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Modification of the adiabatic invariants method in the studies of resonant dissipative systems
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We study the system of equations for the canonically conjugate variables p and q specified by the one-
dimensional Hamiltonian H = H (p,q,�1, . . . ,�N ) dependent on Nself-consistent slightly changing parameters
obeying the equations: �̇n = εfn(�1, . . . ,�N,p,q). A broad range of oscillatory and wave processes with weak
dissipation is described by analogous systems. The general method of adiabatic invariant construction for this
system is proposed. Self-consistent averaged equations for the evolution of the action integral and the parameters
�n are obtained. The constructed theory is applied to a generalized model of the nonlinear resonance. The
autoresonance (phase locking) regime of decay parametric instability in a dissipative medium is revealed.
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I. INTRODUCTION

The use of adiabatic invariants is an efficient way to
analyze different physical systems [1–3]. A standard ob-
ject for such an approach is the Hamiltonian system H =
H (p,q,�1, . . . ,�N ), in which the parameters �n can be
considered as given functions of the independent variable
τ . The applicability of the adiabatic invariants method is
justified by a certain slowness of variation of the parameters
�n on the scale of characteristic times of the conservative
system. However, a lot of real physical objects are modeled
by more complicated systems, where the dynamics of the
parameters is self-consistent with the dynamics of the canonic
variables. In such a case, the division of a set of quantities
p,q,�1, . . . ,�N into “dynamic variables” and “parameters”
is conditional and makes sense, generally speaking, only if the
dynamic equations for the quantities �n depend on a small
parameter.

A broad range of oscillatory and wave processes in dissipa-
tive systems can be described by the canonic equations, spec-
ified by the Hamiltonian H = H (p,q,�1, . . . ,�N ), together
with the first-order equations for the quantities �n (hereafter
we call them parameters): �̇n = εfn(�1, . . . ,�N,p,q). In
this symbolic notation, the small parameter ε (responsible
for the dissipation) guarantees that the relative variation
of �n at characteristic times of “stationary” dynamics is
small.

An important step in this direction was made in [4], where a
modified adiabatic invariant (different from the standard action
integral I0 = ∮

pdq) was constructed for the definite type of
these complicated systems. The procedure for constructing an
adiabatic invariant in a general case is proposed in the present
paper. However, such modified invariants cannot always be
found in an explicit form, so the derivation of “truncated”
equations describing averaged trends of the action and the
parameters of the system is a more efficient method. Note
that such an approach can be especially effective for studying
dynamic regimes similar to the autoresonance (phase locking)
effect [5–14]. This effect consists in “trapping” the phase
trajectory in the vicinity of the elliptic equilibrium states with
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the adiabatic trend of the system parameters. In a standard
case, the realization of such a regime is guaranteed by the
conservation of the quantityI0, which has the meaning of an
area enclosed by an orbit in phase space. Correspondingly, in
the general case, it is exactly the evolution of the action integral
that determines the feasibility of such a trapping. Let us also
mention such an important effect of the dynamics of nonlinear
systems as a transition of the phase trajectory through a
separatrix. It takes place when the quantity I0 approaches the
area encircled by the corresponding branch of the separatrix
[5–7,15]. Obviously, the description of the self-consistent av-
eraged dynamics of the action of the system and the parameters
is an effective method for investigating processes of this type as
well.

The paper is organized as follows. In Sec. II, first, a
general approach to obtaining the modified adiabatic in-
variants is formulated and, second, self-consistent equations
for evolution of the action integral and an averaged trend
of parameters are obtained. In Sec. III, we present some
examples of systems reducible to the one-dimensional (1D)
Hamiltonian form with self-consistent parameters discussed
here:

(i) A two-level atom controlled by a resonant quasi-
monochromatic field within the framework of the Weisskopf-
Wigner approximation

(ii) A system of nonlinear interactions of M damping
rotators that can be reduced to the universal model of
nonlinear resonance generalized to the case of finite dis-
sipation [16,17]. This model is widely used in celestial
mechanics, the theory of particles motion in resonant high-
frequency (HF) fields, and the theory of waves nonlinear
interaction

(iii) A four-wave mixing of radiation in the regime of
electromagnetically induced transparency in an ensemble of
three-level atoms

In Sec. IV, the developed approach is applied to the
generalized nonlinear resonance model. In particular, it is used
to study the decay parametric instability of waves in a nonlinear
dissipative medium. An autoresonance regime of such instabil-
ity is detected. Appendixes A and B are devoted to an important
example of a system reduced to the generalized model of non-
linear resonance, namely, the waveguide modes in a nonlinear
medium.
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II. MODIFICATION OF THE ADIABATIC
INVARIANTS METHOD

Consider the system specified by the Hamiltonian H =
H (p,q,�1, . . . ,�N ) dependent on N parameters �n.

dp

dτ
= ∂H

∂q
,

dq

dτ
= −∂H

∂p
. (1a)

The equations for �n have the form1

d�n

dτ
= εfn(�1, . . . ,�N,p,q), (1b)

where ε is the small parameter. Let the closed trajectories
p = p(�1, . . . ,�N,E,q) correspond to this system for ε → 0
(�n = const). Here E = H (�1, . . . ,�N,p,q) = const is the
energy integral.2 Following [1], we find the small (because of
the smallness of the parameter ε) variation of some function
I (E,�1, . . . ,�N ) over the period of motion T along the
unperturbed closed trajectory:

�I =
N∑

n=1

∂I

∂�n

∫ τ+T

τ

d�n

dτ
dτ + ∂I

∂E

∫ τ+T

τ

dE

dτ
dτ . (2)

Substitute the exact relations

dE

dτ
=

N∑
n=1

∂H

∂�n

d�n

dτ
, dτ = dq

(∂H/∂p)
,

together with the equations which are valid for the motion over
an unperturbed trajectory (i.e., for small values of ε, see [1])

∂H

∂p
=

(
∂p

∂E

)−1

,
∂H

∂p

∂p

∂�n

+ ∂H

∂�n

= 0

into Eq. (2). As a result, we obtain

�I = ε

N∑
n=1

(
An

E

∂I

∂�n

− An
�

∂I

∂E

)
, (3a)

where

An
E =

∮
fn(�1, . . . ,�N,p,q)

∂p

∂E
dq,

An

�
=

∮
fn(�1, . . . ,�N,p,q)

∂p

∂�n

dq. (3b)

In Eq. (3b) the integration is performed over an unperturbed
trajectory, i.e., for p = p(�1, . . . ,�N,E,q), where E = const
and �n = const.

1An admissible explicit dependence of the Hamiltonian on the
“slow” time can formally be taken into account by introduction of the
parameter, �n=n∗ = ετ , for which fn∗ ≡ 1.

2To avoid any misunderstanding, hereafter we use the designa-
tion for a constant E which is equal to the Hamilton function
on the given trajectory for �n = const and for the Hamiltonian
H (�1, . . . ,�N,p,q) which depends on the canonical variables.

If3An
E,An

� �= 0, then the function I (E,�1, . . . ,�N ), which
satisfies the condition �I = 0 and, correspondingly, the
equation

N∑
n=1

An
E

∂I

∂�n

−
N∑

n=1

An
�

∂I

∂E
= 0, (4a)

can be found. A solution to Eq. (4a) is the integral of the system
of equations for the characteristics (see, e.g., [37]):

d�1

dE
= − A1

E∑N
n=1 An

�

, . . . ,
d�N

dE
= − AN

E∑N
n=1 An

�

. (4b)

If the derivatives d�n/dτ depend on the dynamic
variables only via the Hamilton function,4 i.e., fn =
fn(�1, . . . ,�N,H ), then it follows from Eq. (3b) that
(An

E,An
�) = fn(�1, . . . ,�N,E)( ∂I0

∂E
, ∂I0
∂�n

). In this case one
of the integrals of the system of equations (4b) is the
standard action I = I0 = ∮

pdq. For the factorized func-
tions fn = un(�1, . . . ,�N,H )η(p,q), from Eq. (3b) we
obtain (An

E,An
�) = un(�1, . . . ,�N,E)( ∂IS

∂E
, ∂IS

∂�n
), where I =

IS = ∮
νdq, ∂ν

∂p
= η. In this case, the integral of the system

of equations (4b) is the quantity IS .
Earlier the expression for the adiabatic invariant IS was

found in [4] for the particular case, when the Hamiltonian
depends on one parameter �. In [4], it is shown that the
modified adiabatic invariant is preserved with exponential
accuracy. The proof presented in [4] can easily be generalized
to the case of many parameters.

In the general case, the search for the integral of Eq. (4b)
can appear as a fairly complicated problem. For actual physical
systems (see the examples presented in Sec. III) in a typical
situation some parameters are known functions of τ and the
evolution of other parameters depends on the evolution of
p and q. Considering the more general case, let Eq. (1b)
for the parameters �n with the numbers n from 1 to P − 1
comprise the functions fn = fn(�1, . . . ,�N,H ) independent
of canonical variables. In such a situation, it seems natural to
derive the differential equation for the action of the system. For
this purpose, we pass from the finite variation of the function
I over the period to the temporal derivative dI

dτ
≈ �I

T
and then

substitute I = I0 in Eq. (3a). As a result, with allowance for
the expression T = ∂I0

∂E
, the derivatives with respect to the

parameters with numbers n < P will be excluded in the final
equation for the action:

dI0

dτ
= ε

(
∂I0

∂E

)−1 N∑
n=P

(
An

E

∂I0

∂�n

− An
�

∂I0

∂E

)
. (5a)

Equation (5a) obviously comprises the values of all quanti-
ties averaged over the period T of “fast” motions. Since in the
general case the trend of the average values of the parameters
�n is unknown, Eq. (5a) should be supplemented with the
corresponding relations for these quantities. For this purpose,

3V. Khudik drew the author’s attention to the latter condition.
4Obviously, all the results discussed in what follows are true if

the functional dependence on the Hamiltonian is replaced by the
functional dependence on the action I0.
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we apply the averaging operator5 〈· · ·〉 = 1
T

∮
(· · ·) dq

(∂H/∂p)
to Eq. (1b); as a result, we obtain the following averaged
equations for the parameters:

d�n

dτ
= ε

(
∂I0

∂E

)−1

An
E. (5b)

It can be shown that the first integral of the system of
Eqs. (5a) and (5b) is the solution of Eq. (4a), written in
corresponding variables (I0,�n). The question of possible
discrepancy between the solution of truncated Eqs. (5a)
and (5b) and the solution of the initial system in Eqs. (1a)
and (1b) is reduced in this way to the accuracy problem for
the modified adiabatic invariant I (I0,�n). This problem lies
beyond the present analysis. Anyway, at worst the inaccuracy
is defined by the small parameter ε in correspondence with
general asymptotic averaging methods (see, for example [18]).

III. EXAMPLES OF HAMILTONIAN SYSTEMS
WITH SELF-CONSISTENT DYNAMICS

OF THE PARAMETERS

A. Two-level quantum system in the
Weisskopf-Wigner approximation

As a simple example, we consider the transition between
two quantum states under the action of a quasimonochromatic
external field with allowance for the relaxation processes
within the framework of the Weisskopf-Winger model [19].
Let the states |1〉 and |2〉 correspond to the energy W1 < W2.
The matrix element of the operator of the external-field
interaction with the considered system can be represented
in the form V12 = d12F (t) cos φ(t), where d12 is a complex
constant of coupling (e.g., a matrix element of the dipole
moment), F (t) is the real amplitude of the external field,
φ = ∫ t

0 ω(t)dt is the phase, and ω(t) is the “instantaneous”
value of the frequency. The Weisskopf-Wigner approximation
corresponds to the case in which the lower level is metastable,
and the particles escape from the upper level to other levels of
the system (i.e., the sum of populations at the considered pair
of levels |1〉 and |2〉 is not preserved). Within the framework
of such an approach, the Hamiltonian quantum operator is
supplemented with a relaxation operator (see [19]):

Ĥ = W1|1〉〈1| + W2|2〉〈2|
+V12|1〉〈2| + V21|2〉〈1| − ih̄κ|2〉〈2|, (6)

where V21 = V ∗
12, and κ is the inverse lifetime of particles at

the upper level. From the Schrödinger equation ih̄�̇ = Ĥ�for
the state vector � = c1|1〉 + c2|2〉 and the expression for the
Hamiltonian in Eq. (6), using the so-called rotating-wave
approximation [19], one can easily find the canonical system
corresponding to the Hamiltonian

H (p,q) = δ(t)p + 2�R(t)
√

p(� − p) cos q, (7a)

5To avoid cumbersome formulas, hereafter we omit the averaging
symbol 〈· · ·〉. The use of averaged equations for the parameters
together with the corresponding exact equations for the same
parameters should not lead to a misunderstanding since the idea will
always be clear from the context.

and the equation for the parameter

�̇ = 2κ(p − �). (7b)

The canonical variables p and q are determined by the
state vector, in which we put c1,2 = |c1,2|eiϕ1.2 : p = |c1|2
and q = ϕ1 − ϕ2 + φ − ϑ ; the angle ϑ is determined by the
relationship d12 = |d12|eiϑ . The parameters of the Hamiltonian
in Eq. (7a) are the effective Rabi frequency �R = |d12|F (t)

2h̄ , the
frequency-resonance detuning δ = ω(t) − W1−W2

h̄
, and the sum

of population � = |c1|2 + |c2|2, which is preserved at the limit
κ → 0.

Thus, we obtained a Hamiltonian system comprising both
the “external” parameters δ(t) and �R(t) and the parameter �,
whose evolution depends self-consistently on the dynamics of
the canonic variables. The role of the small parameter ε in this
case is played by the ratio κ/�R .

B. Generalization of the universal model of nonlinear
resonance to dissipative systems

The system of Eqs. (7a) and (7b) is a particular case of
the more general model. For its demonstration we consider
M interacting rotators with eigenfrequencies ωm, where m =
1, . . . ,M . Let each rotator correspond to the complex equation
of the first order:6

dζm

dτ
+ i[ωm + δm(τ ) − iκm]ζm = iJm(τ,Reζ1, . . . ,ReζM ).

(8)

Here, δm is the frequency shift (which in the gen-
eral case depends on the independent variable τ ) and κm

is the dissipation coefficient. The time scale of variation
of the oscillation amplitudes are assumed large compared
to the oscillation periods 2π/ωm. That is guaranteed by the
smallness of the ratios Jm/ζmωm, κm/ωm, and δm/ωm, as
well as by a certain slowness of the explicit functions δm(τ )
and Jm(τ ). The character of the interaction between separate
rotators, and the nonlinear frequency shifts are determined
by the nonlinear terms on the right-hand side of Eq. (8). The
nonlinear terms Jm are assumed to be real functions. In the case
of sufficiently small amplitudes of oscillations these terms can
be expanded into a series such as

Jm =
∑

j

(
M∑

n=1

u(j )
mn(τ )Reζn

)j

. (9)

Let the synchronism condition in an ensemble of rotators
[20,22] be realized in the considered system:

M∑
n=1

σnNnωn = 0, (10)

where Nn are the numbers of the resonant harmonics, the
numbers σn = ±1 determine the particular synchronism con-
dition (e.g., for the synchronism condition ω1 + ω2 = 2ω3 we

6Equations of this type correspond, in particular, to the complex
amplitudes of the resonator or propagating wave modes, quantized-
field operators, etc.
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have N1,2 = 1,σ1,2 = +1 and N3 = 2,σ3 = −1). The resonant
interaction between rotators under condition (10) is defined by
the terms of series (9) with powers j = q, where7

q =
(

M∑
n=1

Nn

)
− 1. (11)

In this case, the resonant terms proportional to
(ζ ∗

m)Nm−1 ∏M
n�=m (�̂mnζn)Nn ∝ e−iωmτ appear on the right-hand

side of Eq. (8). Here, the operator �̂nm performs complex
conjugation if σmσn = +1 and is equal to unity if σmσn = −1.

Moreover, the term with j = 3 (the so-called cubic non-
linearity) generates terms proportional to |ζn|2ζm ∝ e−iωmτ ,
which leads to the nonlinear shift of the rotator frequencies for
an arbitrary relationship between frequencies8 ω1,...M .

Using the averaging method [18] and assuming that the
frequency-synchronism conditions in Eq. (10) are fulfilled,
we retain only terms proportional to e−iωmτ (resonant terms)
on the right-hand side of Eq. (8). Replacing the variables
ζm = cm exp(−i

∫ τ

−∞ ωmdτ ), which excludes “fast” motions,
we finally transform system (8) to the following form:

ċm + κmcm + iδmcm − i

M∑
n=1

γmn|cn|2cm

= iβm(c∗
m)Nm−1

M∏
n�=m

(�̂mncn)Nn. (12)

It is significant that the coefficients βm on the right-hand
side of Eq. (12) are coupled by certain relations.9 Indeed,
since the total “energy” W ∝ ∑M

m=1 |cm|2 is preserved in
the original physical system in the absence of dissipation
for any set of frequencies ωm (the corresponding example is
given in Appendix A), then with the parametric synchronism
conditions (10) taken into account, different coefficients βm

and βn�=m should be coupled by the relationship βm/ωmNm =
�̂mnβ

∗
n/ωnNn (see, e.g., [22]). Thus, the coefficients βm can

be represented in the following form:

βm = ωmNm�̂m1w
∗
1, (13)

where w1 = β1/ω1N1 (cumbersome expressions for the quan-
tities w1 and γmn are given in Appendix B for an impor-
tant particular case). In the absence of dissipation (when
κ1,...M = 0) and with relations (13) taken into account, the
so-called Manly-Rowe relationships determining the laws of

7The resonant interaction between modes coupled by condition
(10) can be provided by degrees of nonlinearity less than q (for
example, a simple case j = 2 is sufficient), if the “intermediate”
excitation of nonresonant combinative harmonics is taken into
account. However, this fact affects the final result only quantitatively
(see also Appendix A).

8The same effect, of course, takes place for all odd powers. However,
in the case of weak nonlinearity, it stands to reason to allow for only
the cubic term in this meaning.

9Essentially, that is due to symmetry of the matrix elements of the
interaction operator for “multiphoton” processes (see [20,22–24]).

preservation of quantum numbers in the parametric processes
(see [20,22,24]) follow from Eq. (12):

|cm|2
ωmNm

− σmσn

|cn|2
ωnNn

= �mn = const. (14)

In the absence of dissipation, the fulfillment of integral (14)
allows the system of equations (12) to be transformed to a 1D
Hamiltonian system. Exactly the same system is obtained from
Eq. (12) with relation (13) taken into account in the presence of
dissipation if at least one of the dissipation coefficients κm can
be assumed to be negligibly small. However, such a system
should be supplemented with equations for the quantities
�mn, which are not constants in a dissipative system. Indeed,
we choose κ1 = 0 and σ1 = +1 for definiteness. After the
replacement of the variables |c1|2

ω1N1
= p, q = ∑M

m=1 Nmσmϕm −
ϕw, and |cm�=1|2

ωmNm
= σm(p − �1m), where |cm|eiϕm = cm, w1 =

|w|eiϕw , from Eqs. (12) we obtain a canonical system specified
by the Hamiltonian

H (p,q) = δ(τ,�m)p + γ (τ )
p2

2

+ 2�(τ )p
N1
2

M∏
m=2

[σm(p − �m)]
Nm

2 cos q, (15a)

and equations for the parameters �m:

d�m

dτ
= 2κm(p − �m), m = 2, . . . ,M. (15b)

In Eqs. (15a) and (15b), we used the following notation:

�m ≡ �1m (for m = 2, . . . ,M),

δ = δ0(τ ) + δ̃(�m), δ0 =
M∑

m=1

−σmNmδm − ϕ̇w,

δ̃ = −
M∑

p=1

M∑
m=2

γpmσpσm�mωmNmNp,

γ =
M∑

p=1

M∑
m=1

γpmσpσmωmNmNp, �= |w|
M∏

m=1

(ωmNm)
Nm

2 .

The quantities δ0(τ ) and �(τ ) can, in general, be “slow”
functions of the independent variable.

The system described by the Hamiltonian (15a) is the
generalization of the so-called second universal model of
nonlinear resonance [16,17], which in the case �m = const
is widely used in celestial mechanics, the theory of motion
of particles in resonant HF fields, and the theory of wave
interaction. In particular, this system corresponds to various
processes of transformation, scattering, and/or parametric
decay in the wave systems [15,25,26]. The independent
variable τ has the meaning of a coordinate in problems
of propagation and interaction of stationary waves, and the
meaning of time in problems of mode dynamics in resonators.
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C. Four-wave mixing of radiation in the electromagnetically
induced transparency regime in an ensemble

of three-level atoms.

We are speaking of the effect which was intensely studied
in recent years and is promising for recording and transporting
quantum and optical information [27–36]. This effect is based
on the interaction of the pump wave, the probe wave, and
the Stokes satellite of the pump with frequencies ω3,2,1,

respectively, which are coupled by the synchronism condition
ω1 + ω2 = 2ω3. The probe wave and the pump wave (frequen-
cies ω2,3) also satisfy the conditions of one- and two-photon
resonance with a three-level quantum system (see Fig. 1). In
such a three-level medium, the absorption of the nonresonant
Stokes wave can usually be neglected. The corresponding
system of equations for stationary waves can also be reduced
to a 1D Hamiltonian system with self-consistent equations for
the parameters (see [36]):

H = χ

{
2 (2�3 − �2 − 2p)

√
p(p − �2)

2�3 − �2 − p
cos q + 3p + 1

4

(3p − �2 − 2�3) (4D − 5 − 2�3 + �2)

2�3 − �2 − p

}
, (16a)

d

dτ
�3 = −1

2

d

dτ
�2 = −κEIT

(p − �2)(2�3 − �2 − 2p)

(2�3 − �2 − p)2
. (16b)

The independent variable in Eqs. (16a) and (16b) has
the meaning of a coordinate. The canonical variables are
p = nω1

n0
ω3

and q = ϕ1 + ϕ2 − 2ϕ3, where ϕj are the phases of

complex amplitudes, nωj
are the photon flux densities in the

corresponding modes, and the normalization n0
ω3

corresponds
to the boundary value of the pump photon flux density. The pa-
rameters are �2 = (nω1 − nω2 )/n0

ω3
, �3 = (nω3/2 + nω1 )/n0

ω3
,

χ is the coupling coefficient for the four-wave mixing, κEIT is
the standard coefficient of absorption of the probe wave in
the regime of electromagnetically induced transparency, D =
1
ν0

(ω21 − ω2 + ω3 + 5
4ν0), ν0 = 2|�0

R |2
ω21

, ω21 is the frequency of

the transition 1-2 (see Fig. 1), and �0
R is the boundary value

of the pumping wave Rabi frequency.
By virtue of the complicated nonlinearity, which is typical

of the regime of electromagnetically induced transparency and
is not reduced to the power-law dependence, the system of
equations (16a) and (16b) differs notably from the standard
form of Eqs. (15a) and (15b). This appears, in particular,
in the specific relation between the nonlinear synchronism
detuning and the pump depletion effects. However, within the
framework of the fixed pump intensity approximation, when
p,�2 � �3 ≈ 1, this system can be represented in the form
of Eqs. (15a) and (15b) for M = 2 and N1 = N2 = 1.

1

3

2

3ω3ω

1ω 2ω

FIG. 1. Four-wave mixing in the EIT scheme. ω3 and ω2 are
the pump and probe resonant frequencies, respectively; ω1 is the
frequency of the Stokes satellite of the pump.

IV. APPLICATION OF THE METHOD OF AVERAGED
EQUATIONS TO THE GENERALIZED NONLINEAR

RESONANCE MODEL

A. Averaged equations for the generalized nonlinear
resonance model

We now apply the results of Sec. II for the generalized
nonlinear resonance model specified by Hamiltonian (15a),
which was presented in Sec. III. Within the framework of this
model, we have the “external” parameters δ0(τ ) and �(τ ) and
the parameters �m determined by Eq. (15b).

Averaged equations (5a) and (5b) can be significantly
simplified in this case if instead of the energy E, we choose
the action I0 as the parameter indicating the unperturbed phase
trajectory, i.e., if we represent the unperturbed phase trajectory
in the form p = p(q,I0,�2, . . . ,�M,δ0,�,). As a result, we
arrive at averaged equations in the following form:

dI0

dτ
= −

M∑
m=2

(
κm

∂IT

∂�m

)
, (17a)

d�m

dτ
= κm

(
∂IT

∂I0
− 2�m

)
, m = 2, . . . ,M, (17b)

where IT (I0,�2, . . . ,�M,δ0,�) = ∮
p2dq. Note that by virtue

of exact equation (15b) in accordance with definition (14), we
always have d�m

dτ
� 0 for σm = +1 and d�m

dτ
� 0 for σm = −1

in relationship (17b).
Near the “local” equilibrium state, for which10 p =

p0(�2, . . . ,�M,δ0,�), the system of equations (17a) and (17b)
takes an especially clear form. In a relatively small vicinity of
the elliptic stationary point, we obtain IT = ∮

p2dq ≈ 2p0I0,
which reduces Eqs. (17a) and (17b) to a simple form:

dI0

dτ
= −μI0, (18a)

d�m

dτ
= 2κm(p0 − �m), (18b)

10The angular coordinate q, as follows from the expression for
Hamiltonian (15a), at the stationary point is equal to 0 or π .
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FIG. 2. Phase plane for the system with Hamiltonian (20a) and constant parameter � (κ = 0). Regime of decay instability: δ0
2�

= 0.1,
γ = 0, (a) � = −1, (b) � = 1.

where μ = 2
∑M

m=2 κm
dp0

d�m
. From the expression for the

coefficient μ it is apparent that the influence of the variation
of the “nonstandard” parameters �m on the phase-trajectory
trapping effect in the vicinity of a local elliptic stationary
point is determined by the dependence of the position of this
stationary point on the value of the parameters �m. Certainly;
the adiabatic variation of the “standard” parameters δ0(τ ) and
�(τ ) does not affect the trapping stability.

It is useful to mention that the function IT , which governs
the system of equations (17a) and (17b), acquires a simple
geometric meaning when the phase plane is represented in the
coordinates

x =
√

2p cos q, y =
√

2p sin q. (19)

Such a representation was used in [6,7,15] to simplify the
form of the phase portrait of the universal nonlinear resonance
model. In these variables, the quantity IT is determined by
the expression IT = ∫∫

S0
(x2 + y2)dxdy, where S0 is the area

encircled by the phase trajectory. Thus, the quantity IT on the
plane (x,y) corresponds to the inertia moment of a plane figure
bounded by a closed phase trajectory relative to the origin of
coordinates. The action I0 in representation Eq. (19) preserves
the former geometric meaning: I0 = ∫∫

S0
dxdy.

B. Autoresonance (phase locking) regime
of dissipative instability

The efficiency of the approach developed in this paper can
be demonstrated by the example of studying the influence
of dissipation on the decay parametric interaction of waves.
Consider the frequency synchronization condition ω1 + ω2 =
Nω3. If the wave absorption at the frequency ω1 can be
neglected, then this process corresponds to Hamiltonian (15a)
for M = 3, N1,2 = 1,N3 = N , σ2 = +1, and σ3 = −1. Con-
fining ourselves to the approximation of a strong undepleted
pump at frequency ω3, when �3 − p ≈ �3 = const, after the

replacement ��
N
2

3 → � we arrive at Hamiltonian (15a) with

M = 2, σ2 = +1, and N1,2 = 1. Putting for simplicity γij = 0
for all γij except γ11 and choosing for definiteness γ > 0,
from Eq. (15a) we obtain the following expression for the
Hamiltonian:

H (p,q,�) = δ0p + γ
p2

2
+ 2�

√
p(p − �) cos q, (20a)

which should be supplemented with an equation for the
parameter

�̇ = 2κ(p − �) (20b)

(here, � ≡ �2 and κ ≡ κ2). The canonical momentum p

has the meaning of the number of quanta11 nω1 in the mode
at the frequency ω1. The number of quanta in the mode at
the frequency ω2 is equal to nω2 = p − �. The difference
of quantum numbers � = nω1 − nω2 is the integral in a
nondissipative system. Areas of definition for the generalized
momentum are p ∈ [�,∞] or p ∈ [0,∞] for � > 0 or � < 0,
respectively, in any case12 �̇ � 0. If the nonlinear loss of
synchronism and the dissipation are absent (i.e., γ = κ = 0),
then a decay instability exists in this system in the parameter
region |δ0| < 2�. In this case, the phase trajectories are open
and go to infinity. The corresponding phase plane is shown in
Fig. 2 for the coordinates (x,y) introduced by replacement of
the variables given by Eq. (19). Outside the instability region,
when |δ0| > 2�, or with the nonlinear loss of synchronism
taken into account, when γ �= 0, the stabilization effect takes
place. In this case, there is a unique equilibrium state on the

11In the study of propagation and interaction of stationary waves, the
canonic momentum has the meaning of a quantum flux.
12The system of equations (7a) and (7b) considered earlier is similar

to Eqs. (20a) and (20b), but there is a radical difference. For the
two-level quantum system, we always have p ∈ [0,�] and �̇ � 0.
These conditions have a clear physical meaning: the lower-level
population is less than the total population which decreases all the
time.
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FIG. 3. Phase plane for the system with Hamiltonian (20a) and constant parameter � (κ = 0). Stabilization of decay instability (a, b) due
to linear synchronism detuning δ0

2�
= 2, γ = 0, (a) � = −1, (b) � = 1, and (c, d) due to nonlinear synchronism detuning δ0 = 0, γ

2�
= 1,

(c) � = −1, (d) � = 1.

phase plane (see Fig. 3), for whose coordinates the following
expression can easily be obtained:

q0 = π, δ0 + γp0 = �
2p0 − �√
p0(p0 − �)

. (21)

The trajectories surround the equilibrium state or the
separatrix. The separatrix exists for positive �.

However, the stabilization effect disappears if the absorp-
tion of the wave with frequency ω2 is taken into account.
Indeed, assuming κ �= 0, we use the relationships in Eqs. (17a),
(17b), (18a), and (18b) for analysis of the evolution of the
system, where we put M = 2, �2 ≡ �, and κ2 ≡ κ . Since
�̇ � 0, the quantity�monotonically increases. For the initial
value � < 0, the absolute value of the parameter |�| drops
to zero at first, but then begins to rise once the positive
values of � are reached. In accordance with Eq. (21), the
quantity p0 rises, i.e., the local position of the equilibrium
state moves adiabatically smoothly toward the periphery of
the phase plane. From qualitative considerations (confirmed
by a numerical calculation) it follows that all trajectories that
initially remote from the separatrix will be finally captured in
it. For trajectories within the separatrix, the inertia moment

IT (�,I0) of a plane figure always increases with increasing
� for a fixed value of I0 under the condition � > 0, i.e., in
this case, ∂IT

∂�
> 0. It follows from Eq. (17a) that the action

I0 decreases in this case [in a relatively small vicinity of
the equilibrium state, the action exponentially decreases since
the coefficient μ > 0 as it follows from relationships (18a)
and (18b)].

Thus, the phase trajectory is trapped in the vicinity of the
“local” equilibrium state, which moves to the periphery of
the phase plane. Such an evolution of the dynamic system
obviously corresponds to the autoresonance (phase locking)
regime. In a standard variant, the realization of this effect
requires the slow variation of the “external” parameters of
the system. Usually, such a parameter is the linear frequency
detuning [5–14]. In the present case, however, allowance for
the dissipation of one of the interacted waves is sufficient,
i.e., the autoresonance regime of dissipative instability takes
place.

For sufficiently long interaction, from relationships
(21) and (18b) the following asymptotic forms can be
obtained for the quantum numbers in the modes nω1 ≈ p0,

nω2 ≈ p0 − �:
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FIG. 4. Upper panels display examples of phase trajectories for the system with Hamiltonian (20a) and varying parameter � due to
dissipation (κ �= 0). The corresponding time dependences of photon numbers in two interacted modes are displayed in the bottom panels.
The autoresonance regime of dissipative instability is demonstrated with different asymptotical behavior: (a) 2κ

�
= 0.01, δ0

2�
= 1.05, γ = 0,

�(τ = 0) = 1, p(τ = 0) = 1.3, (b) 2κ

�
= 0.2, δ0

2�
= 2, γ = 0, �(τ = 0) = 1, p(τ = 0) = 1.1, and (c) 2κ

�
= 0.2, δ0 = 0, γ

2�
= 1, �(τ = 0) = 0.1,

p(τ = 0) = 0.2.

If γ nω1 � |δ0|,|δ0| > 2�,(|δ0| − 2�) � |δ0| then nω1 ≈
nω2 ≈ p0 � �,

(
nω1

nω2

)
∝

⎛
⎝ 1

2

[
1√

(δ0/2�)2−1
+ 1

]
1
2

[
1√

(δ0/2�)2−1
− 1

]
⎞
⎠

× exp

(
κτ

[
1√

(δ0/2�)2 − 1
− 1

])
; (22a)

if γ nω1 � |δ0|,|δ0| � 2� then nω1 ≈ p0 ≈ �,(
nω1

nω2

)
∝

(
1

(�/δ0)2

)
× 2(�/δ0)2κτ ; (22b)

if γ nω1 � |δ0| and �γ � � then nω1 ≈ p0 ≈ �,(
nω1

nω2

)
≈ �

γ
×

(
2
√

κτ

1/(2
√

κτ )

)
. (22c)

The dependences in Eqs. (22a) and (22b) describe the
instability effect in the parameter region in which the system is

stable in the absence of dissipation. Equation (22c) describes
the dissipative instability under conditions of the nonlinear
synchronism detuning (but without allowance for the depletion
of the pump which was assumed fixed for the sake of simplic-
ity). Thus, the allowance for dissipation leads to the extension
of the instability to beyond the range |δ0| < 2� and impedes
its stabilization due to the nonlinear resonance detuning effect.
Figure 4 presents the numerical calculation data illustrating the
“trapping” of such a system into the autoresonance regime.
The calculations were made for the initial strict system with
Hamiltonian (20a) and varying parameter obeying Eq. (20b).
They confirm the qualitative conclusions and asymptotic
results of Eqs. (22a)–(22c) obtained from truncated equations.
This result illustrates that discrepancy with the exact solution,
in particular the dimension of the “trapping area,” is defined
by some small parameter for a sufficiently long time.

Dependences (22a)–(22c) obtained above can be used, in
particular, for analysis of the bichromatic radiation generation
during four-wave mixing in the regime of electromagnetically
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induced transparency in an ensemble of three-level atoms
[27–29,32,35,36]. Expressions (22a) and (22b) describe the
regime of dissipative instability of a bichromatic mode formed
by the probe wave and Stokes satellite of the pump, which
was predicted in [35]. Expression (22c) in the case of
electromagnetically induced transparency can be used only to
a certain degree of convention. It was mentioned in Sec. III that
the parameter region in which the nonlinear loss of parametric
synchronism can correctly be taken into account, neglecting
the pump depletion effect at the same time, is virtually
absent in this regime. Nevertheless, the numerical calculations
performed in [36] demonstrate that the effect of the probe-wave
intensity decrease accompanied by a weak increase in the
Stokes pump satellite, which corresponds to Eq. (22c), indeed
takes place at a certain stage of development of the four-
wave mixing process under conditions of electromagnetically
induced transparency.

V. CONCLUSIONS AND DISCUSSION

Thus, a wide range of problems dealing with resonant
interaction of dissipative oscillatory-wave systems can be
reduced to a 1D Hamiltonian system with self-consistent
parameters. The dynamics of these parameters is determined
by the first-order equations dependent on the canonical
variables. For the reduction of the equations describing an
actual physical system to such a form, it is necessary, as a
rule, that dissipation be neglected in at least one “partial”
oscillatory system. A modified adiabatic invariant (different,
in the general case, from the integral of action) always exists
within the framework of such a model. It can be found as an
integral of a system of ordinary differential equations of order
equal to the number of varying parameters. However, in the
general case, the search for the modified adiabatic invariant is
a fairly complicated problem. Another method of analysis is
based on the self-consistent averaged equations for the action
and the system parameters. This approach was used to study
the decay parametric instability of waves with allowance for
dissipation. The autoresonance (phase locking) regime was
detected for such a system.
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APPENDIX A: EXCITATION OF POLARIZATION
IN A NONLINEAR ANISOTROPIC CRYSTAL

To derive a system of equations describing the parametric
interaction of monochromatic waves in a nonlinear medium, it
is necessary to consider the effect of excitation of the nonlinear
polarization. Use the model of a nonlinear anisotropic crystal
without the spatial dispersion, in which the polarization of unit
volume P is given by the relationship

L̂

(
∂

∂t
,
∂2

∂t2

)
P = E + U(P). (A1)

Here L̂ is the linear operator, whose correct form for
quantum systems was discussed in [38], E is the electric field,

and U(P) is a phenomenological nonlinear term. We show in
what follows that the relationships in Eq. (13) follow from this
sufficiently general formula if the operator L̂ is supposed to
be Hermitian.

Let U (0) = 0 and ∂U
∂Px

|P=0 = ∂U
∂Py

|P=0 = ∂U
∂Pz

|P=0 = 0, i.e.,
assume that the linear terms of expansion of the function
U(P) with respect to its argument are included in the linear
operator L̂. For simplicity, we assume that the nonlinear
effects themselves do not couple x, y, and z components
of the polarization.13 In this case, the function U(P) can be
represented in the form

U(P) =
∞∑

n=2

(
x0α

(n)
x P n

x + y0α
(n)
y P n

y + z0α
(n)
z P n

z

)
, (A2)

where α(n)
x,y,z are the corresponding coefficients of expansion

into a Taylor series, and z0,x0, and y0 are the unit vectors of
the coordinate axes.

Consider the electromagnetic field in the form of a set of
monochromatic components

E = Re
M∑

m=1

Eme−iωmt . (A3)

Let us find the polarization of the medium at frequencies
ω1, . . . ,ωM . Assuming that the field E is small in a sense,
we will make use of the perturbation method. Within the
framework of the linear approximation, the operator L̂ deter-
mines the tensor of linear polarizability of the medium χ̂m, i.e.,
the vector P m = χ̂m Eme−iωmt is the solution of the equation
L̂P m = Eme−iωmt . The nonlinear solution can be presented as

Pm = Re(χ̂m Em + δ Pm)e−iωmt .

The nonlinear polarization of the medium appears at the
frequency ωm for any relationship between the frequencies
ω1, . . . ,ωM due to the dependence of the function U(P) on
polarization in any odd power. Thus, taking into account the
cubic nonlinearity, i.e., δP (3) ∝ E3, is usually sufficient for
the description of this effect [20,21]. Moreover, under the
condition of frequency synchronism Eq. (10), nonlinear polar-
ization at the given frequency ωm appears if the dependence of
the polarization on the electric field in power q, δP (q) ∝ Eq ,
is taken into account, where the number q is determined by
Eq. (10). To obtain the nonlinear terms of the corresponding
power, one should allow for the terms of expansion of the
vector U over powers of Px,y,z in order q.14 Thus we obtain

δ Pm = δ P (3)
m + δ P (q)

m , (A4)

δP (3)
m;p =

M∑
n�=m

χm;psα
(3)
s |χn;skEn;k|2χm;srEm;r

+ 2χm;psα
(3)
s |χm;skEm;k|2χm;srEm;r , (A5a)

13Such a relation can occur, in principle, in an anisotropic medium.
14Thus we get a nonlinear solution proportional to the first order of

nonlinear coefficients α(3)
x,y,z and α(q)

x,y,z. If the degree of nonlinearity
is less than q then the nonlinear polarization can also be excited at
given frequencies but proportional to higher orders of corresponding
coefficients.
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δP (q)
m;p = χm;psα

(q)
s

M∏
n�=m

(�̂mnχn;skEn;k)Nn

× (χ∗
m;srE

∗
m;r )Nm−1Nm

2−qq!∏M
n=1 Nn

. (A5b)

Here, δP (3)
m;p and δP

(q)
m;p are the Cartesian components of

the vectors δ P (3)
m and δ P (q)

m , χm;ps are the corresponding
matrix elements of the polarizability tensor, namely,
χ̂m ⇒ χm;xx,χm;xy,χm;xz, etc., and the indices p,s,k, and r

run through the values x,y, and z. The operator �̂nm was
introduced earlier in Sec. II. To avoid a misunderstanding, we
emphasize that in Eqs. (A4), (A5a), and (A5b) and elsewhere,
as usual, the summation is performed over recurrent indices
denoting the Cartesian coordinates; but, of course, this does
not concern the indices m and n which stand for harmonic
numbers.

It can be verified that in the case of Hermitian tensors χ̂m

the following properties are valid:

Im
(
δ P (3)

m E∗
m

) = 0, (A6a)

1

Nm

δ P (q)
m E∗

m = 1

Nn

�̂mnδ P (q)
n E∗

n. (A6b)

Relationships (A6a) and (A6b) in combination with the
conditions in Eq. (10) ensure the absence of the resonant
energy exchange between the field E and the medium due to
the nonlinear polarization current if the influence of dissipative
effects on the excitation of nonlinear polarization of the
medium is neglected. In this case, the energy exchange
between the field and the medium due to linear dissipation
can be taken into account additively.

APPENDIX B: PARAMETRIC INTERACTION
OF STATIONARY MODES IN A NONLINEAR

WAVEGUIDE SYSTEM

Consider a stationary electromagnetic field formed by a
set of M waveguide modes. In this case, the amplitudes of the
monochromatic components in Eq. (A3) can be specified by the
relationships

Em = �m(r⊥,ηz)Am(ηz)exp

(
i

∫ z

−∞
hm(ηz)dz

)
. (B1a)

Here, Am are the scalar amplitudes of the waves propagating
along the z axis; �m(r⊥,εz) = x0�m;x + y0�m;y + z0�m;z are
the vector functions which specify polarizations of the partial
waves and their spatial structure in the (x,y) plane; and
r⊥ = x0x + y0y is the radius vector in that plane. The small
parameter η determines the adiabatically smooth dependence
of the functions �m, Am, and hm on the z coordinate. Then use
of the wave equation for electromagnetic waves

� × (� × Em) − ω2
m

c2
ε̂m Em = 4π

ω2
m

c2
δ Pm, (B1b)

where ε̂m = δ̂ + 4πχ̂m, χ̂m(ωm,r⊥,ηz) is the linear suscep-
tibility tensor at the frequency ωm in an inhomogeneous
medium, and the nonlinear term ∝ δ Pm is determined by
Eqs. (A4), (A5a), and (A5b). We determine the functions �m

and wave numbers hm by omitting the nonlinear term ∝ δ Pm

in wave equation (B1b). Then, assuming ∂
∂z

→ ihm, we obtain

D̂m�m = 0, (B2a)

where the operator D̂m ≡ D̂m;ps (here, p,s = x,y,z) has the
following form:

D̂m;ps =

∣∣∣∣∣∣∣∣∣∣∣

(
h2

m − ω2
m

c2 εm;xx

) (
∂2

∂x∂y
− ω2

m

c2 εm;xy

) (
ihm

∂
∂x

− ω2
m

c2 εm;xz

)
(

∂2

∂y∂x
− ω2

m

c2 εm;yx

) (
h2

m − ω2
m

c2 εm;yy

) (
ihm

∂
∂y

− ω2
m

c2 εm;yz

)
(
ihm

∂
∂x

− ω2
m

c2 εm;zx

) (
ihm

∂
∂y

− ω2
m

c2 εm;zy

) (
−ω2

m

c2 εm;zz

)

∣∣∣∣∣∣∣∣∣∣∣
. (B2b)

For the given frequency ωm and boundary conditions in the
(x,y) plane, Eqs. (B2a) and (B2b) determine the “transverse”
spatial structure of the vector mode and its longitudinal
wave number hm (see, e.g., [39]). The adiabatically smooth
dependence on the longitudinal coordinate is taken into
account only as dependence of the coordinates of the tensor
ε̂m (and/or transverse structure of the waveguide system) on
the parameter ηz, i.e., Eqs. (B2a) and (B2b) themselves do not
contain a derivative with respect to the variable z.

By analogy with [40], it is convenient to determine the
wave number hm by using the “local” dispersion equation
in the form λm(ωm,hm,ηz) = 0, where λm is the eigenvalue
of the operator D̂m�m = �mλm corresponding to the given
type of the waveguide eigenmode. The transverse structure of
the mode corresponds to the vector eigenfunction �m of the
operator D̂m when the eigenvalue tends to zero, i.e., λm → 0.

Then, generalizing the results of [40], one can obtain the
following expression for the energy flux Sm along the z axis
for the wave mode with number n:

Sm = sm|Am|2, sm = c2

16πωm

(
∂Reλm

∂hm

)∣∣∣∣
Imhm→0

, (B3a)

where

λm =
∫ ∫

∞
�∗

mD̂m�mdxdy, (B3b)

using the standard normalization
∫∫

∞ �∗
m�mdxdy = 1.

Taking into account the nonlinear term ∝ δ Pm in the wave
equation (B1b), one can, by analogy with [41], obtain the
following equations of the first order for complex amplitudes
Am with accuracy up to quadratic terms with respect to the
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small parameter η:

sm

dAm

dz
+ Am

2

dsm

dz
+ μmAm

= i
ωm

4

(
−i

∫ z

−∞
hmdz

) ∫ ∫
∞

(δ Pm�∗
m)dxdy, (B4)

where

μm = ωm

4i
Im

∫ ∫
∞

�∗
mε̂(aH )

m �mdxdy, (B5)

and ε̂(aH )
m is the anti-Hermitian component of the tensor

ε̂m. At the limit δ Pm → 0, from Eqs. (B4) and (B5) a
standard equation for the energy flux follows: ∂Sm/∂z +
2μm|Am|2 = 0.

We now assume that the wave frequencies are related
to the synchronism condition of Eq. (10). We then use the
relationships in Eqs. (A4), (A5a), and (A5b) for the nonlinear
polarization δ Pm, neglecting the anti-Hermitian components
of the polarizability tensor χm;ps . As a result, we transform
Eq. (B4) to the following form:

sm

dAm

dz
+ Am

2

dsm

dz
+ μmAm − i

M∑
n=1

vmn|An|2Am

= iωmNmWme−iσmθ (A∗
m)Nm−1

M∏
n�=m

(�̂mnAn)Nn, (B6)

where

vn�=m =
∫ ∫

∞
α(3)

s |χn;sk�n;k|2|χm;sr�m;r |2dxdy,

vmm = 2
∫ ∫

∞
α(3)

s |χm;sk�m;k|4dxdy, (B7a)

Wm = q!

2q+2
∏M

n=1 Nn

×
(∫ ∫

∞
α(q)

s

M∏
n=1

(�̂nmχn;sk�n;k)Nndxdy

)
, (B7b)

θ =
∫ z

−∞

M∑
m=1

σmNmhmdz, (B7c)

and the operator �̂nm was introduced earlier in Sec. III. We now
take into account that for the effective parametric interaction,
besides the temporal synchronism condition [Eq. (10)] for
the wave frequencies, the corresponding condition of spatial
synchronism for the wave vectors should be fulfilled (see [20])
at least at some point z = z0

M∑
m=1

σmNmhm(z0) = 0. (B8)

In this case, from Eqs. (B7a)–(B7c) and (B8) after the
replacement of variables and parameters,

∂

∂z
= ∂

∂τ
, cmeiδmz = √

sm;zAm, δm = (h − hm(z0)),

γmn = νmn

sn;zsm;z
, κm = μm√

sm;z
, w1 = W1∏M

n=1

√
s
Nn
n;z

,

Eq. (12) rigorously follows under the condition in
Eq. (13).

A similar problem for a plane-layered medium is obviously
a particular case of the above-presented analysis (see [41] in
this connection).
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