ (x() only when
a; = 0. Thus, we conclude that the ratio v (x;)? /¥ (xy) yields
¥ (xp) when the amplitude R(x) is constant (or slowly varying)
near the boundary. In this sense, the polynomial method is
more general than the ratio method for imposing boundary
conditions on the wave function.

9

C. Scattered wave propagation

We summarize the procedure for the scattered wave formal-
ism. First, the total wave function is separated into the incident
and scattered parts. The incident wave function is determined
either by analytically solving the free-space TDSE in Eq. (3)

a 2
(@ o 4 V(x)

total

Y scattered cident

-0.05
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or by numerically solving this equation on a computational
grid with the initial condition ®(r,0) = W(r,0). The incident
wave function serves as a source term in the modified TDSE
in Eq. (4) for the scattered wave function. Then, the scattered
wave function is obtained on a reduced computational grid
involving only the interaction region of the potential with
open boundary conditions through the ratio or polynomial
methods. At each time step, the scattered wave function at the
interior grid points is employed to determine the scattered wave
function at the boundaries. Finally, the sum of the incident and
scattered wave functions gives the time evolution of the total
wave function on the reduced computational domain.

III. COMPUTATIONAL RESULTS
FOR BARRIER SCATTERING

In our previous study [7], the scattered wave formalism was
illustrated for Gaussian wave-packet scattering from a sym-
metric Eckart barrier where the potential barrier approaches
zero when x tends to =o00. In this section, the scattered wave
formalism will be applied to Gaussian wave-packet scattering
from a general asymmetric one-dimensional potential barrier
with different asymptotic energies. Moreover, this formalism
will be extended to a two-dimensional system involving an
Eckart barrier along the reaction coordinate coupled to a
harmonic oscillator.

A. Asymmetric one-dimensional potential barrier

We consider Gaussian wave-packet scattering from an
asymmetric potential barrier given by

Ve = o1 - (A=Y
x) = - —

0 1 + cex ’
where Vp =1.0, a =25, and ¢ =0.9 (see Fig. 1). All

quantities are given in atomic units (m = 1 and 7 = 1). The
initial Gaussian wave packet is given by

(10)

1/4
d(x,0) = (%) exp [ — B(x — x0)* + i%(x — Xo)i|,
(11)

where 8 = 0.6 and xo = —7.0. The incident wave function
satisfying the initial condition and the free-space TDSE is

(b)
0.4

0.3
J 02

0.1

0

20 25

FIG. 1. (Color online) (a) The incident wave function (dashed line), the scattered wave function (solid line), the total wave function obtained
from the scattered wave formalism (dots), and the total wave function from the integration of the TDSE using a large spatial grid (curves)
with the one-dimensional potential barrier in arbitrary units (dotted line) at t = 6.75. (b) The probability flux at the left and right boundaries
obtained from the scattered wave formalism (dots) and from the integration of the TDSE using a large spatial grid (curves).
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known analytically [11],

o 28\ 1
x.1) = (?) (1 + 2iBnt/m)' /2

X exp[ Po (x X pot)
—Xg —
h 2m

B —x - pot/m)z]
(1 +2ipht/m) |

This analytical expression was used in the source term for the
integration of the modified TDSE in Eq. (4).

We solved the modified TDSE in Eq. (4) for the scattered
wave function from ¢ =0 to t = 25 using the fourth-order
Runge-Kutta method [12] with Af = 0.005 by applying
the ratio method in Egs. (5) and (6) to the boundaries.
The computational domain was chosen so that (xg,xy) =
(—3.5,3.5) with the spacing Ax = 0.1. Figure 1(a) displays
the probability densities at r = 6.75 with py = 1.5 for the
incident, scattered, and total wave functions. As shown in
this figure, the wave packet has split into reflected and
transmitted parts, and the scattered wave function propagates
through the boundaries without any reflection. Also, the
total wave function (W = ® 4 Y) resulting from the sum
of the incident and scattered wave functions is in excellent
agreement with the exact result obtained by solving the TDSE
using a large spatial grid without employing open boundary
conditions.

Figure 1(b) shows the time-dependent probability flux at
the left and right boundaries obtained from the scattered wave
formalism. The time-dependent probability flux is defined by

oW (x,t)
dx ]

12)

J(x,t) = %Im |:\IJ*(x,t) (13)
Here, the probability flux at the left and right boundaries
were calculated using the fourth-order forward and backward
finite difference formulas to approximate the spatial derivative
in Eq. (13) [12]. Initially, the Gaussian wave packet starts
outside the computational domain. The wave packet enters the
computational domain from the left boundary, and this leads
to an increase in the probability flux (J;). When the incident
wave packet begins to interact with the potential barrier, the
reflected and transmitted wave packets start to form. As time
progresses, the transmitted wave packets pass through the right
boundary, and this leads to the positive flux (Jg) from about
t = 3tot = 12. Analogously, the reflected wave packet travels
through the left boundary, and this results in the negative flux
from about ¢ = 7 to t = 20. Finally, the probability flux at
the two boundaries gradually decays to zero. This means that
these two wave packets completely leave the computational
grid without reflecting from the boundaries. As shown in
this figure, the probability flux obtained from the scattered
wave formalism is in excellent agreement with the exact result
obtained from the solution of the TDSE using a large spatial
grid without employing open boundary conditions.

The time-dependent transmission probability of a Gaussian
wave-packet scattering from the potential barrier is defined by

P(t) = /OO o(x,0)dx, (14)
0
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where the probability density is given by p(x,t) = | (x,1)|%.
The integration begins at x = 0 because this is the position
of the maximum of the barrier. Since we calculated the total
wave function on a reduced computational domain with open
boundary conditions, we cannot use Eq. (14) to evaluate
the time-dependent transmission probability. However, the
time-dependent transmission probability can be expressed by
a time integration of the probability flux at x = 0. Using the
continuity equation for the probability density, we can write

P(t):f p(x 1)dx’ = f/ap(’”)
0
= //ocaj(x;) /J(x = 0,t')dt’,
0

15)

where we changed the order of the integration and performed
the spatial integration. Therefore, the time integration of the
probability flux at x = 0 gives the time-dependent transmis-
sion probability.

Figure 2 presents the time-dependent transmission proba-
bilities of the initial Gaussian wave packet with three different
values of py. Here, the probability flux at x = 0 was calculated
using the fourth-order central finite difference formulas to
approximate the spatial derivative in Eq. (13) [12]. This figure
indicates that the scattered wave formalism yields transmission
probabilities evaluated by Eq. (15) in excellent agreement
with the exact results obtained by solving the TDSE on a
large grid (x = [—50,100]) without employing open boundary
conditions. Therefore, the scattered wave formalism gives the
excellent results by solving the modified TDSE on a very small
computational grid.

B. Two-dimensional barrier scattering
We now consider a two-dimensional system with the
potential energy given by
Vix,y)=

where x and y denote the translational and vibrational
coordinates, respectively. The potential energy is an Eckart
barrier of height V, centered at x = 0, which is coupled to a

Vo sech®(2x) + 1k(x)y?, (16)

0.8 [
po=2.0

0.6
po=15

P04
po=1.0

0.2t

0t

0 2 4 6 8 10 12 14
t

FIG. 2. (Color online) Time-dependent transmission probabilities
obtained by the scattered wave formalism (dots) compared with the
exact results (curves).
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Incident Wave Function at t=500

71T

. 05

PHYSICAL REVIEW E 84, 056707 (2011)

Scattered Wave Function at t=500

(b) // %\

FIG. 3. (Color online) The incident, scattered, and total wave functions at t = 500 for k, = 4 with contours of the potential barrier. The

arrow indicates the propagation direction of the incident wave function.

harmonic oscillator with a variable force constant along x. The
variable force constant k(x) = ko[1 — o exp(—2x?)] reaches
its minimum value, ky(1 — o), at the barrier maximum (x = 0).
The values of the parameters are given as Vy = 0.006 25,
ko = 0.0106, and o = 0.1. All quantities are given in atomic
units (& = 1). The initial Gaussian wave packet is given by

48, 1/4 '
q><x,y,0>=( i_f y) N ¢ )

where B8, = B, =4, k. = 4, and the center of wave packet is
x. = —l and y = 0. The initial wave packet has a momentum
hk, toward the product region, and the mass is m = 2000 in this
case. The incident wave function satisfying the initial condition
and the free-space TDSE is given by ®(x,y,t) = ®(x,t; 8 =
ﬂxax() = Xe, Po = hkx)qD(y?t’:B = ,ByvyO = Ovp() =0), where
the functional form of ®(x,#) is given by Eq. (12), and this
function was used in the source term for the integration of the
modified TDSE.

In this case, the modified TDSE in Eq. (4) was solved
using the fourth-order Taylor series method from ¢ = 0 to

t = 1000 with the time step Az = 0.5, and the required Taylor
coefficients are evaluated by the automatic differentiation tech-
nique. This method has been employed to solve concentration-
dependent diffusion problems, the Falkner-Skan equation, the
nonlinear heat transfer problem, Schrodinger’s equation, and
the quantum hydrodynamic equations of motion [13-19].
The computational grid extends from x = —1 to x = 1 with
Ax = 0.025 and from y = —3to y = 3 with Ay = 0.1. Since
the potential energy in Eq. (16) tends to a constant along each
x direction when x goes to 00, we applied the outgoing wave
boundary condition using the ratio method to the left and right
boundaries. For example, for a grid point on the left boundary,
the following equation was used to find the value of the
scattered wave at point (—1,y) from the previously computed
values at two internal grid points, namely, (—1 4+ Ax,y) and
(=14 2Ax,y):

Y1+ Ax,y)?
T(-1,y)= m (18)
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Incident Wave Function at t=1000
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Scattered Wave Function at t=1000

FIG. 4. (Color online) The incident, scattered, and total wave functions at + = 1000 for k, = 4 with contours of the potential barrier. The

arrows indicate the propagation directions of the wave packets.

On the other hand, since the potential energy in Eq. (16) gives
a harmonic potential along each y direction and it does not
approach a constant at the top and bottom boundaries, we
cannot apply outgoing wave boundary conditions to these
boundaries. Thus, we require that the wave function vanishes
at the top and bottom boundaries, and we need to use a wide
range of the computational grid in the y direction to avoid
spurious reflections from these boundaries.

Figure 3 presents the incident, scattered, and total wave
functions at r = 500 for k, = 4 with contours of the potential
barrier. Figure 3(a) shows that the incident wave is passing
through the potential barrier. As shown in Fig. 3(b), the
incident wave has interacted with the potential surface to
generate the scattered wave. In Fig. 3(c), the total wave
packet starts to split into the reflected and transmitted parts.
In addition, Fig. 4 presents the incident, scattered, and total
wave functions at = 1000. At this time, the incident wave
has passed through the barrier. The scattered wave propagates
through the boundaries without any reflection. Finally, the
total wave packet has split into the reflected and transmitted

parts, and a significant portion of these two wave packets has
propagated through the boundaries. As shown in this figure, the
transmitted wave packet consists of the incident and scattered
waves, while the reflected wave packet originates mainly from
the scattered wave.

Transmission probabilities can be obtained by integrating
the probability density on the product side of the barrier
(x > 0). Since we only obtain the probability density
on a reduced computational domain, we cannot evaluate
the transmission probability by integrating the probability
density. However, analogous to the one-dimensional case,
the time-dependent transmission probability can be ob-
tained by the time integration of the probability flux along
x =0,

P(t) = /oo /OO p(x,y,t)dx dy
0 —00

t [e’e}
= / / J.(x =0,y,thdydt, (19)
0 J—oo
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FIG. 5. (Color online) Time-dependent transmission probabilities
obtained by the scattered wave formalism (dots) compared with the
exact results (curves).

where the x component of the flux is

(20)

Jo(x,p,0) = ’% [W*(x,y,t)w} .

0x

Figure 5 shows the time dependence of transmission probabil-
ities for the initial wave packet with several values of k,. Com-
pared with the exact results obtained from the split-operator
method using a large grid [20], these computational results
are in excellent agreement with the exact results. Therefore,
the scattered wave formalism not only significantly reduces
the size of the computational domain, but also yields excellent
time-dependent transmission probabilities with relative error
less than 1%.

IV. COMPUTATIONAL RESULTS FOR
THE QUANTUM TRANSISTOR

Using the scattered wave formalism, the time-dependent
transport of a quantum wave packet in the conduction channel
of the field effect transistor will be described. The three models
differ in physical dimensionality, drain and gate voltages, and
channel length. The electron potential energy in the channel
is similar to that used in previous computational models of
the field effect transistor, including Pinaud [21] (see Fig. 1),
Fernandez [22] (see Fig. 2), Fu [23] (see Fig. 4), and especially
Fu [24] (see Sec. IV and Fig. 1). For the first two models, the
ratio method was used to implement outgoing wave boundary
conditions and in the third model the polynomial fitting method
was used. For all three models, comparisons were made
between results obtained by imposing boundary conditions
and accurate results obtained using large grids which did
not employ the ratio or polynomial methods for imposing
boundary conditions.

Because the amplitude and phase of total wave packet
that enters the drain region are always smooth and free of
oscillations, the boundary conditions were imposed directly
on the total wave function. (In contrast, the amplitude of the
scattered wave in this region may be oscillatory.) The scattered
wave at the boundary point near the drain was then obtained
by subtracting the initial wave function from the total wave
function. However, the reflected wave near the source region
usually has multiple oscillations. In this case, the boundary
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FIG. 6. (Color online) Potential energy for the one-dimensional
transistor model. Outgoing wave boundary conditions were applied
at x = 25 nm and at x = 70 nm. The drain voltage is 0.2 V, the gate
voltage is —0.15 V, and the source region is assumed to be grounded,
V = 0. A Gaussian wave packet was launched into the conduction
channel at x = 25 nm.

conditions were imposed on the scattered wave. For these
examples, the fourth-order Runge-Kutta method was used
to integrate the modified TDSE for the scattered wave. The
integration time step was At = 0.02 fs.

A. Implementation of the ratio method
for a one-dimensional model

The potential energy for this one-dimensional (1D) model is
shown in Fig. 6. The 30 nm conduction channel extends from
x =30 nm to x = 60 nm. Plateau regions with flat potentials
were added on both sides of the conduction channel and
outgoing wave boundary conditions (the ratio method) were
applied at x = 25 nm and x = 70 nm. The latter points are at
the two edges of the computational domain, and in this region
181 grid points were employed (with the grid spacing Ax =
0.25 nm). The potential energy shown in this figure displays
a downhill ramp leading from the source to the drain with a
superimposed Gaussian barrier to represent the gate potential.
A Gaussian wave packet was injected into the computational
domain from the source region at the point x = 25 nm.

Computational results are shown for the conduction channel
at four times in Fig. 7. At each time, the total wave function
computed from the incident and scattered waves (filled circles)
is compared with the “exact” wave function (smooth curve)
obtained by direct propagation of {(x,#) on a large grid. For
times up to about 1 ps, there is very good agreement. For this
potential, oscillatory structure develops in the scattered and
total wave functions in the vicinity of the dip in the potential
energy (30 nm < x < 42 nm).

B. Implementation of the ratio method
for a two-dimensional model

The scattered wave method was applied to a two-
dimensional (2D) model for the quantum transistor. The
potential energy in the conduction channel, shown in Fig. 8,
extends from x = 30 nm to x = 57.5 nm and from z = 0 nm
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FIG. 7. (Color online) Wave functions for the 1D transistor model at four time steps. Amplitudes for the incident (green/light gray), scattered
(red/dark gray), and total wave functions (dotted blue) are plotted. For the total wave function, results obtained using the ratio method to enforce
outgoing wave boundary conditions (filled circles) are compared with accurate results (smooth curve) obtained on a large computational grid.

to z = 2 nm. Plateau regions with flat potentials (not shown in
this figure) were again added on both sides of the conduction
channel, and outgoing wave boundary conditions (the ratio
method) were applied at x = 20 nm and x = 70 nm. The latter
points denote the two edges of the computational domain along
the x coordinate. Within this 2D region, 1670 grid points
were employed, with the grid spacing Ax = Az = 0.25 nm.
Unlike Fig. 6, the potential energy shown in Fig. 8 displays an
uphill ramp leading from the source to the drain and there is
a superimposed Gaussian well to represent the gate potential.
A Gaussian wave packet was injected into the computational
domain along the line at x = 25 nm.

Computational results for this model are shown at four
time steps in Figs. 9 and 10. At each time, amplitudes of
the scattered and total wave functions are displayed. In the
first pair of plots, at t = 50 fs, the scattered wave is starting
to form near the source region [see Fig. 9(a)] and the total
wave function [see Fig. 10(a)] is dominated by the incident
wave packet entering from the left side of the figure. In
the second pair of plots, at ¢+ = 200 fs, the scattered wave
has formed on both sides of the gate region [see Fig. 9(b)]

0.05 -] e S S
0-
s | [ouReE]
[
= -0.05-L. e A
T T P .
zim O 35 40 45 50 55

X (nm})

FIG. 8. (Color online) Potential energy for the two-dimensional
transistor model. The drain voltage is —0.05 V, the gate voltage is
0.15 V, and the source region is assumed to be grounded, V = 0.
A Gaussian wave packet was launched into the conduction channel
from the source region on the left side of the figure.
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FIG. 9. (Color online) Amplitude of the scattered wave function, |Y'(x,z,#)|, at four time steps for the two-dimensional transistor model.

The arrows indicate the propagation directions of the wave packets.

and the maximum of the total wave function [see Fig. 10(b)]
is approaching the drain on the right side of the figure. In
the third pair of plots, at r = 350 fs, the scattered wave is
exiting the channel region [see Fig. 9(c)] and the formation of
ametastable state over the well in the gate region (between x =
40 nm and x = 48 nm) is evident in the total wave function
[see Fig. 10(c)]. In the final pair of plots, at r = 550 fs, the
scattered wave [see Fig. 9(d)] and the total wave [see Fig.
10(d)] continue to show the metastable state in the middle of
each figure. In addition, it is noted that artificial ripples do not
develop in either of these functions near the source and drain
regions, where the boundary conditions are applied.

A measure of the accuracy of results obtained using
the scattered wave formalism is shown in Fig. 11. This
figure shows the time dependence of the integrated flux at
three positions: near the source, at the gate, and near the drain.
The integrated flux is defined by the integral over the transverse
z coordinate of the flux computed using the total wave function:

z=2
F(x,t)= / Je(x,z,t)dz, 21

=0

in which the x component of the flux is computed from
Eq. (20). The open circles in Fig. 11 are exact results obtained
by propagating the wave function on a large grid and the dots
denote results obtained with the scattered wave formalism.
This figure shows excellent agreement between these two sets
of results. This figure also shows that the peak of the flux
enters the channel from the source at 90 fs and reaches the
drain at 260 fs after crossing the gate region at 170 fs. The flux
entering the drain is free of oscillations, but the flux reflected
back to the source shows two oscillations, at 600 and 750 fs.
These oscillations occur about 150 fs after similar oscillations
in the gate region.

C. Implementation of the polynomial method for a 1D model

The potential energy for this one-dimensional model is
similar to that shown earlier in Fig. 6. However, the conduction
channel extends from x = 30 nm to x = 80 nm and is longer
than the one shown in this figure. Boundary conditions (the
polynomial method) were directly applied at these two points.
The gate and drain voltages are identical to those shown
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FIG. 10. (Color online) Amplitude of the total wave function, |W(x,z,)|, at four time steps for the two-dimensional transistor model. The

arrows indicate the propagation directions of the wave packets.

FLUX IN CHANNEL

T T T T

-+ [SOURCE|

13
2.5%10

FLUX

. . ~ 7 [DRAIN

200 300 400 500
TIME (fs)

0 100

FIG. 11. (Color online) Time dependence of the integrated flux
at three positions: near the source, at the gate, and near the drain. The
open circles are exact results obtained on a large grid and the dots
denote results obtained with the scattered wave formalism.

in Fig. 6. A Gaussian wave packet was injected into the
computational domain from the source region at the point
x =30 nm and the same integration method was used to
propagate the scattered wave.

Computational results for this model are shown at three
time steps in Fig. 12. At each time, the total wave function
computed from the incident and scattered waves (filled circles)
is compared with the exact wave function (smooth curve)
obtained by direct propagation of ir(x,#) on a large grid.
At these times, and for longer times up to 600 fs, there is
very good agreement, with the largest relative errors being
about 1%. For times longer than about 300 fs, it was not
possible to obtain results of this accuracy with the ratio method
unless flat plateau regions were added on the left and right
of the conduction channel to create an extended propagation
zone.

V. DISCUSSION AND CONCLUSIONS

In this study, the scattered wave formalism was developed
and applied to barrier scattering and quantum transistors. In
this formalism, the total wave function is separated into the
incident and scattered parts. The incident wave function can be
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FIG. 12. (Color online) Wave functions for the 1D transistor model at three time steps. Amplitudes for the incident wave (green/light gray),
scattered wave (red/dark gray), and total wave (dotted blue) are plotted. For the total wave function, results obtained using the polynomial
method to enforce boundary conditions (filled circles) are compared with accurate results (smooth curve) obtained on a large computational

grid.

determined either by analytically solving the free-space TDSE
or by numerically solving the TDSE on a computational grid,
and it serves as a source term in the modified TDSE for the
scattered wave function. Then, the scattered wave function
is solved on a reduced computational grid involving only
the interaction region of the potential with outgoing wave
boundary conditions. The outgoing wave boundary conditions
can be handled either by the ratio method or by the polynomial
method. At each time step, the scattered wave function at the
interior grid points is employed to determine the scattered
wave function at the boundaries.

The scattered wave formalism was applied to barrier scatter-
ing, including a general one-dimensional potential barrier with
different asymptotic energies and a two-dimensional model
system. We obtained the total wave function on a reduced
computational grid and evaluated the time-dependent trans-
mission probabilities by the time integration of the probability
flux for one- and two-dimensional barrier scattering. For the
two-dimensional system involving an Eckart barrier along the
reaction coordinate coupled to a harmonic oscillator, outgoing

wave boundary conditions were applied to the boundaries
along the reaction coordinate with an asymptotically constant
potential. For those boundaries with a nonconstant potential,
because the rigid boundary condition was applied to the
scattered wave function, the use of a large computational grid
along this direction is generally required to avoid spurious
reflections from the boundaries and to obtain accurate results.

On the other hand, the scattered wave formalism was also
applied to the computational modeling of quantum transistors.
The time-dependent transport of a quantum wave packet in the
conduction channel of the field effect transistor was correctly
determined by the scattered wave function with open channel
boundary conditions at the interfaces between the device and
the external contacts. In contrast with other open boundary
methods, the scattered wave formalism can be readily applied
to multidimensional systems (a three-dimensional quantum
transistor model has been studied in Ref. [7]). In addition,
compared with the exact results obtained by solving the TDSE
on a large computational grid, the excellent computational
results obtained in these examples demonstrate that the
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scattered wave formalism has wide applications to various
time-dependent quantum processes and significantly reduces
computational effort relative to other open boundary methods
and the full-grid integration for the TDSE.

In this study, because the initial wave functions were chosen
as Gaussian wave packets, the known analytical expressions of
the time-evolving incident wave functions can be substituted
into the source term in the modified TDSE for the scattered
wave function. If the initial wave function is not a Gaussian
wave packet or even the incident wave function is not known
analytically, the incident wave can be propagated numerically
in the left reservoir in a preliminary calculation. Then, the
incident wave packet can be saved at the left boundary of the
system. This information will be used as an injected function
for the source term in the modified TDSE for the scattered wave
function. In our previous study [7], this two-stage approach
has been applied to the time-dependent transport of a quantum
wave packet in the conduction channel of a three-dimensional
field effect transistor.

PHYSICAL REVIEW E 84, 056707 (2011)

The computational results presented in the current study
illustrate that the scattered wave formalism allows accurate,
efficient, and stable computations for long-time propagation
for quantum dynamical precesses. The approximate outgoing
wave boundary conditions developed in the current study
require an asymptotically constant potential at the edges
of the computational domain. Thus, the extension of the
outgoing wave boundary conditions to a nonflat potential at
the boundaries of the computational grid deserves further
investigation. In the future, computational results for the
channel current as a function of the drain and gate voltages
for the nanotransistor will be analyzed, and the scattered wave
formalism will be used to obtain self-consistent solutions of
the TDSE and Poisson’s equation.
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