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Lorentz-Abraham-Dirac versus Landau-Lifshitz radiation friction force in the ultrarelativistic
electron interaction with electromagnetic wave (exact solutions)
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When the parameters of electron-extreme power laser interaction enter the regime of dominated radiation
reaction, the electron dynamics changes qualitatively. The adequate theoretical description of this regime becomes
crucially important with the use of the radiation friction force either in the Lorentz-Abraham-Dirac form, which
possesses unphysical runaway solutions, or in the Landau-Lifshitz form, which is a perturbation valid for relatively
low electromagnetic wave amplitude. The goal of the present paper is to find the limits of the Landau-Lifshitz
radiation force applicability in terms of the electromagnetic wave amplitude and frequency. For this, a class of
the exact solutions to the nonlinear problems of charged particle motion in the time-varying electromagnetic field
is used.
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I. INTRODUCTION

As with no other problem in classical electrodynamics the
problem of the radiation friction effects on charged particle
dynamics has been attracting attention for more than a century
[1–4]. The radiation friction imposes constraints on the highest
attainable energy of charged particles accelerated by standard
accelerators [5] and in space [6], in particular, on the energy of
the ultrahigh energy cosmic rays [7]. The effects of radiation
reaction on electrons in a magnetically confined plasma lead
to the phase space contraction [8]. Laser light being coherent
and of ultrahigh intensity provides special conditions for
experimentally studying the radiation friction effects. The
radiation generated by present day [9,10] lasers approaches
limits when the radiation friction force will change the scenario
of the electromagnetic (EM) wave interaction with matter, that
is, at I > Irad = 1023 W/cm2. The electron dynamics become
dissipative with fast conversion of the EM wave energy to
hard EM radiation, which for typical laser parameters is in the
γ -ray range [11–13]. There are discussions of the modification
of the electron acceleration in the laser wake field acceleration
regime [14] and the ion acceleration in the radiation pressure
dominated regime [15] due the radiation friction, which are
mainly obtained with computer simulations [11,16]. If the laser
intensity substantially exceeds Irad, novel physics of abundant
electron-positron pair creation will come into play [17] (see
also [13] and [18]) when the electron (positron) interaction
with the EM field is principally determined by the radiation
friction effects. The persistent interest towards the radiation
friction effects stems from all these reasons [19,20].

In order to self-consistently find the trajectory of the
emitting electron, the so called Minkovsky equations [3]
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should be solved with the radiation friction force taken into
account

mec
duμ

ds
= e

c
Fμνuν + gμ, (1)

dxμ

ds
= uμ. (2)

Here uμ = (γ,p/mec) is the four velocity, Fμν = ∂μAν −
∂νAμ is the EM field tensor with Aμ being the EM four vector
and μ = 0, 1, 2, 3, and

s = c

∫
dt

γ
. (3)

The radiation friction force in the Lorentz-Abraham-Dirac
(LAD) form [21–23] is given by

gμ = 2e2

3c

[
d2uμ

ds2
− uμ

(
duν

ds

) (
duν

ds

)]
. (4)

As is well known, Eq. (1) with the radiation friction force in the
LAD form (4) possesses unphysical self-accelerating solutions
(e.g. see Refs. [2,3]). When the radiation friction force is taken
to be in the Landau-Lifshitz (L-L) form,

gμ = 2e3

3mec3

{
∂Fμν

∂xλ
uνuλ − e

mec2
[FμλFνλu

ν

− (Fνλu
λ)(Fνκuκ )uμ]

}
, (5)

the electron motion equations do not have pathological
solutions, although they are not always consistent with
energy-momentum conservation for an abruptly changing
electromagnetic field [24].

056605-11539-3755/2011/84(5)/056605(10) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.84.056605


BULANOV, ESIRKEPOV, KANDO, KOGA, AND BULANOV PHYSICAL REVIEW E 84, 056605 (2011)

In the three-dimensional form it can be written as [2]

f = 2e3

3mec3

(
1 − v2

c2

)1/2

([
∂

∂t
+ (v · �)

]
E + 1

c

{
v ×

[
∂

∂t
+ (v · �)

]
B

})
+ 2e4

3m2
ec

4

{
E × B + 1

c
[B × (B × v)] + 1

c
E(v · E)

}

− 2e4

3m2
ec

5

(
1 − v2

c2

)v

[(
E + 1

c
v × B

)2

− 1

c2
(v · E)2

]
. (6)

The L-L radiation friction force being a perturbation is valid
provided there exists a frame of reference, where it is small
compared to the Lorentz force eFμνuν (as noted in Ref. [2]).
Proving this frame of reference existence and finding the range
of validity of the friction force in the L-L form is far from
trivial. Below, using several exact analytical solutions to the
electron motion equations in the EM field for the radiation
friction force in the LAD and L-L forms, we discuss the validity
range of the later approximation.

The electron motion equations with the LAD friction
force admit an exact solution for the stationary problem
describing the electron motion in the rotating electric field

(see Refs. [12,13,25]). This problem can also be solved for
the case of the L-L force. Generalizing the electromagnetic
field configuration, we consider the electric and magnetic field
to be a superposition of components, which are rotating with
frequency ω, homogeneous in space, and time-independent

E=−e1E1 − e2[Dx2+E cos(ωt)] − e3[Dx3+E sin(ωt)],

(7)

B = e1B1 + e2Jx3 − e3Jx2, (8)

where e1, e2, and e3 are the unit vectors along the 1, 2, 3 axis.
The EM field tensor is equal to

Fμν =

⎛
⎜⎜⎜⎝

0 E1 Dx2 + E cos(ωt) Dx3 + E sin(ωt)

−E1 0 −Jx2 Jx3

−Dx2 − E cos(ωt) Jx2 0 −B1

−Dx3 − E sin(ωt) −Jx3 B1 0

⎞
⎟⎟⎟⎠ . (9)

In the case when E1,B1,J , and D vanish, the electric field can
be realized in the antinodes, where the magnetic field vanishes,
of a standing EM wave formed by two counterpropagating
circularly polarized EM waves. Such an EM field configuration
plays an important role in theoretical considerations of
various nonlinear effects in quantum electrodynamics (e.g.,
see Refs. [13,17,26]). This EM configuration corresponds
also to the circularly polarized EM wave propagating in
the underdense plasma for the frame of reference moving
with the wave group velocity [27,28]. In this frame of
reference, the EM wave frequency is equal to the Langmuir
frequency ωpe = (4πn0e

2/me)1/2, where n0 is the plasma
density and the wave has no magnetic field component. The
static component of the magnetic field B1 can be generated in
laser plasmas due to the inverse Faraday effect. Its effect on
the charged particle motion has been studied in Ref. [25]. The
radial component of the electric field e2Dx2 + e3Dx3, and
azimuthal component of the magnetic field e2Jx3 − e3Jx2,
correspond to a plasma wave in the boosted frame of reference
with E1 being the longitudinal component of the wake
field.

It is convenient to write the electron momentum p =
e1p1(t) + e2p2(t) + e3p3(t) and coordinates x = e1x1(t) +
e2x2(t) + e3x3(t) as a combination of vectors, which are

nonrotating and rotating with angular frequency ω,⎛
⎝ ũ1

ũ2

ũ3

⎞
⎠ ≡ 1

mec

⎛
⎝ p1

p||
p⊥

⎞
⎠ = 1

mec

⎛
⎜⎝

1 0 0

0 cos(ωt) sin(ωt)

0 − sin(ωt) cos(ωt)

⎞
⎟⎠

×
⎛
⎝p1

p2

p3

⎞
⎠ (10)

and ⎛
⎝ x̃1

x̃2

x̃3

⎞
⎠ =

⎛
⎜⎝

1 0 0

0 sin(ωt) − cos(ωt)

0 cos(ωt) sin(ωt)

⎞
⎟⎠

⎛
⎝x1

x2

x3

⎞
⎠ . (11)

II. STATIONARY SOLUTION OF THE ELECTRON
EQUATIONS OF MOTION WITH THE RADIATION

FRICTION FORCE IN THE
LORENTZ-ABRAHAM-DIRAC FORM

The stationary solution of Eqs. (1) and (2), for which the
vectors ũ = (ũ1,ũ2,ũ3) and x̃ = (x̃1,x̃2,x̃3) do not depend on
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time, with the radiation friction force in the LAD form, (4) can
be cast as

0 = a1 − εradũ1γ
(
γ 2 − 1 − ũ2

1

)
, (12)

ũ2 =
(

d − b − j
ũ1

γ

)
ũ2

γ
+ εradũ3γ

(
γ 2 − ũ2

1

)
, (13)

ũ3 =
(

d + b − j
ũ1

γ

)
ũ3

γ
+ a − εradũ2γ

(
γ 2 − ũ2

1

)
, (14)

where we use the relationship between x̃i and ũi , with i =
1, 2, 3, given by Eq. (2), which is

x̃1 = sγ ũ1, x̃2 = ũ3c

γω
, x̃3 = − ũ2c

γω
. (15)

Here the dimensionless parameter

εrad = 2e2ω

3mec3
(16)

characterizes the radiation damping effect, a1 = eE1/meωc,
a = eE/meωc, d = eD/meωc, j = eJ/meωc, and b =
eB1/meωc are normalized longitudinal and transverse compo-
nents of the electric and magnetic field, and γ is the electron
relativistic Lorentz factor equal to (1 + ũ2

1 + ũ2
2 + ũ2

3)1/2. The
parameter εrad can also be written as εrad = 4πre/3λ or
εrad = 2ωte/3, where re = e2/mec

2 is the classical electron
radius, te = re/c, and λ = 2πc/ω.

At first we analyze the most simple case with B1 = J =
D = 0. The stationary solution to Eqs. (1) and (2), for which
the vectors ũ = (ũ1,ũ2,ũ3) and x̃ = (x̃1,x̃2,x̃3) do not depend
on time, with the radiation friction force in the LAD form (4)
can be cast as

0 = a1 − εradũ1γ
(
γ 2 − 1 − ũ2

1

)
, (17)

ũ2 = εradũ3γ
(
γ 2 − ũ2

1

)
, (18)

ũ3 = a − εradũ2γ
(
γ 2 − ũ2

1

)
. (19)

Multiplying Eq. (17) by ũ1, Eq. (18) by ũ2, and Eq. (19) by
ũ3, and adding them, we obtain

a1ũ1 + aũ2 = εradγ
3(γ 2 − 1 − ũ2

1

)
, (20)

which is the zero component of Eq. (1). The left-hand side
of this equation is proportional to the work produced by the
electric field in the units of time and the right-hand side is
proportional to the energy dissipation rate due to the radiation
losses.

Multiplying Eq. (18) by ũ3 and Eq. (19) by ũ2, and adding
them, we obtain

ũ2
2 + ũ2

3 = aũ3. (21)

A. Electron in the rotating electric field

If, in addition, the longitudinal component of electric field
vanishes, a1 = 0 with ũ1 = 0, we obtain from Eqs. (12)–(14)

p|| = εradp⊥γ 3, (22)

p⊥ = meca − εradp||γ 3, (23)

k

E

ϕ

p

-e ⊥p

p

FIG. 1. (Color online) Electron moving in the rotating electric
field emits EM radiation. Due to this the angle between the electron
momentum and electric field, ϕ, is not equal to π/2.

where the components of the electron momentum parallel and
perpendicular to the electric field defined by Eq. (10) are equal
to

p|| = (p · E)

|E| = mecũ2, (24)

p⊥ = (p2 − p2
||)

1/2 = mecũ3, (25)

respectively (see Fig. 1). In this case Eq. (21) yields a
relationship between p|| and p⊥:

p2
|| + p2

⊥ = mecap⊥. (26)

The electron γ factor γ is equal to (1 + ũ2
2 + ũ2

3)1/2 ≡ (1 +
p2

||/m2
ec

2 + p2
⊥/m2

ec
2)1/2. As we see from the relationship

p|| = [p⊥(meca − p⊥)]1/2 (27)

it follows that the component of the electron momentum
perpendicular to the electric field is always equal or less than
a mec. Multiplying Eq. (24) by p⊥ and the Eq. (25) by p|| and
subtracting them, we find

a
p||
mec

= εradγ
3(γ 2 − 1), (28)

which corresponds to the energy balance equation (20) for
a1 = ũ1 = 0 in the limit a � 1.

If the EM field amplitude is relatively small, that is, 1 �
a � ε

−1/3
rad , Eqs. (26) and (28) yield for the components of the

electron momentum perpendicular and parallel to the electric
field

p⊥ ≈ mec
(
a − ε2

rada
7
)
, (29)

p|| ≈ mecεrada
4. (30)

In the opposite limit, when a � ε
−1/3
rad , we obtain

p⊥ ≈ mec

(εrada)1/2
, (31)

p|| ≈ mec

(
a

εrad

)1/4

. (32)

In Fig. 2(a) we show the dependence of p⊥ and p|| on
the EM field amplitude a for the dimensionless parameter
εrad = 10−8, obtained by a numerical solution of Eq. (23). Here
the horizontal axis is normalized by ε

−1/3
rad and the vertical axis

is normalized by (am/εrad)1/4.
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a a

γ

ϕ

p�

p||
(a) (b)

FIG. 2. (a) Dependence of the components of the electron
momentum perpendicular p⊥ and parallel p|| to the electric field
[normalized by mec(am/εrad)1/4] on the normalized EM field ampli-
tude aε

1/3
rad , and (b) dependence of ϕ and electron γ -factor, normalized

by (am/εrad)1/4, on aε
1/3
rad for am = 2500 and εrad = 10−8.

As we see, the dependences of the components of the
electron momentum perpendicular and parallel to the electric
field correspond to the asymptotics given by Eqs. (30) and
(32). The perpendicular momentum reaches the maximum
at a ≈ ε

−1/3
rad and then decreases. The parallel momentum

component monotonically increases with the EM amplitude
growth.

It is also convenient to represent the momentum compo-
nents in the complex form

p|| + ip⊥ = p exp(iϕ) (33)

with p = (p2
⊥ + p2

||)
1/2 and ϕ being the momentum value and

the phase between the rotating electric field and the momentum
vector. Equations (22,23) can be rewritten as

a2 = (γ 2 − 1)
(
1 + ε2

radγ
6), (34)

tan ϕ = 1

εradγ 3
, (35)

where the electron γ -factor is equal to (1 + p2)1/2. These
equations are the same as Eqs. (6) in Ref. [13].

In Fig. 2(b) we present the electron γ -factor normalized
by (am/εrad)1/4 and the angle ϕ versus the EM field amplitude
a for εrad = 10−8. The angle ϕ changes from π/2 at a = 0
when the electron momentum is perpendicular to the electric
field vector, to 0 at a → ∞ when the electron momentum
becomes antiparallel to the electric field. The horizontal axis
is normalized in the same way as in Fig. 2(a).

B. Electron dynamics in the superposition of rotating
and radial electric fields

Electron dynamics in the superposition of rotating and
radial electric fields corresponds to the case of the electron
direct acceleration by the laser pulse propagating inside the
self-focusing channel [29]. Its realization provides the con-
ditions for substantial enhancement of the betatron radiation
allowing for photon emission in the γ -ray energy range [30].

In the frame of reference moving with the laser pulse group
velocity vg , the equations of the electron motion are Eqs. (12)
and (14) with b = j = a1 = 0:

(γ − d)ũ2 = εradũ3γ
4, (36)

(γ − d)ũ3 = aγ − εradũ2γ
4. (37)

For variables p and ϕ defined by Eq. (33) we can rewrite
Eqs. (36) and (37) as

a2 = (γ 2 − 1)

[(
1 − d

γ

)2

+ ε2
radγ

6

]
, (38)

or

d = γ − γ

√
a2

γ 2 − 1
− ε2

radγ
6 (39)

and

tan ϕ = γ − d

εradγ 4
(40)

with γ = (1 + p2)1/2.
In Fig. 3(a) we show dependences of the normalized

electron energy K = (γ − 1)/(γm − 1), where γm = [1 +
(pm/mec)2]1/2 with pm/mec = 700, d = 250, εrad = 10−8,
and angle ϕ on the electric field amplitude a. As we see,
asymptotically at γ → ∞ their behavior is the same as in the
above discussed case corresponding to Eqs. (30), (32), and (35)
and illustrated by Fig. 2. In the relatively low-energy region
the dependence of electron momentum on the electric field
amplitude shows the hysteresis behavior as seen in Fig. 3(a).
In the region am1 < a < am2, with

am1 ≈ εradd
4, (41)

am2 ≈ d, (42)

there are three values of the electron momentum corresponding
to one value of a. At a ≈ am1 the electron energy is approxi-
mately equal to γm1 ≈ d and for a ≈ am2 we have γm2 ≈ d1/3,
provided 4εradd

3 � 1. The condition for the hysteresis to occur
is

εradd
2/3 � 0.276. (43)

The hysteresis is distinctly seen in Fig. 3(b) showing typical
behavior for nonlinear resonance [31], the nonlinear resonance
dependence of the quiver energy K on the parameter d, which
is equal to the square of the ratio of the electron oscillation
frequency in the radial electric field to the frequency of the
EM wave. This corresponds to the nonlinear regime of the
“betatron resonance” studied in Ref. [29].

For the electron moving inside the self-focusing channel a
typical value of the parameter d is of the order of

d = ω2
pe

ω2
γg, (44)

where γg = (1 − v2
g/c

2)−1/2, that is, it is approximately equal
to γg . Here we take into account that in the boosted frame of
reference the EM wave frequency is equal to the Langmuir
frequency. As a result we can find the electron energy
accelerated by the “betatron resonance” mechanism in the
laboratory frame of reference to be equal to

Ee ≈ mec
2γ 2

g . (45)

This corresponds to Kd in Fig. 3(b). For example, for the
plasma density of the order of 1019 cm−3 and the laser
wavelength ≈1 μm, the electron energy is about 50 MeV.
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a/am d/a

Κ

ϕ

(a) (b)

am1 am2

ϕ

Κ

Κd

Κmax

FIG. 3. Solution of the electron equation of motion with the radiation friction force in the LAD form in the case of the superposition of
rotating and radial electric fields. (a) Normalized electron energy K = (γ − 1)/(γm − 1) and the angle ϕ vs the electric field amplitude a/am with
am = 2500. (b) Normalized electron energy K = (γ − 1)/(γm − 1) and the angle ϕ vs parameter d/a for a = 50. Here γm = [1 + (pm/mec)2]1/2

with pm/mec = 700, d = 250, and εrad = 10−8.

The transverse component of the electron momentum is of
the order of mecγg ≈ 5 MeV.

The maximal energy, which an electron can achieve in
the resonance case according to Eq. (39) in the boosted
frame of reference is approximately equal to Ẽe = mec2γmax =
mec2(a/εrad)1/4, which corresponds to Kmax in Fig. 3(b). In the
laboratory frame of reference we obtain

Ee ≈ mec2γmaxγg. (46)

For a ≈ 10 and γg = 10 it gives Ee ≈ 500 MeV. The energy
of emitted photons is of the order of ≈0.3h̄ωγ 3

max. This is of
the order of 300 keV. The emitted γ -rays are collimated within
the angle ≈1/γg .

III. STATIONARY SOLUTION OF THE ELECTRON
EQUATIONS OF MOTION WITH THE RADIATION

FRICTION FORCE IN THE LANDAU-LIFSHITZ FORM

Here we analyze the electron motion equations with the
radiation friction force taken in the L-L form (5) for a stationary
electron orbit. We retain the leading order terms in the limit
γ � 1, which is the last term in Eq. (6).

A. Electron motion in the rotating homogeneous electric field

We look for the solutions describing a stationary elec-
tron orbit in a rotating homogeneous electric field, that is,
E1, D, B1, J vanish in Eqs. (7)–(9). From Eq. (6) we obtain for

the ũ2 = p||/mec and ũ3 = p⊥/mec momentum components
the algebraic equations

ũ2 = εrad
ũ3

γ
a2

(
1 + ũ2

3

)
, (47)

ũ3 = a − εrad
ũ2

γ
a2

(
1 + ũ2

3

)
. (48)

Using the variables p and ϕ defined by Eq. (33) we can present
these equations in the form

a2 = γ 2

2ε2
rad(γ 2 − 1)

[
1 −

√
1 − 4ε2

rad(γ 2 − 1)2
]

− (γ 2 − 1)2,

(49)

tan ϕ = 2εrad(γ 2 − 1)

γ −
√

γ 2 − 4ε2
radγ

2(γ 2 − 1)2
. (50)

In the range of the EM field amplitude, 1 � a � ε−1
rad, solution

to these equations has the same asymptotic dependences
as given by Eqs. (23) and (26). However, when the EM
field amplitude approaches the value of ε−1

rad, the solution
qualitatively changes. According to Eq. (50), the electron
momentum decreases as also shown in Fig. 4. In Fig. 4(a) we
present the components of the electron momentum parallel and
perpendicular to the instantaneous electric field as functions of
the electric field amplitude. Figure 4(b) shows the dependences
of the angle ϕ and the electron γ -factor on the electric field.
The momentum and γ -factor are normalized by (am/εrad)1/4,
and the dimensionless electric field amplitude by εrad.

γ

ϕ

p�

p|| (a) (b)

aεrad aεrad

FIG. 4. Solution of the electron equation of motion with the radiation friction force in the L-L form in the case of rotating homogeneous
electric field: (a) Dependence of the components of the electron momentum [normalized by mec(am/εrad)1/4] perpendicular p⊥ and parallel p||
to the electric field on the normalized EM field amplitude aεrad, and (b) dependence of ϕ and the electron γ -factor [divided by (am/εrad)1/4], on
aεrad for am = 1500 and εrad = 7.5 × 10−4.
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γLAD
γLL

aεrad

FIG. 5. Solution of the electron equation of motion in a rotating
homogeneous electric field for am = 1500 and εrad = 7.5 × 10−4.
Dependences of the electron γ -factors on the electric field: γLAD and
γLL correspond to the radiation friction force taken in the LAD and
L-L form, respectively. The normalization is the same as in Fig. 4.

In Fig. 5 we present the results of the solution of the electron
motion equation in a rotating homogeneous electric field. Here
the dependences of the electron γ factors on the electric field,
γLAD and γLL, correspond to the radiation friction force taken
in the LAD and L-L form, respectively. The normalization is
the same as in Fig. 4.

B. Electron dynamics in the superposition of rotating
and radial electric fields

The equations of the electron motion in the superposition
of rotating and radial electric fields (b = j = a1 = 0) with the
radiation friction force in the L-L form are

(γ − d)ũ2 = εradũ3[(dγ + aũ3)2 + a2 − d2], (51)

(γ − d)ũ3 = aγ − εradũ2[(dγ + aũ3)2 + a2 − d2]. (52)

We can rewrite Eqs. (51) and (52) as

a2 =d2 − (d − γ + γ 3)2

γ 2
+

γ 2 −
√

γ 4
[
1 − 4ε2

rad(γ 2 − 1)2
]

2ε2
rad(1 − γ 2)

,

(53)

tan ϕ = 2εrad(γ − d)(γ 2 − 1)

γ 2
[
1 −

√
1 − 4ε2

rad(γ 2 − 1)2
] , (54)

where ϕ is defined by Eq. (33).
As in the above considered case described by the LAD

model, the dependence of electron momentum on the electric
field amplitude shows similar behavior, provided a � 1,
γ � 1, and 2εradγ

2 � 1.

IV. DISCUSSION

High-order derivatives with respect to time in the electron
motion equations with the radiation friction force in the LAD
form stem from the 3D geometry of the electromagnetic field
interaction with a point charge, when the electrostatic energy
diverges for the charge radius tending to zero leading to
the so-called classical mass renormalization [3,4]. In a 1D
electrodynamics model with the point charge role played by
an infinitely thin foil there are no such difficulties (see analysis
of this case in Appendix A).

As follows from consideration of the above presented exact
solutions to the electron equations of motion with the radiation
friction force taken in the LAD and L-L form, in the limit of
relatively low electric field amplitude they show the same
behavior (as seen in Fig. 5). When the electric field is strong,
that is, the normalized field amplitude a approaches the value
of ε−1

rad, the solutions are drastically different.
The condition a = ε−1

rad corresponds to the electric field
equal to the critical electric field of classical electrodynamics,

Ecr = m2
ec

4

e3
. (55)

This electric field can produce a work equal to mec
2 over the

distance of the classical electron radius re.
The radiation friction force in the Landau-Lifshitz form as-

sumes the smallness of the EM field amplitude compared to the
critical field of classical electrodynamics. Another parameter
which should be small is the ratio of the EM field inhomogene-
ity scale length to the classical electron radius re. The time
dependent EM fields should be slowly evolved on a time scale
compared to te = re/c, as discussed in Refs. [24,32] devoted
to the problem of classical electrodynamics applicability.

Obviously, the limit of the EM field amplitude of the
order of Ecr (and of the space and time scales of the order
of re and te = re/c) is of pure academic interest, because
quantum mechanical effects become important at electric field
amplitudes substantially lower (and on spatial scales of the
order of the electron Compton wavelength h̄/mec). The critical
electric field of quantum electrodynamics (QED),

ES = m2
ec

3

eh̄
, (56)

is a factor α = e2/h̄c ≈ 1/137 smaller. Here α is the fine
structure constant. For the electron motion in colliding EM
waves, the QED effects due to the recoil from the photon
emission should be incorporated into the description of the
electron interaction with the EM field for an even smaller EM
wave amplitude. As shown in Ref. [12], the recoil from the
photon emission comes into play when the photon momentum
h̄km becomes of the order of the electron momentum p. In
other words, the photon with the energy larger than the electron
cannot be emitted. Here the wave vector of the photon emitted
by the electron km is of the order of ωγ 3/c and p ≈ mecγ .
This yields the γ -factor at which the photon recoil should
be taken into account, equal to γQM = (mec

2/h̄ω)1/2. As
noted above, for a � ε

−1/3
rad there is a relationship between the

electron energy and the EM field amplitude, which has a form
γ = (a/εrad)1/4. For (a/εrad)1/4 = γQM we have a = aQM =
εradm

2
ec

4/h̄2ω2 = 2e2mec/h̄
2ω. The electric field mecωaQM/e

is of the order of αES , which is equal to α2Ecr, below which
both the LAD and L-L forms for the radiation friction force
give the same result. This confirms a conclusion made in
Ref. [33], where on the basis of numerical calculations of
an electron motion in a very strong laser pulse it was found
that in the classical regime the L-L damping equation is very
adequate.

Although conclusions following from the above presented
consideration do not have the character of a rigorously proved
mathematical theorem, they give an indication of the range of
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the L-L forms for the radiation friction force, which can be
written in terms of the normalized EM wave amplitude:

a < aQM. (57)

We note here that the question as to whether or not the EM
field amplitude is small compared to Ecr should be answered
based on the examination of the field in the electron rest
frame of reference. For example, if a relativistic electron bunch
interacts with the EM field, the radiation friction force in the
L-L form can predict electron behavior different from that
described with the LAD radiation friction force at substantially
lower electric field amplitude.

Quantitatively this limit is described in terms of the Lorentz
and gauge invariant parameter

χ = [(Fμνuν)2]1/2

Ecr
. (58)

It is of the order of the ratio E = Ecr in the electron rest frame
of reference. It can be expressed via the electric and magnetic
fields and electron momentum as

χ = [(mecγ E + p × B)2 − (p · E)2]1/2

mec Ecr
. (59)

For the case of an electron interacting with a laser pulse,
using the solution presented in Ref. [2], we find that the
components of the electron momentum along p1 = (p · k)/|k|
and perpendicular pa = p − kp1/|k| to the direction of the
laser pulse propagation can be found from the equations

pa = pa,0 + mec(a − a0) (60)

and {
m2

ec
2 + [pa,0 + mec(a − a0)]2 + p2

1

}1/2 − p1

= [m2
ec

2 + (pa,0 − meca0)2 + p2
1,0]1/2 − p1,0. (61)

Here k = |k|e1 is the wave vector of the EM wave. These
expressions use the conservation of generalized momentum,
assuming the radiation friction effects are negligibly small (see
analysis of the radiation damping effects on the parameter χ

in Appendix B). p1,0 and pa,0 are the initial components of
the electron momentum, that is, before collision with the laser
pulse for a0 = 0.

For a plane EM wave propagating along the x axis with
the electric E = −c−1∂tA and magnetic field B = ∇ × A,
where A(x − ct) is the EM vector potential, prime de-
notes differentiation with respect to the variable x − ct , and
a = eA/mec

2, the invariant χ takes the form

χ = E

Ecr

(
γ − p1

mec

)
. (62)

Substituting expression (61) into Eq. (62) we obtain

χ = E

Ecr

{[
m2

ec
2 + (pa,0 − meca0)2 + p2

1,0

]1/2 − p1,0

mec

}
. (63)

As we see, for an ultrarelativistic electron p1,0 � mec col-
liding with the laser pulse in the copropagating configuration,
that is, p1,0 > 0, pa,0 = 0, and a0 = 0, the parameter χ is
negligibly small:

χ ≈ (E/Ecr)(mec/2p1,0). (64)

In the case of the head-on collision of an ultrarelativistic
electron with the laser pulse, when p1,0 < 0, pa,0 = 0, and
a0 = 0, the parameter χ is a factor (2p1,0/mec)2 larger and is
approximately equal to

χ ≈ (E/Ecr)(|2p1,0|/mec). (65)

If the electron appears inside the laser pulse as result of a gas
ionization or due to the electron-positron pair creation (see
Refs. [13,17,34]), the initial electron momentum is negligibly
small, p1,0 ≈ 0 and pa,0 ≈ 0, the constant a0 corresponds to
the EM field in the point and instant of time where and when
the electron is created. In this case the invariant χ is equal to

χ = (E/Ecr)
(
1 + a0

2)1/2 ≈ aa0/acr (66)

with acr = eEcr/meω0c = 1/(ω0te).
The above defined parameter χ is again a factor 1/α ≈ 137

smaller than the known quantum electrodynamics parameter
χe = [(Fμνuν)2]1/2/ES , which gives the ratio of the EM field
amplitude to the QED critical field ES in the electron rest
frame of Ref. [35]. For a 1 μm 10-PW laser pulse focused to
a few microns focus spot with the dimensionless amplitude
a = 3 × 102 the parameter χ becomes equal to unity for the
electron energy of about of 40 GeV and the QED parameter
χe is of the order of unity for the electron energy of about
300 MeV.
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APPENDIX A: RADIATION FRICTION
IN 1D ELECTRODYNAMICS

In a 1D electrodynamics model with the point charge
role played by an infinitely thin foil [36] there are no
difficulties with high-order derivatives with respect to time
in the electron motion equations with the radiation friction
force. This model has been extensively used in studying
the problem of relativistic thin plasma layer transparency,
particularly for the purposes of the laser pulse shaping [37] (see
also the experimental paper [38]), in the high order harmonics
generation [39], in the laser ion acceleration [15,40], and in the
generation of coherent extremely high intensity x-ray pulses
by relativistic mirrors [41].

Using the results of Refs. [36,37], we consider the case
of normal incidence of a plane electromagnetic wave on an
infinitely thin foil. The foil is located in the plane x = 0. The
interaction of the wave with the foil is described by Maxwell’s
equations for the vector potential A(x,t) which yield

∂ttA − c2∂xxA = 4πcδ(x)J(A) + δ̇(t)A(x,0) + δ(t)Ȧ(x,0),

(A1)

where δ(x) is the Dirac delta function and a dot denotes
differentiation with respect to time. The first term on the
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right-hand side of Eq. (A1) describes the electric current in the
foil and the delta function δ(x) represents its sharp localization.
The electric current J(A) is a function of the vector potential
A(0,t) at x = 0. The last two terms on the right-hand side
of Eq. (A1) are equivalent to the initial conditions: A(x,0) =
A0(x) and ∂tA(x,0) = Ȧ0(x). Here the functions A0(x) and
Ȧ0(x) define the incident electromagnetic wave A0(x,t).
Convolution of the Green function for the one-dimensional
wave equation G(x,t ; s,τ ) = θ [(t − τ ) − |x − s|/c]/2, with
the terms in the right-hand side of Eq. (A1) yields

A(x,t) = A0(x,t) + 2π

∫ t−|x|/c

0
J[A(0,τ )]dτ. (A2)

Assuming x = 0 on both sides of Eq. (A2) and taking the
derivative with respect to time, we obtain

Ȧ(0,t) = Ȧ0(0,t) + 2πJ[A(0,t)]. (A3)

On the right-hand side Ȧ0(0,t) is a known function and
the electric current J is assumed to be a given function of
A(0,t). In this way a nonlinear boundary problem for a system
of partial differential equations is reduced to the ordinary
differential equation for the field inside the foil (A3). Solving
this equation we find the vector potential A(0,t) inside the
foil. Substituting it into Eq. (A2) we obtain the expression that
describes transmitted and reflected waves.

Taking into account the generalized electron momentum
conservation p − eA/c = constant, and the relationship be-
tween the electric current and the electron velocity J =
−enelv = −enelcp/(mec

2 + p2)1/2, where ne and l are the
electron density and the foil thickness, we find that the 1D
equation (A3) for the stationary motion of a thin foil interacting
of its interaction with a rotating electric field can be written in
the form

ũ2 = ε0ũ3/γ, (A4)

ũ3 = a − ε0ũ2/γ. (A5)

Here ε0 is the dimensionless parameter [37],

ε0 = 2πe2nel

meω0c
, (A6)

proportional to the surface electric charge of the foil enel.
Solving this system of algebraic equations we obtain

ũ2 = ε0

21/2a

{[
4a2 + (

1 − a2 + ε2
0

)2 ]1/2 − (
1 − a2 + ε2

0

)}
{[

4a2 + (
1 − a2 + ε2

0

)2 ]1/2 + (
1 + a2 − ε2

0

)}1/2 ,

(A7)

ũ3 = 1

2a

{[
4a2 + (

1 − a2+ε2
0

)2]1/2−(
1 − a2 + ε2

0

)}
. (A8)

In the limit of a relatively weak EM field when ε0 � a � 1
solutions to Eqs. (A7) and (A8) have the asymptotics

ũ2 = ε0

1 + ε2
0

a − ε0
(
1 − ε2

0

)
2
(
1 + ε2

0

)3 a3 + O(a4), (A9)

ũ3 = 1

1 + ε2
0

a − ε2
0(

1 + ε2
0

)3 a3 + O(a4). (A10)

�

FIG. 6. Normalized momentum components p||/mec = ũ2 and
p⊥/mec = ũ3 vs the rotating field amplitude a and parameter ε0.

In the opposite limit for a � ε0 � 1 the asymptotics are

ũ2 = ε0 − ε0
(
1 + ε2

0

)
2a2

a + O(a−4), (A11)

ũ3 = a − ε2
0

a
+ ε2

0

a3
+ O(a−4). (A12)

Dependences of ũ2 = p||/mec and ũ3 = p⊥/mec on the
rotating field amplitude a and ε0 are shown in Fig. 6.

As we can see, in the dissipative range of parameters, which
corresponds to a relatively low EM field amplitude ε0 � a,
the component of the electron momentum p|| parallel to the
electric field is much larger than the perpendicular component
p⊥. In the limit of a strong electric field ε0 � a we have p|| �
p⊥, that is, the electron momentum is almost perpendicular to
the instantaneous direction of the electric field, contrary to the
case of a 3D point electric charge, when the dissipative regime
with p|| � p⊥ requires the condition a � εrad.

APPENDIX B: DEPENDENCE OF RADIATION
FRICTION EFFECTS ON THE PARAMETER χ

IN THE ULTRARELATIVISTIC ELECTRON
INTERACTION WITH AN EM PULSE

Incorporating the radiation friction effects in the Landau-
Lifshitz form into the electron equation of motion [Eqs. (1)
and (6)],

dp
dt

= −eE − e

mecγ
(p × B)

− 2e4

3m4
ec

7

p
γ

[(mecγ E + p × B)2 − (p · E)2]. (B1)

Here we retained the main order terms in the radiation
friction force. If εradaγ 2 � 1, which for a 10 PW laser with
a = 300 corresponds to γ ≈ 500, the interaction becomes
purely dissipative and Eq. (B1) can be reduced to

dp1

dt
= −εradωa2(−2t)

p2
1

mec
. (B2)

In this equation we assume the head-collision case of the
electron interaction with the laser pulse, for which x ≈ −ct

and a(x − ct) ≈ a(−2t). Its solution is given by

p1(t) = − p1,0mec

mec + εradωp1,0

∫ t

0
a2(−2t ′)dt ′

. (B3)
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For a pulse envelope a(t) of the Gaussian form a(t) = a0

exp(−t2/2τ 2
las), Eq. (B3) takes the form

p1(t)=− p1,0mec

mec + εrada
2
0ωτlasp1,0(π/32)1/2[erf(21/2t/τlas) − 1]

,

(B4)

where erf(x) is the error function equal to [42]

erf(x) = π1/2

2

∫ x

0
exp(−t2)dt. (B5)

The dependence given by Eq. (B4) shows that for large enough
ωτlasp1,0a

2
0 the electron momentum tends to the limit of

p1(t) →
(

π

8

)1/2
mec

εradωτlasa
2
0

, (B6)

which is independent of the initial momentum value p1,0. In
this limit the parameter χ is equal to

χ =
(

π

8

)1/2 1

ωτlasa0
. (B7)

Although for ωτlas � 1 and a0 � 1 it is substantially smaller
than unity, the QED parameter χe being a factor α−1 ≈ 137
larger can be larger than unity as shown in Ref. [18].
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