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Numerical method for determining the interface free energy
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We propose a general method (based on the Wang-Landau algorithm) to compute numerically free energies
that are obtained from the logarithm of the ratio of suitable partition functions. As an application, we determine
with high accuracy the order-order interface tension of the four-state Potts model in three dimensions on cubic
lattices of linear extension up to L = 56. The infinite volume interface tension is then extracted at each β from
a fit of the finite volume interface tension to a known universal behavior. A comparison of the order-order and
order-disorder interface tension at βc provides a clear numerical evidence of perfect wetting.
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I. INTRODUCTION

Interfaces play a major role in various physical phenomena
in, e.g., statistical mechanics, soft condensed matter, particle
physics, and biology. Of particular interest are fine (or rough)
interfaces, whose long-range fluctuations are determined by
massless modes. For those systems, the infrared properties
are universal and can be described by general models like the
capillary wave model [1] or the Nambu-Goto string [2,3].

An interesting class of interfaces are those related to
the free energy of topological excitations. This is the case,
e.g., for the order-order interface in the Potts model or for
the tension of the ’t Hooft loop in SU(N ) gauge theories.
The free energy of the topological object for a system on
a (hyper-)cubic domain of linear size L can be extracted
from the ratio of the partition function of the system in the
presence of the topological excitation (which can be enforced
using suitable boundary conditions) over the partition function
of the system with periodic boundary conditions. In more
detail, if Z̃(L) is the partition function in the presence of a
topological excitation and Z(L) the partition function with
periodic boundary conditions, FI , the free energy of the
interface (which we assume to be translationally invariant in
one direction) is given by

FI (L) = − log
Z̃(L)

Z(L)
+ log(L). (1)

The interface tension σ is then obtained as

σ = lim
L→∞

FI (L)

LD−1
, (2)

with D the dimensionality of the system.
With some noticeable exceptions, it is not known how

to determine from first principles the analytical behavior
of interfaces as a function of the couplings of the system.
Moreover, it is a notoriously hard problem to access directly
partition functions in Monte Carlo simulations, since these
quantities have exponential fluctuations in the volume (see,
e.g., Refs. [4,5]). Most of the solutions adopted in the literature
(e.g., Refs. [6–8]) consist in relating the interface tension (or
its derivative) to quantities that can be reliably determined via
Monte Carlo simulations. However, these methods generally
introduce large systematic and/or statistical errors. Hence, a
direct determination of the interface free energy as ratio of
partition functions is desirable.

II. THE MODEL

The partition function Z of a system at a temperature
T = 1/(kBβ), with kB the Boltzmann constant, is obtained
as the integral (or the sum for discrete levels) over the energy
E of the density of states g(E) weighted with the Boltzmann
factor e−βE :

Z =
∫

g(E)e−βEdE. (3)

Monte Carlo methods sample efficiently the distribution
g(E)e−βE and are best suited for determining statistical
averages of observables with Gaussian fluctuations. An inde-
pendent strategy for studying statistical properties of a system
consists in the numerical determination of g(E). This can
be achieved using the Wang-Landau algorithm [9]. In this
article, we propose a method to extract the interface tension
using Eqs. (1) and (2) based on the Wang-Landau algorithm.
The method is tested on the four-state Potts model in three
dimensions.

In the q-state Potts model the fundamental degrees of
freedom are spin variables that can take the integer values
0, . . . ,q − 1. The Hamiltonian of the model computed on a
configuration q̂ is given by

H (q̂) = 2J
∑
〈ij〉

(
1

q
− δqi ,qj

)
, (4)

where J is the strength of the interaction, δqi ,qj
is the Kronecker

δ function of the spin variables qi,qj on neighbor sites i,j ,
and the sum 〈ij 〉 is over nearest neighbors. For a system of
finite size, periodic boundary conditions in all directions are
imposed. The partition function is then given by

Z =
∑
{q̂}

e−βH (q) =
∑
E

g(E)e−βE, (5)

where the first sum is over all possible configurations q̂ and the
second over all allowed energies [from now on, we redefine
β as J/(kBT )]. At zero temperature, there are q stable vacua.
In two and three spatial dimensions, the system transitions
from the low-temperature-ordered phase, in which the spins are
predominantly in one of the q values, to the high temperature
disordered phase at the critical temperature Tc.

For simplicity, we now specialize to the three-dimensional
case. At zero temperature, it is possible to enforce an interface
separating two regions with two different vacua by imposing
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twisted boundary conditions in one direction (e.g., the third
direction). We consider here only twists of one unit, i.e., twists
for which spins qi at points i with coordinates (x1,x2,L) are
replaced by (qj + 1) mod q, where j = (x1,x2,0). We call
H̃ (q̂) the corresponding Hamiltonian. The configuration that
minimizes the energy has a misalignement of the spins by
one unit on a plane orthogonal to the third direction. At finite
temperature, this rigid interface between the two vacua can
fluctuate and near the phase transition becomes dominated by
massless modes (rough phase). The partition function for the
system with an interface is given by

Z̃ =
∑
{q̂}

e−βH̃ (q) =
∑
Ẽ

g̃(Ẽ)e−βẼ, (6)

where the tilde indicates that those quantities have to be
computed for the system with Hamiltonian H̃ . With these
definitions, for a system on a cubic lattice of size L, the
free energy and the tension of the interface between two
ordered states (order-order interface) are given, respectively,
by Eqs. (1) and (2).

III. THE NUMERICAL DENSITY OF STATES

To access directly the partition functions (5) and (6), we
use the Wang-Landau algorithm [9]. This algorithm modifies
directly the density of states by performing a random walk
in energy space. A random update of a spin is accepted
with a probability min{1,g(E)/g(E′)}, where E and E′ are,
respectively, the energies before and after the update. After
the update, g(E) is modified, such that g(E) → kg(E), where
now E is the energy of the configuration after the update.
The update satisfies the detailed balance in the limit k → 1.
However, starting from a k �= 1 is important to obtain a first
rough approximation of g(E). For this reason, we begin the
simulation with a relatively large value of k, namely k = 3.
Then, when g(E) has converged, we reduce k → √

k and
repeat the cycle until k is small enough for the systematic
errors to be significantly smaller than the statistical errors.
Each cycle defines one iteration of the algorithm. We study
cubic lattices of size L = 16,20,24,28,32,40,48,56. For each
volume, we perform 20 independent simulations for both

periodic and twisted boundary conditions. For the smallest
lattice, we start from a constant density of states. For the other
lattices, we use as an input an interpolation of the density of
states determined on the system with the closest smaller size.
After the simulation, g(E) is normalized so g(Emin) = log(4)
and g̃(Ẽmin) = log(4L).

In a Wang-Landau-type simulation, the convergence of
the density of the states and the saturation of the error
present potential issues [10–14]. The original implementation
[9] used a flatness criterion for the histogram of the visits
to the various energy levels: When the histogram is flat
within some tolerance, we assume that g(E) at that level of
iteration has converged. However, the tolerance is somewhat
arbitrary. In Ref. [10], it was proposed that the density of
state converges when each energy value is visited at least
1/

√
log k times. Increasing the number of visits will not

decrease the statistical error. We will refer to this proposal as
the Zhou-Bhatt convergence criterion. This criterion, however,
does not address the convergence of the measured density of
state to the true density of state. In Refs. [13,14] it was shown
that possible systematic errors due to the convergence to the
wrong density of states can be eliminated if we require a
number of visits at least equal to 1/ log k for each energy level
(Morozov-Lin convergence criterion).

In Fig. 1, we provide a comparison of the flat histogram
criterion, the criterion proposed in Ref. [10] and the criterion
introduced in Ref. [13] for the specific heat

C = β2

L3
(〈E2〉 − 〈E〉2) (7)

at β = 0.316 on a 163 lattice. The figure shows that after
20 iterations all three criteria are at convergence. Moreover,
the three estimates for the specific heat are the same within
errors, the typical size of the errors being a few percentage
points. This general feature is independent from β. An explicit
comparison of the Zhou-Bhatt criterion with the Morozov-Lin
criterion focusing again on the specific heat is provided in
Fig. 2 for a wide range of β. This suggests that for observables
that are accurate to the level of the percentage point, among
which are interface tensions, the three criteria yield compatible
results. In terms of statistical errors, the Zhou-Bhatt criterion
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FIG. 1. (Color online) Comparison between three different criteria to assess the convergence of the density of states, for the specific heat
CV at β = 0.316. The horizontal line is the central value obtained with the Morozov-Lin criterion (middle plot) at the 27th iteration. The left
plot has been obtained with the Wang-Landau flat histogram method, while the right plot shows the data obtained with the Zhou-Bhatt criterion.
The vertical line marks the 23rd iteration.
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FIG. 2. (Color online) The difference between the specific heat
determined with the Zhou-Bhatt (Ca

V ) and the Morozov-Lin criterion
(Cb

V ) divided by Cb
V (both taken after 23 iterations) on a wide range

of β for the 163 lattice.

seems to yield the largest error bars. However, the Zhou-Bhatt
algorithm converges to the density of the states in a CPU time
that is a factor of 16 smaller than the original Wang-Landau
and a factor of 64 smaller than the Morozov-Lin criterion.
This study suggests that for our application the Zhou-Bhat
criterion (i.e., number of visits ∝ 1/

√
log k) is adequate from

the numerical point of view for the level of precision requested
by our study. Hence, we used this criterion to decide when a
given iteration had converged. Based on the study of Fig. 1,
we performed 23 iterations, which is a conservative estimate
of the number of iterations needed for the convergence of the
algorithm.

To perform further tests of our implementation, we cal-
culated some thermodynamical quantities like the critical
temperature, the latent heat and the entropy density, and
compared our results with Refs. [15,16]. Following Ref. [16],
we use three different estimators for the transition temperature
on lattices with finite extension. The first, β1

c , is defined to
be the value for which the canonical distribution P (E,β) =
g(E)e−βE has two equal maxima. The second (β2

c ) is the
position of the central energy of the latent heath, i.e., the value
of β satisfying the equation

e(β2
c ) = 1

2 [e+(β2) + e−(β2)], (8)

where e± (e = E/N , with N = L3) are the locations of the
maxima of the probability distribution at β2

c . The third (β3
c ) is

the location of the maximum of the specific heat (7). All the
critical temperatures are extrapolated to the infinite volume
limit using the ansatz

βi
c(L) = βi

c + ci

L3
. (9)

We perform the extrapolation by using the six largest lattices.
The extrapolated values agree in the infinite-volume limit
(see Fig. 3). Averaging over the three determinations gives
βc = 0.3143103(9). The latent heat per site �e can be
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FIG. 3. (Color online) Three different estimators for the critical
temperature on finite lattices.

calculated from the maxima of the specific heat [17]:

Cmax(L) = c + 1
4 (βc)2(�e)2L3. (10)

Our estimate is �e = 1.16454(16). Finally, the numerically
determined entropy density

s = β(e − f ), (11)

with f = − log Z/(βN ) the free energy density, is plotted in
Fig. 4. All those quantities are always less than two standard
deviations from the corresponding determinations of Ref. [15],
which have been obtained on larger lattices.

IV. INTERFACE TENSIONS

We now move to the discussion of our results for the
interface tension. In the ordered phase, an interface can form
between two regions of space that are in two different vacua.
This interface is called the order-order interface. Near the
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FIG. 4. Entropy density as a function of β for L = 56.
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FIG. 5. (Color online) The order-order interface tension σ (L) at
β = 0.318 for different lattice sizes. The dashed line is a fit of the
data according to Eq. (12), with fit parameters σoo, c2, and c4; the
horizontal line indicates the extracted value for σoo.

critical temperature, the dynamics of the order-order interface
σoo is dominated by massless modes and its infrared properties
are universal (see, e.g., Refs. [1,18]). The asymptotic interface
tension can then be extracted using the ansatz (see, e.g.,
Refs. [19,20])

σoo(L) = σoo + c2

L2
+ c4

L4
+ · · · , (12)

where the order of the truncation of the expansion in 1/L2

is determined by the accuracy of the data. As a consequence,
a reliable extraction of σ requires accurate data. From our
simulations, we have extracted FI using Eq. (1) and then the
interface tension fitting the data according to Eq. (12) truncated
to O(L−4). To reduce finite-size effects, we included in the
fit only points for which L

√
σ � 6. Since the ansatz (12) is

expected to hold only at large distances, our analysis was
limited to values of β for which σ

−1/2
oo � 3. An example of

the quality of our data is given in Fig. 5. The values of σoo

extracted from our fits are plotted in Fig. 6. The relative error
on this quantity is at most 3 × 10−3 and is invisible on the
scale of the figure. Near βc, the behavior of σoo(β) can be
parametrized as

σoo(β) = σoo(βc) + a(β − βc)ρ. (13)

Fitting this functional form to our results, we found that
this provides an excellent description of the data (a fit with
9 degrees of freedom has χ2/9 = 0.11). We find σoo(βc) =
0.0249(6) and ρ = 0.76(4). The quality of the fit is shown by
the dashed line in Fig. 6.

At βc, the order-disorder interface separates a region in an
ordered state from one in the disordered state. The interface
tension between an ordered and the disordered phase, σod, can
be determined by looking at the probability distribution of the
energy at the critical temperature. In particular, if Pmax is the
peak of the histogram when the two maxima have equal eight
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FIG. 6. (Color online) The infinite volume order-order interface
tension as a function of β. The fit (dashed line) is in excellent
agreement with the hypothesis of perfect wetting (open triangle).

and Pmin is the minimal height of the valley between the two
peaks [21,22],

2σod(L) = 1

L2
log

(
Pmax

Pmin

)
. (14)

Our data for P (E/N) as a function of E/N are shown in
Fig. 7. We use a fitting function of the form

2σod(L) = − log L

2L2
+ 2σod + c2

L2
+ c3

L3
+ c4

L4
. (15)

Universality arguments [23,24] suggest that c3 = 0. Neverthe-
less, a correction at this order is due to the fact that we use
the finite-volume estimator (14), as it can be shown with a
simple saddle point argument [25]. A fit of the data according
to Eq. (15) performed excluding the two smallest volumes
yields 2σod = 0.0252(4), with c3 and c4 both compatible with
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FIG. 7. (Color online) The probability distribution at the critical
temperature. The maxima are normalized to 1.
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zero. Note that the obtained value of σod is fully compatible
with the perfect wetting relationship

2σod = σoo, (16)

which has been argued in Ref. [26] for the two-dimensional
Potts model. Our result is a clear indication that perfect wetting
also holds for the Potts model in three dimensions. This is
shown in Fig. 6.

V. CONCLUSIONS

We have proposed a method for determining numerically
free energies of interfaces or topological objects when the
partition function with given boundary conditions is required.
The range of applicability of our method includes not only
statistical systems (XY model, Heisenberg ferromagnet, etc.)

but also gauge theories [e.g., the ’t Hooft loop tension in
SU(N ) Yang-Mills]. We have successfully tested this method
on the 3D four-state Potts model, for which we have provided a
very accurate determination of the order-order interface below
the critical temperature. This has enabled us to give clear
numerical evidence for perfect wetting in this model.
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