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The slow passage problem through a resonance is considered. As a model problem, we consider a damped
harmonically forced oscillator whose forcing frequency is slowly ramped linearly in time. The setup is similar to
the familiar slow passage through a Hopf bifurcation problem, where for slow variations of the control parameter,
oscillations are delayed until the parameter has exceeded the critical value of the static-parameter problem by
an amount that is the difference between the Hopf value and the initial value of the parameter. In sharp contrast,
in the resonance problem there is an early onset of resonance, setting in when the ramped forcing frequency is
midway between its initial value and the natural frequency for resonance in the unforced problem; we term this
value the jump frequency. Numerically, we find that the jump frequency is independent of the system’s damping
coefficient, and so we also consider the undamped problem, which is analytically tractable. The analysis of the
undamped problem confirms the numerical results found in the damped problem that the maximal amplitude
obtained at the jump frequency scales as A ∼ ε−1/2, ε being the ramp rate, and that the jump frequency is midway
between the initial frequency at the start of the ramp and the natural frequency of the unforced problem.
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I. INTRODUCTION

There has been much interest in systems with slowly
varying control parameters. Such problems naturally arise as
models of systems with multiple scales. The desire to under-
stand certain complicated multiscale dynamics by studying
the bifurcation structure of the fast processes when the slow
processes are treated as slowly varying control parameters
motivated the early work on the slow passage problem [1–4].
Also, the control parameters in certain systems may inherently
vary on a time scale much slower than the time scale of the
dynamics, such as in chemical reactions where the reactant
concentrations vary slowly on the intrinsic time scale of the
reactors. Such systems have also been studied in the context of
the slow passage problem [5]. The slow passage effect is that
transition may not occur until the parameter is considerably
beyond the critical value predicted from a static bifurcation
analysis (delay effect), and that the delay in onset is dependent
on the initial state of the system (memory effect).

Quasistatic control parameter variations are often imple-
mented in experimental investigations of dynamical systems
with the hope that for slow-enough variations of the parameter,
the system will adjust adiabatically and the instantaneous state
is close to the asymptotic state for the corresponding static
value of the parameter [6–8]. However, as we show in this
study, the system response to a slow variation of a control
parameter can lead to large deviations from the expected
adiabatically adjusted parameter response and in the simple
model used to illustrate this in this paper, the deviation can be
significant even in the limit of very slow parameter variations.

In the slow passage through resonance tongues of Mathieu’s
equation, which can be viewed as representing an undamped

*yhdo@knu.ac.kr

parametrically forced pendulum, it has been noted [9,10] that
for very slow variations of the relative forcing frequency, the
time spent in the resonance tongue is longer, and so one
might expect a larger resonant response for slower ramping
rates. However, numerical simulations and Wentzel-Kramers-
Brillouin (WKB) analysis has shown that this is not always
the case, depending on initial conditions and relative forcing
amplitudes [9,10].

Resonance is the tendency of a periodically forced system
to oscillate with larger amplitude at certain frequencies than at
others. When the forcing frequency ωf is approximately equal
to a natural frequency ωn of the unforced system, the system
has a large amplitude response and resonance is said to have
occurred. In nature, resonance occurs widely and is exploited
in many devices. When a control parameter is slowly varied in
time and especially as it passes through the natural frequency,
it is very important to investigate the resultant dynamical
behavior. In general, the system response will differ from the
corresponding static system response.

In this paper we investigate the effects of slow passage
through resonance associated with the linear periodically
forced damped pendulum, an ODE system which is typically
used to exemplify resonance phenomena, rather than the
parametrically forced problem associated with Mathieu’s
equation. To investigate resonant phenomena from the slow-
passage point of view, the forcing frequency is considered as
a slowly varying-in-time control parameter, and then we study
the resulting dynamical behavior.

In typical slow passage problems, after a ramped parameter
passes its critical static-problem value, nonintuitive dynamical
phenomena are observed [11,12]. For instance, slow passage
through a Hopf bifurcation exhibits a delayed onset of
oscillations, known as the delay effect. In the slow passage
through resonance studied here, we find instead an early
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effect, consisting of the onset of oscillations with a maximal
amplitude, or the onset of resonance, prior to the parameter
reaching the critical static problem value.

An important question in the slow passage problem is
“when does resonant phenomena occur?” To investigate this
problem, we consider several factors including damping
coefficient, ramping rate, and initial frequency to find the onset
condition. In Sec. II, we describe the static model equation
and its static parameter dynamics and then define the slow
passage problem. For a slowly varying-in-time frequency, the
slow passage problem is numerically investigated in Sec. III. In
Sec. IV, we derive the onset condition for resonant phenomena
using an analytical solution in the limit of zero damping, and
relate these analytic results to numerical results for very small
damping. Conclusions are presented in Sec. V.

II. RESONANCE MODEL

To investigate the effects of a slow passage through a
resonance, we consider as a paradigmatic model,

ẍ + γ ẋ + x = sin(ωf t), (1)

where γ is a damping coefficient and ωf is a forcing frequency.
Resonance is the tendency of a system to oscillate with large
amplitude at some forcing frequencies. These are known as
the system’s resonant frequencies ωr . When damping is small,
the resonant frequency is approximately equal to a natural
frequency of the unforced system [zero right-hand side in
Eq. (1)]. For γ = 0 (undamped case), the natural frequency
ωn = 1, and damping adjusts the natural frequency to ωn =√

1 − γ 2/4. For small damping γ , when the forcing frequency
ωf is close to the natural frequency ωn, the amplitude of
the forced response (the maximal value of |x(t)|) is quite
large even for relatively small external forces. This is called a
resonant effect. Figure 1 shows the amplitude of the system in
response to the forcing frequency for various small values of
the damping coefficient. Note that the resonant frequency ωr

is equal to the natural frequency ωn. The maximal amplitude
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FIG. 1. (Color online) Response amplitude A vs forcing fre-
quency ωf for (1), for different damping coefficients γ as indicated.
As a forcing frequency approaches the natural frequency ωn ≈ 1, the
amplitude of a phase variable x is much increased.

A occurs at ωf = ωn and is given by

A ∼ 1

γωn

(
1 + γ 2

8

)
. (2)

When a control parameter varies slowly in time, and
especially as it passes through a critical value, it is very
important to investigate the resultant dynamical behavior as, in
general, it will differ from the corresponding static-parameter
dynamics. Consider the forcing frequency ωf as a slowly
varying parameter in time, that is,

ωf (t) = ω0 + εt, (3)

where ω0 is an initial frequency and ε is a ramp rate (typically,
|ε| � 1). Introducing ωf (t) into (1) results in

dx

dt
= y,

(4)
dy

dt
= −γy − x + sin(ωf t),

dωf

dt
= ε.

Now the forcing frequency ωf (t) is a slow varying parameter.

III. SLOW PASSAGE THROUGH RESONANCE

A. Numerical investigation

We begin by numerically integrating (4) to determine
the dynamic response when the forcing frequency ωf (t) is
slowly varied near the natural frequency ωn. We consider
various fixed values of the ramp rate ε, damping coefficient γ ,
and initial forcing frequency ω0 in Eq. (4). For ε = 10−6,
γ = 10−2, and ω0 = 0.6, Fig. 2 shows the behavior of a
trajectory x(t). Initially, the trajectory oscillates with small
amplitude. As the forcing frequency approaches midway
between the initial frequency and the natural frequency, the
amplitude of the trajectory is suddenly amplified, giving a
large resonant response at a forcing frequency relatively far
from the natural frequency. Further increasing ωf beyond the
midway frequency, the amplitude of the trajectory is reduced
and there is no sign of a resonant response near the natural
frequency ωn ≈ 1.

Comparing the envelope of x(t) for the slow passage
problem in Fig. 2 with the maximal amplitude A in the static
response diagram (Fig. 1) for the cases with γ = 10−2, we find
that the slow passage response gives the same type of resonant
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FIG. 2. Early effect. The trajectory for (4) with γ = 10−2 is
plotted as a function of the frequency ωf (t) = ω0 + εt , where
ω0 = 0.6 and ε = 10−6. The maximal amplitude occurs at the jump
frequency ωj = 0.8, which is dependent on the damping coefficient,
before the natural frequency ωn = 1 is reached.
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response, but at a frequency halfway between the initial and
natural frequencies.

In typical slow passage problems, most notably the slow
passage through a Hopf bifurcation, it is not until after
the control parameter passes through its critical value that
interesting dynamical phenomena is observed, that is, the
delayed onset of oscillations known as the delay effect [1].
However, as shown in Fig. 2, resonance phenomena associated
with a slow passage problem may occur prior to the parameter
reaching its critical value; in this case the control parameter
is the forcing frequency, and its critical value is the natural
frequency of the static-parameter problem since resonance
occurs at the natural frequency in the static problem. This
is a very interesting phenomenon. We refer to it as an early
effect to contrast it with the well-known delay effect.

An important question in slow passage problems is “at what
frequency does the maximal amplitude occur or when does
resonant phenomena occur?” For instance, from Fig. 2, the
maximal amplitude can be obtained at the forcing frequency
ωf ≈ 0.8, which is not the resonant frequency. We call this
special frequency a jump frequency ωj in order to distinguish
it from the resonant frequency in the static-parameter problem
(1). In the following section, we find the onset condition for
the jump frequency ωj and investigate its dependence on other
factors including the ramp rate, the damping coefficient, and
the initial forcing frequency.

B. Jump frequency

To determine the onset condition for the jump frequency
ωj , the maximal amplitude of the trajectory for different
initial frequencies ω0 is investigated for various fixed ramp
rates ε and damping coefficients γ . Figure 3 shows several
trajectories with different initial forcing frequencies, and all
with γ = 10−2 and ε = 10−6. Numerically, we find that the
maximal amplitude occurs at the midfrequency between the
initial frequency ω0 and the natural frequency ωn ≈ 1. We
may anticipate that ωj

ωj = ω0 + ωn

2
as ε → 0. (5)

Analytical results supporting this in the limit of zero damping
is shown in Sec. IV.

The important thing for the onset condition is that the jump
frequency ωj depends strongly on the initial forcing frequency
ω0. That is, when ε → 0, the jump frequency ωj converges
to the midfrequency between the initial frequency and the
resonant frequency. Next, we consider how sensitive ωj is to
the ramp rate ε.

C. Ramp rate

For a fixed initial frequency ω0, we now consider how
the ramp rate affects the dynamical behavior in a slow
passage through resonance problem. Figure 4(a) shows, on
a logarithmic scale, the maximal amplitudes of trajectories for
different ramp rates ε; there is a critical ramp rate εc for a
given damping coefficient γ . That is, for ε � εc, there is no
change in maximal amplitude A [the flat part in Fig. 4(a)], but
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FIG. 3. Trajectories for (4) are plotted as a function of the
frequency ωf (t) = ω0 + εt , for different initial frequencies ω0 and
ε = 10−6 and γ = 10−2.

for ε � εc, the maximal amplitude A depends on ε according
to

A ∼
{

cγ for ε � εc,

ε−1/2 for ε � εc,

}
, (6)

where cγ are constants that depend on γ . As the damping
coefficient γ goes to zero, the maximal amplitude converges
to the maximal amplitude curve for the undamped system,
which has scaling A ∼ ε−1/2.

For ε � εc, the resonant response amplitude A is inde-
pendent of ε. This can be simply interpreted as being due
to the forcing frequency remaining in the neighborhood of
the jump frequency long enough for the trajectory to build
up to a full resonant response amplitude. If ε � εc, then
ωf (t) passes past ωj too quickly for the trajectory to achieve
maximal amplitude. While for ε � εc the response amplitude
is essentially the same as for the static-parameter problem with
ωf ≈ ωn, the frequency ωj at which this resonant response
occurs during a slow passage is, in general, very different
than ωn (depending strongly on ω0, but not on ε or γ ). This
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FIG. 4. (a) Maximal amplitude A vs ramp rates ε for different
damping coefficients γ , as indicated. (b) Critical ramp rate vs
damping coefficient.

has important consequences when trying to use quasistatic
parameter variations to determine static-parameter dynamics:
It does not matter how slowly the parameter is varied; the jump
frequency will differ from the natural frequency. One could
conduct a series of experiments with different ω0 and bracket
ωn to within some precision, but this is not typically done.
Furthermore, these results imply that there is a maximal ramp
rate εc for which resonant response amplitudes comparable to
those in the static-parameter problem can be recovered.

As shown in Fig. 4(a), we also observe that the critical
ramp rate is affected by the damping coefficient γ . For a given
damping coefficient, the critical ramp rate can be conveniently
defined as the ramp rate at which the maximal amplitude attains
a constant value. Numerically, we find from Fig. 4(b) that the
critical ramp rate depends on the damping coefficient in the
following manner:

εc ∼ γ α, (7)

where we find numerically that α ≈ 2. This implies that
γ ∼ √

εc. From (2), we deduce the relation between maximal
amplitude and ramping rate:

A ∼ 1

γ
∼ 1√

εc

.
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FIG. 5. Trajectories for a fixed ramp rate ε = 10−5 and damping
coefficients γ , as indicated.

D. Damping limit

Typically, damping tends to reduce the amplitude of oscil-
lations in an oscillatory system. In this section, we investigate
the influence of damping on the jump frequency in the slow
passage through resonance problem. For fixed ramp rate and
initial forcing frequency, Fig. 5 shows trajectory behaviors for
different damping coefficients. Note that the jump frequency is
independent of the damping, but the amplitude of the response
is damping dependent. For larger damping (γ = 10−2), after
the forcing frequency has passed the jump frequency value, the
trajectory oscillations are strongly damped. As γ is decreased
(to, say, γ = 10−3), the oscillations are more slowly damped,
leaving a long damped oscillatory tail as the forcing frequency
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FIG. 6. Jump frequency ωj versus damping coefficient γ for a
fixed initial frequency ω0 = 0.6 and various ramping rates ε = 10−4,
10−6, and 10−8, as indicated.

056604-4



SLOW PASSAGE THROUGH RESONANCE PHYSICAL REVIEW E 84, 056604 (2011)

continues to increase. In the undamped case, after ωf exceeds
ωj , the trajectory acquires a constant amplitude oscillation. In
Fig. 6, the jump frequency is numerically computed as γ → 0
for a fixed initial frequency ω0 = 0.6 and various ramping rates
ε = 10−4, 10−6 and 10−8. The figure shows that the jump
frequency becomes independent of the damping coefficient
for γ � 10−4. This implies that to theoretically predict a jump
frequency, it is sufficient to consider an undamped system, for
which we are able to obtain analytic results.

IV. ANALYTICAL RESULTS

Consider the zero damping limit of (4):

ẍ + x = sin[ωf (t)t], (8)

where ωf (t) = ω0 + εt and ω0 is an initial forcing frequency.
This equation has a solution of the form

x(t) = xh(t) + xp(t), (9)

where xh(t) is the general solution of the corresponding
homogeneous equation and xp(t) is a particular solution of
the full nonhomogeneous equation. Here

xh(t) = c1 cos(t) + c2 sin(t), (10)

and

xp(t) =
√

2π

4
√

ε
{S[T1(t)] sin[T3(t)] − C[T1(t)] cos[T3(t)]

+ S[T2(t)] sin[T4(t)] + C[T2(t)] cos[T4(t)]}, (11)

where S(t) = ∫ t

0 sin( π
2 s2)ds and C(t) = ∫ t

0 cos(π
2 s2)ds are

Fresnel integrals and

T1(t) = 2εt − 1 + ω0√
2επ

, T2(t) = 2εt + 1 + ω0√
2επ

,

T3(t) = t − 1

ε

(
1 − w0

2

)2

, T4(t) = t + 1

ε

(
1 + w0

2

)2

.

From a straightforward computation of ẋp and ẍp, one may
easily check that xp is a solution of (4).

Letting

tj = (1 − ω0)

2ε
, (12)

then tj is the time when ωf (t) arrives at the jump frequency
ωj ; that is, ωf (tj ) = ωj . To approximate x(t) with small initial
conditions, that is, |x(0)|,|ẋ(0)| � 1, we may use the following
properties of the Fresnel integrals:

S(x) ∼ 1
2 , C(x) ∼ 1

2 , for x � 0,

S(x) ∼ − 1
2 , C(x) ∼ − 1

2 , for x � 0 .

For 0 � t � tj ,

S[T1(t)] ∼ −1/2, C[T1(t)] ∼ −1/2,

S[T2(t)] ∼ 1/2, C[T2(t)] ∼ 1/2,

and for t � tj ,

S[T1(t)] ∼ 1/2, C[T1(t)] ∼ 1/2,

S[T2(t)] ∼ 1/2, C[T2(t)] ∼ 1/2.

This implies that

xp(t) ∼

⎧⎪⎨
⎪⎩

√
π

2
√

ε
cos

( − 1+ω2
0

4ε
+ π

4

)
cos

(
t + ω0

2ε

)
for t � tj ,

√
π

2
√

ε
sin

( − 1+ω2
0

4ε
+ π

4

)
sin

(
t + ω0

2ε

)
for t � tj .

(13)

To obtain a full solution x(t) = xp(t) + c1 cos(t) +
c2 sin(t), we consider small initial conditions to study resonant
effects in the slow passage problem, that is, |x(0)|,|ẋ(0)| � 1,
due to the nature of the unforced system having concentric
periodic trajectories encircling the origin. We have

c1 ∼
√

π

2
√

ε
cos

(
−1 + ω2

0

4ε
+ π

4

)
cos

(
ω0

2ε

)
, (14)

and

c2 ∼
√

π

2
√

ε
cos

(
−1 + ω2

0

4ε
+ π

4

)
sin

(
ω0

2ε

)
. (15)

Substitution of the constants c1, c2 and a particular solution
xp(t) into the full solution gives

x(t) ∼
{

0 for t � tj ,

−
√

π

2
√

ε
cos

[
t − 1

ε

( 1−ω0
2

)2 + π
4

]
for t � tj .

(16)

Therefore, the maximal amplitude A is proportional to ε−1/2

and resonance occurs at ωj . For large initial conditions, we
find that the amplitude of oscillation is deamplified at the
jump frequency [13].

V. CONCLUSIONS

We have studied the effects of a slow variation in a
control parameter on the response of a system as it passes
through a resonance. Our main result is the discovery of
an early effect, whereby resonance phenomena (i.e., a large
amplitude response) occurs prior to the slowly varying
parameter reaching its critical value in the corresponding
static-parameter problem. In the problem studied, the control
parameter is the forcing frequency and its critical value is the
natural frequency of the static-parameter model. This early
effect is in sharp contrast to the well-known delay effect
observed in the slow passage through a Hopf bifurcation.
This nonintuitive slow passage response can have far reaching
dynamical consequences in many practical situations. For
example, when parameters are slowly varied to reach an end
state in a controlled fashion, unexpected large scale oscillations
may be triggered with unforeseen consequences.

We have shown that the onset condition for the early
effect is when the slowly varying forcing frequency attains
a value that is midway between an initial frequency and the
natural frequency. We have called this the jump frequency. The
onset of the early effect is strongly dependent on the initial
frequency. Through numerical investigations of the influence
of other system parameters, including the ramping rate and
the damping coefficient, we have also found that there is
a critical ramping rate εc, where for ε � εc, the resonant

056604-5



YOUNGYONG PARK, YOUNGHAE DO, AND JUAN M. LOPEZ PHYSICAL REVIEW E 84, 056604 (2011)

response amplitude reaches the maximal amplitude found in
the corresponding static-parameter model. The value of this
critical ramping rate depends on the damping coefficient; when
the forcing frequency varies slowly enough, the trajectory has
time to resonate at the jump frequency before it is damped
out. For ε � εc, the forcing frequency is ramped past the
jump frequency too fast for a trajectory to achieve maximal
amplitude. This means that ε must be less than εc in order
for the ramped response amplitude to be comparable to that
of the static-parameter problem. However, even with ε � εc,
the resonant response does not necessarily occur at the natural
frequency, but at the jump frequency which is midway between
the natural frequency and the initial frequency. Hence, in
general, the slow passage with resonance problem will not
recover the static-parameter dynamics irrespective of how
slowly the parameter is ramped.

Based on the numerical observations that the jump fre-
quency is independent of the damping, we considered the un-
damped problem which is analytically tractable and confirmed
the numerical results that the maximal amplitude obtained at
the jump frequency scales as A ∼ ε−1/2 and that the jump
frequency is midway between the initial frequency at the
start of the ramp and the natural frequency of the unforced
problem.
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