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Recent significant improvements of the numerical solutions of the time-dependent Schrödinger equation
beg the question as to whether these recent methods are comparable in efficacy (in terms of accuracy and
computational time) to the current “method of choice,” i.e., the Chebyshev expansion of the time-evolution
operator and the fast-Fourier-transform method of determining the kinetic energy. In this paper we review the
methods in question and, by studying the time development of a coherent wave packet in an oscillator well,
we are able to assess the effectiveness of the various methods. It turns out that the new generalizations come
close (to within an order of magnitude) to being able to generate solutions as precisely and efficiently as the
Chebyshev-fast-Fourier-transform method. The strict unitarity of the generalized methods may be an advantage.
We also show that the fast-Fourier-transform approach to calculating the kinetic energy can be replaced by
straightforward numerical differentiation to obtain the same precision.
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I. INTRODUCTION

The solutions of the time-dependent Schrödinger equa-
tion (TDSE) constitute the most fundamental description of
nonrelativistic quantum processes evolving in time. Such
processes are found in atomic and nuclear collisions, tunneling,
laser-atom interactions, the dynamics of chemical reactions,
decaying systems, quantum computational structures, and
many other quantum phenomena. The paucity of analytic time-
dependent solutions and the complexity of the interactions lead
one to look for accurate numerical solutions.

Some recent, and ongoing, studies require improvements
in the numerical methods in terms of accuracy, but also of
efficiency, to make the calculations computationally feasible
with current computer technology. This is the case with
the study of α decay [1–3], and α decay with associated
bremsstrahlung [1,4,5] or with coincident ionization [6]. The
principal issue here is the lifetime of certain decaying nuclei,
although extremely long half-life systems require significant
approximations. Similar studies were done recently on proton
emission during nuclear decay [7]. Even in model calculations
[8,9] of quantum scattering leading to transitions between
states the traditional methods fail to provide solutions with
the precision or the efficiency to make the results meaningful
or even possible.

Such solutions are also needed to study the basic unit of the
“quantum abacus” [10]. The qubit here is an atom trapped in
a harmonic well with a thin potential barrier at the center. The
stability and robustness of the qubit and its proper functioning
in quantum computing depend on the minimal degradation of a
coherent wave packet over time. This quantum abacus is known
to behave properly under ideal circumstances of a zero-width
barrier. Numerical calculations for barriers with a realistic
finite width, which may be complicated [11], are needed to
determine the feasibility of such a device. Finally we mention
the study of the time dependence of transmission of electrons
in semiconductor superlattices [12,13]. In all these studies the
original Crank-Nicolson method of solving the TDSE needs to
be improved to obtain valid results. From these and like studies

it is evident that further advances in numerical approaches will
enlarge the scope of systems that can be analyzed.

Since the early calculations using the Crank-Nicolson
method [14], there have been improvements to obtain solutions
more efficiently and with greater accuracy. A significant
advance occurred in the 1980s when Tal-Ezer and Kosloff
suggested a Chebyshev-polynomial expansion of the time-
evolution operator [15]. Subsequently, Leforestier et al. [16]
investigated a number of different propagation schemes and
concluded that the Chebyshev propagation combined with
the fast-Fourier-transform method of evaluating the action
of the Hamiltonian on the wave function should be considered
the “method of choice” for time-independent interactions. The
advantage of this method is that it allows the calculation
of the wave function at any later time without the necessity
of making small steps in time in order to reach the final
time. On the other hand, although the method can give very
precise results, it is not unitary. The Crank-Nicolson method
is explicitly unitary.

The recent generalizations of the Crank-Nicolson approach
have lead to more precise solutions than the original. The
work by Puzynin et al. [17,18] suggests the form of the
generalizations. The time-evolution operator is expressed as
a Padé approximant with the Hamiltonian multiplied by the
time as argument. This method is still explicitly unitary; in
fact, the choice of the diagonal Padé approximant makes
it so. The method for obtaining the spatial dependence of
the wave function is generalized by choosing a multi-point
formula for the second-order spatial derivative [1] rather
than the three-point formula. Another way of improving the
determination of the spatial aspect of the wave function is
that proposed by Muller [19] and Moyer [3] who introduce
a Numerov-type three-point formula in the Crank-Nicolson
approach. (See also Ref. [7].)

In 2007 van Dijk and Toyama [20], hereafter referred
to as VT, fully generalized the Padé approximation for the
time-evolution operator and used a (2r + 1)-point formula for
the second-order derivatives. In this way the precision of the
calculation is improved by more than ten orders of magnitude
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over the original Crank-Nicolson approach and the speed of
calculation by more than four orders of magnitude. Two years
later Shao and Wang [21], subsequently referred to as SW,
further generalized the spatial aspect of the calculation by
using a stencil for the second-order spatial derivatives that
involved approximations to the second-order derivatives at a
grid of points. This method is a generalization of the Numerov
approach to the time-independent problem [3,19,21].

Because of the recent significant improvement over the
traditional Crank-Nicolson method, it is timely to compare the
efficiency and accuracy of the VT and SW methods with the
Chebyshev expansion of the time-evolution operator method.
In this paper we study and compare the three approaches
of solving the time-dependent Schrödinger equation, i.e.,
the VT, SW, and the Chebyshev-propagation methods. With
the latter method we consider an alternative to the fast-
Fourier-transform (FFT) method of evaluating the Hamiltonian
operation which is usually employed. The goal of this paper is
to provide some practical guidelines for using these methods
in cases where the exact solutions are not known, and to study
the limitations of the various methods.

We are therefore concerned with finding the solution of the
time-dependent Schrödinger equation(

ih̄
∂

∂t
− H

)
ψ(x,t) = 0, ψ(x,t0) = φ(x), (1.1)

with the time-independent Hamiltonian

H = − h̄2

2m

∂2

∂x2
+ V (x), (1.2)

and with φ(x) as the wave function at initial time t0. The time-
evolution operator exp(−iH�t/h̄) connects the wave function
at time t to the one at a later time t + �t , i.e.,

ψ(x,t + �t) = e−iH�t/h̄ψ(x,t). (1.3)

Tal-Ezer and Kosloff [15] consider a Chebyshev expansion of
this operator, whereas VT and SW use a Padé approximant
approach. Furthermore the action of the Hamiltonian on the
spatial aspect of the wave function is treated differently in all
three papers.

We organize this paper as follows. In Sec. II we discuss the
SW and the VT methods; the latter is formally a special case of
the former. Section III describes the Chebyshev propagation
method. In Sec. IV we compare the efficacy of the different
methods in a model for which exact solutions exist. Finally
Sec. V provides a discussion of the findings of the paper.

II. THE VAN DIJK–TOYAMA
AND SHAO-WANG METHODS

The expansion of the time-evolution operator introduced by
VT, and also employed by SW, is

e−iH�t/h̄ =
M∏

s=1

K (M)
s + O((�t)2M+1), (2.1)

where [22]

K (M)
s = 1 + (iH�t/h̄)/z(M)

s

1 − (iH�t/h̄)/z̄(M)
s

. (2.2)

The quantities z(M)
s ,s = 1, . . . ,M are the (complex) roots

of the numerator of the [M/M] Padé approximant of the
function ez; the z̄

(M)
S are the complex conjugates of the

z(M)
s , respectively. (In the following we will use the notation

that the barred quantities are the complex conjugates of the
corresponding unbarred quantities.)

Let us discretize the spatial coordinate x and the time t ,
i.e., xj = x0 + j�x,j = 0,1, . . . ,J and tn = t0 + n�t,n =
0,1,2, . . .. We will assume that the wave function remains
zero for x � x0 and x � xJ during the time of consideration.
On the grid we obtain the numerical approximation of the
wave function ψjn ≈ ψ(xj ,tn). If we define the column vector
�n = (ψ0n,ψ1n, . . . ,ψjn, . . . ,ψJn)T , then

�n+1 = e−iH�t/h̄�n =
(

M∏
s=1

K (M)
s

)
�n. (2.3)

This gives an approximation of the wave function after a time
advance of �t .

The Hamiltonian H of Eq. (1.2) involves a second-order
derivative with respect to the spatial coordinate of the wave
function. In their recent paper Shao and Wang [21] generalize
the spatial-integration procedure to obtain the numerical
wave function which is described in Ref. [20]. The idea is
similar to the Numerov generalization for solving the second-
order stationary-state differential equation. In that case the
elementary three-point formula for the second-order derivative
which is O(h4) is replaced by another which is O(h6) where
h is the spatial step size. The latter formula is obtained by
expanding the second-order derivative of the wave function as
well as the wave function itself. (In order to simplify formulas
we at times use h for �x.)

To outline the derivation of both the VT and SW methods we
consider that of SW and afterward indicate that the VT method
can formally be regarded as a special case. SW consider the
expansion of the second-order spatial derivative

y(2)(x) = −
r∑

k=−r
(k �=0)

a
(r)
k y(2)(x + kh)

− 1

h2

r∑
k=−r

c
(r)
k y(x + kh) + O(h4r ). (2.4)

To obtain the coefficients a
(r)
k and c

(r)
k we make Taylor

expansions of y(x ± kh) up to terms of O(h4r ); this results in

2
(kh)2

2!
y(2)(x) + 2

(kh)4

4!
y(4)(x) + · · · + 2

(kh)4r

(4r)!
y(4r)(x)

= y(x + kh) + y(x − kh) − 2y(x) + O(h4r+2), (2.5)

for k = 1, . . . ,r . [See Eq. (2.7) of VT.]
Similarly we can make an expansion of y(2)(x ± kh) and

obtain for k = 1, . . . ,r ,

y(2)(x) + (kh)2

2!
y(4)(x) + · · · + (kh)4r−2

(4r − 2)!
y(4r)(x)

= y(2)(x + kh) + y(2)(x − kh)

2
+ O(h4r ). (2.6)
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The system of equations formed by combining Eqs. (2.5) and
(2.6) consists of 2r linear equations in 2r unknowns, i.e.,
y(2)(x),y(4)(x), . . . ,y(4r). We can solve for y(2)(x) in terms
of y(x ± kh),y(x),y(2)(x ± kh) for k = 1, . . . r and identify
the coefficients a

(r)
k and c

(r)
k in Eq. (2.4). Since Eqs. (2.5)

and (2.6) are symmetric under the interchange of k and −k,
the coefficients also have that symmetry, i.e., c−k = ck and
a−k = ak .

In order to discuss the time evolution, let us first turn to
the simple (first-order) Crank-Nicolson approximation to the
time evolution, i.e., M = s = 1 and z

(1)
1 = −2 in Eqs. (2.1)

and (2.2). The generalization to more than one iteration for
the higher-order approximation of the time-evolution operator
is straightforward [20], and we will outline it subsequently.
Thus(

1 + i�t

2h̄
H

)
ψ(x,t + �t) =

(
1 − i�t

2h̄
H

)
ψ(x,t). (2.7)

We now consider this expression as x → x + kh, multiply
by a

(r)
|k| , and sum over k from −r to r . For k = 0 we

set a
(r)
0 = 1.

r∑
k=−r

a
(r)
|k|

(
1 + i�t

2h̄
H

)
ψ(x + kh,t + �t)

=
r∑

k=−r

a
(r)
|k|

(
1 − i�t

2h̄
H

)
ψ(x + kh,t). (2.8)

Using Eq. (1.2) for H we write
r∑

k=−r

a
(r)
|k|

[
1− ih̄�t

4m

∂2

∂x2
+ i�t

2h̄
V (x + kh)

]
ψ(x+kh,t+�t)

=
r∑

k=−r

a
(r)
|k|

[
1+ ih̄�t

4m

∂2

∂x2
− i�t

2h̄
V (x + kh)

]
ψ(x + kh,t).

(2.9)

Since according to Eq. (2.4)
r∑

k=−r

a
(r)
|k|y

(2)(x + kh) = − 1

h2

r∑
k=−r

c
(r)
|k|y(x + kh), (2.10)

we obtain

r∑
k=−r

{
a

(r)
|k|

[
1+ i�t

2h̄
V (x+kh)

]
+ ih̄�t

4mh2
c

(r)
|k|

}
ψ(x + kh,t+�t) =

r∑
k=−r

{
a

(r)
|k|

[
1− i�t

2h̄
V (x + kh)

]
− ih̄�t

4mh2
c

(r)
|k|

}
ψ(x + kh,t).

(2.11)

To obtain the expression for a single iteration of the Padé approximant of the time-evolution operator, Eqs. (2.1) and (2.2), we
replace �t/2 with −�t/z(M)

s on the left side of Eq. (2.11) and with −�t/z̄(M)
s on the right side, so that

r∑
k=−r

{
a

(r)
|k|

[
1 − i�t

h̄z
(M)
s

V (x + kh)

]
− ih̄�t

2mh2z
(M)
s

c
(r)
|k|

}
ψn+s/M (x + kh)

=
r∑

k=−r

{
a

(r)
|k|

[
1 + i�t

h̄z̄
(M)
s

V (x + kh)

]
+ ih̄�t

2mh2z̄
(M)
s

c
(r)
|k|

}
ψn+(s−1)/M (x + kh).

This equation is an expression of the sth iteration of the one-
step time-evolution operator; i.e., in notation that indicates the
M intermediate steps from �n to �n+1,

�n+s/M = K (M)
s �n+(s−1)/M. (2.12)

We can write

K (M)
s = (

A(M)
s

)−1
Ā(M)

s , (2.13)

where

(
A(M)

s

)
j,j+k

= a
(r)
|k|

[
1 − i�tVj+k

h̄z
(M)
s

]
− ih̄�t

2mh2z
(M)
s

c
(r)
|k| (2.14)

for j = 0,1, . . . ,J and k = −r, − r + 1, . . . ,r . The remaining
elements (A(M)

s )jj ′ of the (J + 1) × (J + 1) matrix are zero.

We use the definition of Vj ≡ V (xj ). Note that A(M)
s is

a (2r + 1)-banded diagonal matrix. Rather than using the
iterative approach one could write

(
M∏

s=1

A(M)
s

)
�n+1 =

(
M∏

s=1

(
Ā(M)

s

))
�n (2.15)

and find the product matrices on both sides and use them
to solve for �n+1 from �n directly. Since the number of
long operations (multiplication or division) for the banded
diagonal matrix is O(rJ ), and the number of long operations
in Gaussian elimination of a full matrix is O(J 3), one expects
that solving for intermediate wave functions is more efficient,
especially for large J [23].

Let us cast this formulation into the form given by Shao
and Wang. Divide Eq. (2.12) by ih̄�t/(2mh2) and take out
the factor 1/z(M)

s on the left side and 1/z̄(M)
s on the right. Let
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vj = 2mVjh
2/h̄ and μ = 2mh2/h̄. Then

1

z
(M)
s

r∑
k=−r

{
a

(r)
|k|

[
μz(M)

s

i�t
− vj+k

]
− c

(r)
|k|

}
ψj+k,n+s/M

= 1

z̄
(M)
s

r∑
k=−r

{
a

(r)
|k|

[
μz̄(M)

s

i�t
+ vj+k

]
+ c

(r)
|k|

}
ψj+k,n+(s−1)/M

(2.16)

for j = 0,1, . . . ,J . These equations can be written as a matrix
equation

1

z
(M)
s

B(M)
s �n+s/M = − 1

z̄
(M)
s

B̄(M)
s �n+(s−1)/M, (2.17)

where

(
B(M)

s

)
j,j+k

=
{

c
(r)
|k| + a

(r)
|k|

[
vj+k − μz

(M)
s

i�t

]
for |k| � r,

0 otherwise.

(2.18)

Writing the full equation in matrix form, we obtain

1

z
(M)
1 z

(M)
2 . . . z

(M)
M

(
M∏

s=1

B(M)
s

)
�n+1

= (−1)M
1

z̄
(M)
1 z̄

(M)
2 . . . z̄

(M)
M

(
M∏

s=1

B̄(M)
s

)
�n. (2.19)

Since the z’s are roots of a polynomial which are real or come
in pairs of complex conjugates, the product of all of them is
real and hence the prefactors, apart from the sign factor, cancel.
Equation (2.16) can now be written as

r∑
k=−r

{
c

(r)
|k| + a

(r)
|k|

[
vj+k − μz(M)

s

i�t

]}
ψj+k,n+s/M

= −
r∑

k=−r

{
c

(r)
|k| + a

(r)
|k|

[
vj+k + μz̄(M)

s

i�t

]}
ψj+k,n+(s−1)/M

(2.20)

for j = 0,1, . . . ,J . The last equation is equivalent to Eq. (2.19)
of SW [24].

The approach of VT is formally a special case of the above
derivation. One recovers those results by setting a

(r)
k = −δk0

and evaluating the c
(r)
k = b

(r)
k appropriately in Eq. (2.20).

The system of linear equations that needs to be solved for
the coefficients turns out to be different. Consequently the
coefficients themselves will be unique for each method. To
avoid confusion we will label the c

(r)
k coefficients for the VT

method as b
(r)
k .

III. CHEBYSHEV-POLYNOMIAL EXPANSION
OF THE TIME-EVOLUTION OPERATOR

In an alternative approach the time-evolution operator is
replaced by an expansion in terms of the orthogonal Chebyshev
polynomials. Chebyshev polynomials of the first kind Tn(x) are
defined on the interval [−1,1]. They satisfy the orthogonality

property using a scalar product involving a weight function
1/

√
1 − x2,

〈Tn(x),Tm(x)〉 =
∫ 1

−1

Tn(x)Tm(x)√
1 − x2

dx = Cnδnm, (3.1)

where C0 = π and Cn = π/2 for n = 1,2,3, . . .. Since the
argument of the exponential in the time evolution operator [i.e.,
exp(−iH�t/h̄)] is −iH�t/h̄, we use complex Chebyshev
polynomials of the type φn(y) = inTn(−iy) in the expansion.
The orthogonality of the φn(y) is then expressed as

〈φn(y),φm(y)〉 = −i

∫ i

−i

φn(y)φ̄m(y)√
1 − |y|2

dy = (−1)nCnδnm,

(3.2)

where the weight function is now −i/
√

1 − |y|2 and the limits
of integration are −i and i. Like the Chebyshev polynomials
of the first kind, the φn can be defined by the recursion
relationship

φn(y) = 2yφn−1(y) + φn−2(y), (3.3)

where φ0(y) = 1 and φ1(y) = y.
The approach of Tal-Ezer and Kosloff [15] involves scaling

the Hamiltonian so that its eigenvalues lie in the interval
[−1,1]. Suppose the eigenvalues of H = p2/(2m) + V are
λ ∈ [Emax,Emin] where Emin = Vmin, the minimum value of
the potential energy, and Emax = h̄2π2

2m(�x)2 + Vmax where Vmax

is the maximum value of the potential energy. The scaled
Hamiltonian is

Hscaled = H

�E
−

(
1 + Emin

�E

)
, (3.4)

where �E = (Emax − Emin)/2. Define y ∈ [−i,i] as

y ≡ −iHscaled = z

�E�t/h̄
+ i

(
1 + Emin

�E

)
(3.5)

with z = −iH�t/h̄.
Since z can be expressed in terms of y, we make the

expansion

ez =
∞∑

n=0

anφn(y), (3.6)

where

an = −ie−i(�E+Emin)�t/h̄

∫ i

−i

e�E�ty/h̄φ̄n(y)√
1 − |y|2

dy

= e−i(�E+Emin)�t/h̄DnJn(�E�t/h̄), (3.7)

where D0 = 1, Dn = 2 for n � 1, and Jn is the Bessel function
of the first kind. The time evolution of the system is described
by the wave function so that

ψ(t + �t) = e−iH�t/h̄ψ(t) = ezψ(t), (3.8)

where we have now taken the initial state to occur at time t .
The wave function at the later time is

ψ(t + �t) = ezψ(t) =
∞∑

n=0

anφn(y)ψ(t) =
∞∑

n=0

an(�t)�n(x),

(3.9)
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where

�n ≡ φn(y)ψ(t). (3.10)

Then upon using the recursion relationship Eq. (3.3) we have

�0 = ψ(t),

�1 = yψ(t) = y�0 = − i

�E
H�0 + i

(
1 + Emin

�E

)
�0,

�n = − 2i

�E
H�n−1 + 2i

(
1 + Emin

�E

)
�n−1 + �n−2

(3.11)

for n = 2,3, . . .. Note that �n are members of the state-vector
space, whereas the φn(y) are operators in that space.

This method can be used to obtain the wave function at some
time from the initial wave function at an earlier time in one
step. Alternatively one can obtain the final wave function by
using a number of steps recursively. In that case the procedure
is repeated for a particular value of �t until a final time
is reached. One needs to calculate the coefficients an only
once and for each time step begin the iteration with the wave
function calculated at the end of the previous time step. On
the other hand it is perhaps numerically more economical to
obtain the �n once and for all, and calculate the coefficients
an for each time in the grid in order to determine the wave
function at each time.

A. Coordinate operator solution

The wave function ψ is a function of x and t . Up to
now we have only indicated the time dependence. Since the
Hamiltonian operator is

H = − h̄2

2m

∂2

∂x2
+ V (x), (3.12)

we consider an equally spaced grid of the domain of x of mesh
size h and define the operator using the approach of Sec. II. Let
χ (x) be a function which is operated on by H . The function
at the grid points are denoted as χj . Thus

Hχ (x) = − h̄2

2m
χ ′′(x) + V (x)χ (x), or

(3.13)

(Hχ )j = − h̄2

2m
χ ′′

j + Vjχj .

We form the sum
r∑

k=−r

a
(r)
k (Hχ )j+k = − h̄2

2m

r∑
k=−r

a
(r)
k χ ′′

j+k +
r∑

k=−r

a
(r)
k Vj+kχj+k.

(3.14)

Using Eq. (2.4) we can replace the first sum on the right side
to obtain

r∑
k=−r

a
(r)
k (Hχ )j+k =

r∑
k=−r

(
h̄2

2mh2
c

(r)
k + a

(r)
k Vj+k

)
χj+k.

(3.15)

Thus if the χj are known we can obtain (Hχ )j by solving
the system of equations. The coefficients a

(r)
k on the right side

form a banded diagonal matrix with the largest entry on the

diagonal multiplying the unknown vector Hχ , and therefore
the system of equations can be solved by elementary means.

Alternatively we can use the approach of Ref. [20] in which
the second-order spatial derivative is approximated as

y ′′(x) = 1

h2

r∑
k=−r

b
(r)
k y(x + kh) + O(h2r ). (3.16)

The method of obtaining these coefficients is described in
Ref. [20] Thus we can write Eq. (3.13) as

(Hχ )j =
r∑

k=−r

(
− h̄2

2mh2
b

(r)
k χj+k

)
+ Vjχj . (3.17)

This case does not necessitate solving a system of linear
equations.

B. FFT method

One can use the fast-Fourier-transform (FFT) method to
obtain the χ ′′(x) in Hχ (x) of Eq. (3.13). The Fourier transform
of χ (x) and its inverse transform are

X(ξ ) =
∫ ∞

−∞
χ (x)e2πiξx dx,

(3.18)

χ (x) =
∫ ∞

−∞
X(ξ )e−2πiξx dξ.

By taking the second-order derivative with respect to x of the
second equation, we obtain

χ ′′(x) = −4π2
∫ ∞

−∞
ξ 2X(ξ )e−2πiξx dξ. (3.19)

To obtain χ ′′(x) we first take the Fourier transform of χ (x),
multiply it by −4π2ξ 2, and then do the inverse Fourier
transform. Thus Hχ (x) of Eq. (3.13) is obtained in a
straightforward manner by combining −(h̄2/(2m)χ ′′(x) with
the potential energy term. In this way one calculates the
H�n−1 term in the recursive relationship for the Chebyshev-
polynomial expansion of Eq. (3.11).

IV. COMPARISON OF THE DIFFERENT METHODS

In order to investigate the numerical efficiency of the
various methods that have been described, we consider
the exactly solvable coherent wave packet in an harmonic
oscillator well. This example was also used by VT and SW
and it was found that qualitatively it gave similar results as
other examples, e.g., the propagating free wave packet.

In this case the potential energy and the initial wave function
are

V (x) = 1

2
Kx2, ψ(x,0) = α1/2

π1/4
e−α2(x−a)2/2, (4.1)

respectively, where α4 = mK/h̄2, ω = √
K/m, and a is the

initial displacement of the packet. The exact wave function
at later times is known. In the following we set h̄ = m = 1,
ω = 0.2, a = 10, x0 = −40, xJ = 40, and t1 = 11T , where
the period T = 10π . The error e2 is defined by the relation

(e2)2 =
∫ xJ

x0

dx |ψ(x,t1) − ψexact(x,t1)|2, (4.2)
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FIG. 1. (Color online) The error e2 for a coherent wave packet
in the harmonic oscillator well oscillating for eleven periods. In this
calculation h̄ = m = 1, ω = 0.2, a = 10, �t = T/40, and �x = 0.2.
The error is plotted as a function of r for both the (a) VT and (b) SW
methods. In (b), the lowest curve corresponds to the machine accuracy
ε = 10−34 times the condition number κ .

where ψexact(x,t) is the analytic wave function for this solvable
system.

A. Comparison of SW and VT numerics

We calculate e2 as a function of r for various values of
M . The graphs of the achievable precision of the SW and
VT methods, Fig. 1, are quite instructive. Typically for the
VT method as r increases for a given value of M the error
e2 decreases until a minimum value is reached after which it
remains constant as r is increased further. The SW method
gives a similar behavior except that for sufficiently large r the
error e2 increases with increasing r . The plateau values are
dependent on M , but they are identical for both the VT and
SW methods. The curves along which e2 decreases is much
steeper for SW than for VT. Overall the VT method is capable
of greater precision since with increasing M and r the precision
improves indefinitely. Thus if the demand for precision is not
too great the SW method is preferred, but for extreme precision
one might look to the VT method.

The graphs also indicate an independence of the precision
obtained through the accuracy of the time evolution and
through the accuracy of the spatial integration. The plateaux
indicate that for certain values of M the precision is not
dependent on r . The fact that outside the plateaux regions
different values of M give identical errors for the same values
of r also confirms this.

The behavior of the resulting errors can be explained in
terms of the properties of the matrices involved in finding
the solutions after a time step. Both methods call for the
determination of the wave function from the matrix equation

A(M)
s �n+(s+1)/M = Ā(M)

s �n+s/M, (4.3)

where A(M)
s = (ajj ′)N×N and the right side is known. This

equation is solved for �n+(s+1)/M . (See VT for details.) For
the VT method the matrix elements are

ajj ′ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 + ih̄�t
2mh2

b
(r)
0

z
(M)
s

− i�t/h̄

z
(M)
s

Vj , j ′ = j,

ih̄�t
2mh2

b
(r)
j−j ′
z

(M)
s

, 1 � |j − j ′| � r,

0, otherwise.

(4.4)

Since the value of |z(M)
s | increases approximately linearly with

M [20], the larger M the more likely that the matrix A is
strictly diagonally dominant; i.e.,

min

{(
|ajj | −

∑
j ′ �=j

|ajj ′ |
)

, for all j

}
> 0. (4.5)

In fact the diagonal dominance can be controlled by choosing
h̄�t/(2mh2) appropriately. This property ensures that the
matrix is well conditioned and Eq. (4.3) will have accurate so-
lutions which are obtainable by simple Gaussian-elimination-
type methods [25, page 48]. To be specific, a very conservative
estimate derived in Appendix A that satisfies the condition
(4.5) is

h̄�t

2m(�x)2
<

9M

10(2r + 1)
. (4.6)

In fact the example of Fig. 1(a) shows that quantity on the right
can be significantly larger.

We do a similar analysis for the SW method. Multiplying
Eq. (2.20) through by −i�t/(μz(M)

s ), we obtain matrix
elements

ajj ′ =

⎧⎪⎪⎨
⎪⎪⎩

[
1 − i�t/h̄

z
(M)
s

Vj ′
]
a

(r)
|j−j ′ | −

ih̄�tc
(r)
|j−j ′ |

2mh2z
(M)
s

, for

0 � |j − j ′| � r,

0, otherwise.

(4.7)

The off-diagonal terms are as large in magnitude as the
diagonal terms. One would expect that the stability of the
solutions becomes compromised for larger r when the diagonal
dominance is less likely. Thus we see that in Fig. 1(b) the
solution for M = 20 deteriorates as r goes beyond ten.

Another way of seeing this is to consider the condition
number κ(A) of the matrix A [26, p. 319ff]. Since values of
the condition number near unity indicate a well-conditioned
matrix and large values an ill-conditioned one, we consider
the quantity εκ , where ε is the machine accuracy of the
computation. If we calculate the average of the condition
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FIG. 2. (Color online) The error compared to the exact result e2

and the difference of the last two approximations ηr . The parameters
are those of Fig. 1 with M = 20 and h = �x. In the legend on the
figure the subscripts are omitted and the superscripts refer to the
calculation used.

numbers of the M matrices A(M)
s of the SW method we obtain

the lowest curve of Fig. 1(b), which is a graph of εκ as a
function of r . Remarkably this graph is very close to that of
e2 for r � 10. The identical slopes indicate that the loss of
precision is in step with the increase of the condition number
as described in Ref. [27, pp. 94–98].

Usually there is no analytic solution by which the precision
of the numerical solution can be tested. In that case we consider
solutions of increasing precision and from those obtain an
estimate of the error. Let us define the difference precision ηr

of the last two approximations with successive values of r as

ηr =
∫ xJ

x0

dx |ψ (r+1)(x,t1) − ψ (r)(x,t1)|2,
for r = 1,2,3, . . . , (4.8)

where ψ (r)(x,t) is the numerical wave function obtained
with the (2r + 1)-point formula for the second-order spatial
derivative using some value of M for the time propaga-
tion. Hence in Fig. 2 we show the relationship between
the differences in the last two obtained solutions and the
error. Careful scrutiny of the graph shows that on the downward
slopes of the curves e2 ≈ ηr for both methods and both values
of h. On the upward slopes of the curves belonging to the
SW method ηr is slightly larger than e2, say by one order
of magnitude. For the horizontal portion of the VT curve we
have reached the limitation due to the machine precision of the
computer and there is some random fluctuation of the values
of e2 and ηr around the horizontal plateau. Thus the values of
e2 and ηr track each other closely.

The CPU time [28] is slightly larger with the SW method
than with the VT method for a given M and r as shown in
Fig. 3. It should be noted however that the CPU times are
given for the same r values but the spatial truncation error is
O(h4r ) for SW and O(h2r ) for VT. Hence when the error due
to ill-conditioned matrices has not set in yet, the SW method
is much faster for a given precision.

When the example is the propagating free wave packet,
the figures show similar results as for the coherent oscillating
wave packet. Such figures are given in Appendix B.
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FIG. 3. (Color online) The CPU time for the coherent wave packet
of Fig. 1.

B. Numerical comparisons of the Chebyshev-SW, -VT,
and -FFT methods

In this subsection we compare the three versions of
the Chebyshev-polynomial expansion of the time-evolution
operator; for convenience we have labeled them CSW, CVT,
and CFFT according to the method of evaluating the kinetic
energy operator acting on the wave function. We again use the
time evolution of a coherent wave packet as the test model.
In Fig. 4 we plot e2 as a function of r when the oscillator is
allowed to evolve for eleven periods. Results for both the
CVT and CSW methods are calculated. In order to make
comparisons with the CFFT method we choose the number
of intervals to be a power of 2. We observe behavior similar
to that of the generalized Crank-Nicolson method (VT and
SW). For instance the CSW reaches the greatest precision at
lower values of r than the same precision obtained with CVT
method. As before CSW reaches a greatest precision result
for a particular value of r and then the precision deteriorates
as r is increased further, whereas with the CVT method the
greatest precision is reached at some value of r and then
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FIG. 4. (Color online) The error e2 as a function of r of the
coherent wave packet for the SW and VT approximation to H . The
parameters of the potential and the length of time (eleven periods)
are the same as in Sec. IV. The numbers in the legend refer to the
number of subintervals in the partition of the spatial range.
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TABLE I. CPU times for various calculations with the Chebyshev expansion of the time evolution operator. The model is the same as
described in the caption of Fig. 1.

CFFT CSW CVT

J CPU e2 CPU e2 CPU e2

128 30.6 2.22 × 10−11 48.2 4.75 × 10−07

256 113 1.19 × 10−30 417 2.72 × 10−27 174 2.31 × 10−19

512 652 1.28 × 10−30 2813 5.35 × 10−30 931 1.52 × 10−30

1024 4818 1.53 × 10−30 14608 7.59 × 10−31 5938 9.27 × 10−31

remains at that level as r is increased further. At this point
e2 ≈ 10−30 when calculations are performed with quadruple
precision (approximately 34 significant digits). With the CSW
this precision is reached only with the 1024 interval case,
whereas with CVT this precision is achieved with all spatial
partitions, although the smaller number of intervals may lead
to inordinately large values of r .

It is surprising that such precision is obtained with Cheby-
shev method combined with the SW and VT expansions of
the second-order spatial derivative. For instance, if in the
1024-subintervals case we consider the sum needed to evaluate
the wave function

ψ(x,�t) = e−i(�E+Emin)�t/h̄

nmax∑
n=0

DnJn(�E�t/h̄)�n(x),

(4.9)

we find that nmax needs to be larger than 140 000 in order to
reach the precision such that e2 ≈ 10−30. Such a large number
of terms is necessary in order to reach the order of the Bessel
function so that the magnitude of subsequent Bessel functions
falls off exponentially with order. In the recursion to obtain
the �n(x), in effect the second-order derivative of the function
had to be taken this number of times. Normally one would
not expect accurate results of numerical calculations of higher
order derivatives; however, with the scaled Hamiltonian this is
possible.

Note that in Fig. 4 the CSW calculations with 128 or 256
spatial intervals give results up to r = 7 and r = 21, respec-
tively, after which the solutions become totally unreliable
and e2 escalates to unlimited values. Reducing the space of
the solution so that, say, −30 � x � 30, allows for reliable
solutions for larger values of r , but eventually the solutions
still blow up. This is a result of values of h = �x being too
large for the CSW method to be stable.

We compare CPU time of the various methods. Table I lists
the CPU times with the error in the calculations as a function

TABLE II. CPU times for comparison of the VT method and the
SW method. The model is the same as described in the caption of
Fig. 1.

VT SW

J CPU e2 CPU e2

400 2478 6.51 × 10−30 395 9.90 × 10−29

of steps in the partition J . Table II gives the CPU times for the
most precise (smallest e2) calculations shown in Fig. 1.

From the numbers in Tables I and II it is apparent that the
Chebyshev method with the fast-Fourier-transform (CFFT)
method of determining the kinetic energy yields the most
efficient calculations. In the CFFT calculations we have
jumped to the final time in one step. This has an obvious
advantage when one is interested in the final wave function.
If however one wishes to have a set of wave functions on
a time grid as is, for example, the case when studying the
time propagation of a wave packet, then one has to do more
calculation with the CFFT method whereas in the SW or VT
method the wave functions are already calculated on a time
grid. Thus the SW and VT methods are then of comparable
efficiency to the method of choice, i.e., the CFFT method. The
latter method is however not intrinsically unitary, although
with the precision of the wave functions that were calculated
this is not an issue.

V. DISCUSSION

Until recently the Chebyshev expansion of the time-
evolution operator with the CFFT method of obtaining the
kinetic energy yields the most efficient and precise numerical
solution of the time-dependent Schrödinger equation. Given
the right circumstances that may still be the case, but we
have shown that the generalizations of the Crank-Nicolson
method give numerical solutions of comparable precision and
efficiency.

We can draw some further more particular conclusions from
the work in this paper. We summarize them in point form. First
we compare the SW and the VT methods.

(1) The SW method leads more efficiently to precise solu-
tions than the VT method for relatively small values of r .

(2) For larger values of r the solutions of SW become less
precise even though more computational effort is expended.

(3) TheVT method’s precision increases with r for all values
of r and hence in principle is capable of greater precision.

(4) Since the VT method yields solutions whose precision
increases monotonically with increasing M and r it is more
straightforward to improve the calculations. However the SW
method is more efficient for lower values of r and its precision
can be estimated using the condition number. In both cases the
difference ηr − ηr+1 can be used as an indicator of precision.
If it is positive the precision has improved and either ηr or ηr+1

gives an estimate of the error.
(5) Both methods are inherently unitary. The constraint due

to unitarity is significant since it avoids exponential increases
of unphysical components in the wave function introduced by
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rounding errors [19]. It does not however prevent the wave
function from becoming inaccurate when the step sizes are too
large.

To summarize the comparisons of the Chebyshev FFT
method and the generalized Crank-Nicolson methods, we list
the following.

(1) The CFFT method is still somewhat superior, but the
SW and VT methods are coming close in speed and accuracy.

(2) The Chebyshev expansion of the time-evolution opera-
tor accompanied by the numerical differentiation to obtain the
kinetic energy is again slightly inferior to the CFFT method,
but surprisingly it can be done with reasonable success.

(3) The Chebyshev expansion in principle fails to preserve
unitarity, but for very precise solutions gives results which
have preserved the normalization to a high degree.

Thus the generalized Crank-Nicolson methods do give us a
viable alternative approach to obtain fast and accurate solutions
to the time-dependent Schrödinger equation.

The generalized Crank-Nicolson methods are amenable
to further generalization to solve cases with time-dependent
potentials as indicated in Ref. [18]. Furthermore, there is
revived interest in solutions of the nonlinear Schrödinger
equation and the Gross-Pitaevski equation. The Chebyshev
expansion for the time-dependent-potential case was recently
done with proper care of the time-ordering in the time-
evolution operator [29]. A similar approach using the Padé
approximant of the time-evolution operator can be done
by considering the time-dependent part of the Schrödinger
equation as an inhomogeneous term [30,31]. The method of
discretizing space has been extended to two dimensions for the
time-independent Schrödinger equation [32]. This can readily
be applied to the time-dependent Schrödinger equation. In the
future we intend to investigate the two-dimensional case and
the time-dependent-interaction case.

We have not considered the effect of boundary conditions
at which the wave function and/or its spatial derivative is not
zero. VT describe an approach for hard boundaries, which
also applies to the origin of the radial wave equation. This
approach has been tested for hard boundaries at both ends of
the spatial region [33]. Further cases where the boundary is not
impenetrable is discussed in Ref. [19]. In the case of the CFFT
method such boundary conditions can be incorporated using
endpoint corrections to the fast Fourier transforms. For third-
order corrections in �x see Ref. [34]. This approach can be
generalized based on endpoint correction of regular integrals
[35] or using the Euler-MacLaurin expansion with endpoint
terms [36]. These corrections will make an insignificant
difference in the precision and efficiency of the problem,
provided they are applied to the same order as the main
problem. As an aside, the Peters and Maley procedure [35]
allows one to numerically evaluate the integrals involving the
calculated wave function, e.g., the norm, very precisely using
the simple rectangle-rule quadrature when the wave function
is zero near the boundaries of the domain. In that case all
endpoint corrections are zero and one achieves precision of
O(h2r ) or O(h4r ).

It is evident that the grid size for the spatial and time
variables are limited in order to give accurate solutions.
Muller [19] pointed out that working in an appropriate gauge
may significantly change the efficiency. Recently Bauke and

Keitel [37] explored in more detail the use of canonical
transforms to be able to employ larger grid sizes leading to
significant improvement of the numerical calculations. The
gauge-transformed Hamiltonians are time dependent, and as
mentioned above, to have a numeric procedure accurate to
arbitrary order in �t needs further investigation.
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APPENDIX A: CONDITION FOR CONVERGENCE OF VT

Let us consider the condition for diagonal dominance (4.5)
for the matrices of VT, Eq. (4.4). For simplicity assume that
the potential is zero; i.e., Vj = 0. Then

ajj = 1 + ih̄�tb
(r)
0

2mh2z
(M)
s

= 1 + iνb
(r)
0

(
z(M)
s

)∗∣∣z(M)
s

∣∣2 , (A1)

where ν = h̄�t/(2mh2). From this equation we obtain

|ajj | =
√√√√(

1 + νb
(r)
0 Im

(
z

(M)
s

)
∣∣z(M)

s

∣∣2

)2

+
(

νb0(r)Re
(
z

(M)
s

)
∣∣z(M)

s

∣∣2

)2

�
∣∣∣∣∣1 − ν

∣∣b(r)
0

∣∣∣∣z(M)
s

∣∣
∣∣∣∣∣ . (A2)

Using the fact that |b(r)
k | < |b(r)

0 | for k �= 0, we obtain

|ajj ′ | = ν
∣∣b(r)

j−j ′
∣∣∣∣z(M)

s

∣∣ , 1 � |j − j ′| � r �
ν
∣∣b(r)

0

∣∣∣∣z(M)
s

∣∣ . (A3)

Therefore

∑
j ′ �=j

|ajj ′ | �
2rν

∣∣b(r)
0

∣∣∣∣z(M)
s

∣∣ . (A4)

We observe that (see Ref. [20])

4
3M �

∣∣z(M)
s

∣∣ � 9
5M and − 3 � b

(r)
0 � −2. (A5)

Along with these relations the diagonal dominance condition
(4.5) can be used to obtain an estimate of the condition under
which the solution is stable; i.e.,

ν ≡ h̄�t

2mh2
� 9M

10(2r + 1)
. (A6)

APPENDIX B: FREE PARTICLE PROPAGATION

We have repeated some of the analysis of Sec. IV for a free
traveling wave packet as in Ref. [14]. The wave function of

such a packet is the solution of the time-dependent Schrödinger
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FIG. 5. (Color online) The error e2 for the free wave packet. In
this calculation h̄ = 1, m = 1/2, k0 = 50π , σ0 = 0.05, x0 = −0.75,
xN = 3.25, xi = 0.25, �x = 0.004, �t = 0.0001, and the final time
t1 = 0.004. The error at the final time is plotted as a function of r for
both the VT (a) and the SW (b) methods when M = 5,10,15,20.

equation with V (x) = 0 and can be written as

ψ(x,t) = (
2πσ 2

0

)−1/4[
1 + ih̄t/

(
2mσ 2

0

)]−1/2

× exp

{
−(x−xi)2/(2σ0)2+ik0(x−xi)−ih̄k2

0 t/(2m)

1+ih̄t/
(
2mσ 2

0

)
}

.

(B1)

We use parameters similar to those of Ref. [14]. The
units are chosen so that h̄ = 1 and m = 1

2 . The wave packet
momentum is h̄k. The initial wave function for the numerical
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FIG. 6. (Color online) The error and precision of the final free
wave packet. The legend is (a) eSW

2 with h = 0.01, (b) ηSW
r with

h = 0.01, (c) eSW
2 with h = 0.005, (d) ηSW

r with h = 0.005, (e) eSW
2

with h = 0.004, (f) ηSW
r with h = 0.004, (g) eVT

2 with h = 0.01,
(h) ηVT

r with h = 0.01, (i) eVT
2 with h = 0.005, (j) ηVT

r with h = 0.005,
(k) eVT

2 with h = 0.004, and (l) ηVT
r with h = 0.004. All calculations

were done with M = 20.

calculation is ψ(x,0). The coordinate range we take from
x0 = −0.75 to xJ = 3.25 and the initial position of the wave
packet is taken to be xi = 0.25. We choose σ0 = 1/20, k0 =
50π , and the final time is t1 = 0.004 with �t = t1/40. At the
final position, which occurs at the final time, the numerically
calculated wave function is compared to the analytic one and
e2 is determined, as well as ηr , when needed.

We present a graph similar to Fig. 1 but for the free wave
packet in Fig. 5. Similarly we repeat the calculation that led to
Fig. 2 for the free wave packet and show the results in Fig. 6.
For Fig. 6 the chosen parameters for the spatial and temporal
ranges are somewhat different. In that case we use x0 = −0.75,
xJ = 3.75, xi = 0.25, and t1 = 0.004 with �t = t1/30. Note
that points for e2 and ηr for identical parameters are virtually
the same. The sets (g) and (h), and also (e) and (f), show
the greatest differences although they are close. The sets (a)
and (b) are interesting because they are the result of the SW
calculation but seem to follow the pattern of VT calculations. A
careful scrutiny shows however that the pattern bends at around
r = 23 and merges with the upwardly sloped path typical of
SW calculations.

Figures 5 and 6 show that the numerical behavior of the free
wave packet when considered by the SW and VT methods is
similar to that of the oscillating coherent wave packet and
consequently the conclusions in Sec. V are more generally
applicable than just to the oscillating coherent wave packet.
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