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Nonlocal solitons in the parametrically driven nonlinear Schrödinger equation: Stability analysis

Maxim A. Molchan*

Department of Mathematics and Applied Mathematics, University of Cape Town, Private Bag Rondebosch 7701, South Africa
(Received 28 September 2011; published 7 November 2011)

We study analytically and numerically the linear stability of weakly nonlocal solitons in the parametrically
driven nonlinear Schrödinger equation. Two exact solutions are derived in an implicit form. We show analytically
that despite the well-known stabilizing properties of nonlocality one of the solitons remains unstable even in the
nonlocal case for any values of the dissipation, the damping, and the degree of nonlocality. The second soliton,
as compared to its local counterpart, attains wider stable regions in the space of the parameters of the system.
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I. INTRODUCTION

The parametrically driven, damped nonlinear Schrödinger
equation (PDNLS)

iψt + ψxx + 2ψ |ψ |2 − ψ

= hψ∗ − iγψ, h,γ > 0, (1.1)

describes a large number of nonlinear resonant phenomena
in different media. This includes the Faraday resonance in
fluid dynamics [1–3], parametric generation of spin waves in
ferro and antiferromagnets [4,5], instabilities in plasma [6,7],
amplitude generation in Josephson junctions [8,9], and signal
amplification effects in fiber optics [10,11].

Solitary waves of Eq. (1.1) have been extensively studied
in Refs. [5,12]. It was shown that Eq. (1.1) has two stationary
soliton solutions, one of which is unstable for all values of
the driver’s strength h and the dissipation coefficient γ . The
other solution is stable (for fixed γ ) for small values of h

and becomes unstable when h exceeds some threshold value.
In Ref. [12] it was shown that depending on the values of h

and γ three main scenarios in soliton dynamics can occur: the
decay of the soliton to zero, single-mode chaotic oscillations
of the amplitude and width, and the spatiotemporal chaos. The
crucial role of radiation on the soliton’s transformation within
these regimes was studied in Ref. [13].

In the current paper we extend the model Eq. (1.1) to the
nonlocal case,

iψt + ψxx + 2ψ

∫ +∞

−∞
dξR(x − ξ )|ψ |2(ξ ) − ψ

= hψ∗ − iγψ. (1.2)

Here R(x) is a symmetric response function of the nonlocal
nonlinear medium [14,15]. We consider this equation in the
limit of weak nonlocality when the size of the distribution of
|ψ(x)|2 in Eq. (1.2) in the transverse direction x is much larger
than the spatial width of R(x) [16]. Then expanding ψ(ξ ) in
the vicinity of x leads to the PDNLS with an additional local
term,

iψt + ψxx + 2ψ |ψ |2 + 2κψ(|ψ |2)xx − ψ = hψ∗ − iγψ,

(1.3)

where κ = 1
2

∫ +∞
−∞ dxx2R(x) is a small nonlocality parameter.
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Nonlocality is typically a result of underlying transport
processes such as heat conduction in thermal nonlinear media
[17], diffusion of atoms in gases [18], long-range electrostatic
interaction in liquid crystals [19], charge carrier transfer in
photorefractive crystals [20], and many-body interaction in
Bose-Einstein condensates [21]. It has proven to have a
great impact on basic properties such as stabilization and
propagation dynamics of localized structures. As shown in
the earlier theoretical studies of the basic properties of
such systems [22,23] this is due to the fact that nonlo-
cality dramatically affects the formation and interaction of
solitons.

In the current paper we examine the linear stability of
two weakly nonlocal solitons of Eq. (1.3) with respect to
arbitrary square integrable perturbations both analytically
and numerically. We rigorously show that despite the notorious
stabilizing property of nonlocality one of the solitons remains
unstable even in the nonlocal case for any choice of the
parameters κ, h, and γ . At the same time, the second
nonlocal soliton is stabilized considerably in the parameter
space (h, γ ) having wider regions of stability than its local
counterpart.

The paper is organized as follows. In Sec. II we derive two
exact solutions of Eq. (1.3) and perform the linearization about
these solutions. In Sec. III we utilize the maximum principle
to prove that one of the solutions is always unstable for all
values of h, γ , and κ. In Sec. IV we construct the perturbation
theory for the second solution and demonstrate analytically
its stability in the vicinity of the bifurcation line h = γ . In
Sec. V we numerically investigate the stability properties of
the second solution for arbitrary h, γ , and κ and provide
the corresponding stability diagram. Finally, the results are
summarized in Sec. VI.

II. EXACT SOLUTIONS AND THE LINEARIZED SYSTEM

Equation (1.3) has two stationary solitary wave solutions
of the form

ψ±(x) = φ±e−iθ± , (2.1)

where

θ+ = 1

2
arcsin

(γ

h

)
, θ− = π

2
− θ+,
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and the real-valued functions φ± satisfy the equations

(1 + 4κφ2)φ′′ + 4κφ(φ′)2 − A2
±φ + 2φ3 = 0, (2.2)

A2
± = 1 ±

√
h2 − γ 2, (2.3)

where the prime denotes the differentiation with respect to x.
In Eqs. (2.2) φ stands for φ+ or φ− depending whether we
take A+ or A−. Integrating Eqs. (2.2) twice gives the implicit
expressions for φ = φ±,

F (φ,x) = 0,

F = A
√

κarctan

⎧⎨
⎩ 1 + 8κφ − 4A2

±κ

4
√

[κ(A2± − φ2)(1 + κφ2)]

⎫⎬
⎭

+ ln

⎛
⎝ √

A±φ√
A2± − φ2 + A±

√
1 + κφ2

⎞
⎠

+A± (|x| − C±) , (2.4)

where the constants of integration C± =
√

κπ

2 + A−1
± ln[A−1

±
(1 + 4κA2

±)] are chosen to center the solutions at the origin.
Solitary waves Eq. (2.1) may arise in resonant experiments on
quasi-one-dimensional exchange-dipole spin-waves propaga-
tion in thin ferromagnetic films [24].

Equation (2.3) carries the information on the domain of
existence of the two solutions on the (h,γ ) parameter plane.
The ψ+ solution exists for any h > 0 and, consequently,
A2

+ > 1. The existence domain of the solution ψ− is bounded:
γ < h <

√
1 + γ 2 and 0 < A2

− < 1. On the bifurcation line
h = γ (A2

+ = A2
− = 1) both solutions coincide. In Fig. 1

we present the profiles of the weakly nonlocal solitary
waves Eq. (2.1) for A2

+ = A2
+ = 1 and different values of

the nonlocality parameter κ. As seen, nonlocality enhances
the widths of the solutions without changing the maximum
value of the humps at the origin.
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FIG. 1. (Color online) Spatial profiles of the solitary wave
solutions Eq. (2.1) for different values of the nonlocality parameter
κ: dashed curve corresponds to κ = 0.5; solid curves: the local case
κ = 0 (bottom), κ = 0.01 (middle), and κ = 0.05 (top).

It is also worthwhile to derive the explicit expansions of the
profiles φ± over the nonlocality parameter κ:

φ± = f ±
0 + κf ±

1 + κ
2f ±

2 + · · · , (2.5)

where

f ±
0 = A±sechX,

f ±
1 = A3

±sechXtanh2X,

f ±
2 = A5

±
3

(cosh2X − 25) sech3Xtanh2X,

X ≡ A±x.

In the limit κ → 0 Eqs. (2.4) and (2.5) reproduce the local
solution of Ref. [5]: ψ± = A±sech (A±x) e−iθ± .

To analyze the linear stability of the solutions Eq. (2.1) we
write ψ(x,t) = ψ± + δψ(x,t) and linearize in δψ . Letting

δψ(x,t) = e−γ t [u(x,t) + iv(x,t)] e−iθ± (2.6)

yields

ut − γ u = L0v, − vt − γ v = L1u, (2.7)

where

L0 = − d2

dx2
+ 2 − A2

± − 2φ2 − 2κ(φ2)′′, (2.8)

L1 = L(0)
1 + κL(1)

1 , (2.9)

and

L(0)
1 = − d2

dx2
+ A2

± − 6φ2, (2.10)

L(1)
1 = − d

dx

(
4φ2 d

dx

)
− 2(φ2)′′ − 4φφ′′. (2.11)

In Eqs. (2.8)–(2.11) φ again stands for φ+ or φ−.
We impose the general restrictions on the perturbations u

and v in Eqs. (2.7): They are represented by square integrable
functions on the whole line −∞ < x < ∞. The solution is
deemed unstable provided Eqs. (2.7) have solutions growing
faster than exp(γ t) in time. Aiming to elucidate the general
influence of the additional term in Eq. (1.3) stemming from
the nonlocality of the initial equation (1.2), we shall not also
restrict κ by very small values (we take 0 � κ � 0.5).

III. INSTABILITY OF ψ−

The ψ−–solution is amenable to the analytical treatment.
First, we note that the operator L0 [Eq. (2.8)] can be presented
in the following form:

L0u = −φ−1 d

dx

[
φ2 d

dx
(φ−1u)

]
+ 2(1 − A2

−)u, (3.1)

where φ = φ−. Introducing the notation

〈f |g〉 =
∫ ∞

−∞
f (x)g(x) dx
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for the norm of L0 we immediately get

〈u|L0u〉 =
∫ ∞

−∞

[
φ

d

dx
(φ−1u)

]2

dx

+ 2(1 − A2
−)
∫ ∞

−∞
u2 dx > 0. (3.2)

Thus, the operator L0 is positive definite and invertible for all
square integrable perturbations u. Equations (2.7) can now be
rewritten as

L−1
0 utt = (

γ 2L−1
0 − L1

)
u. (3.3)

According to the maximum principle of Refs. [25,26], the
maximum exponential growth rate 	 of solutions of Eq. (3.3)
is given by

	2 = sup
u

〈u|γ 2L−1
0 − L1|u〉

〈u|L−1
0 |u〉 = γ 2 + sup

u

〈u| − L1|u〉
〈u|L−1

0 |u〉 .

(3.4)

If the quadratic form 〈u| − L1|u〉 in Eq. (3.3) attains positive
values on some functions u, then the solitary wave is unstable.
To demonstrate this, we rewrite the quadratic form of the
operator L1 as follows:

〈u|L1u〉 = 〈u|L0u〉 − 2(1 − A2
−)〈u|u〉

− 4〈u|φ2u〉 + κ

〈
u|L(1)

1 u
〉
. (3.5)

As follows from Eq. (3.2), the first term in Eq. (3.5) attains
the minimum zero value for A2

− = 1 and u = φ−. At the
same time, the operator L(1)

1 is bounded, 〈u|L(1)
1 u〉 < ∞, then

for sufficiently small κ the whole norm 〈u|L1u〉 inevitably
takes negative values. For example, using Eq. (2.5) and
taking the perturbation in the form of the local solution
u0 = A−sech(A−x) gives

〈u0|L1u0〉 = −16A3
−

3
+ 32A5

−
15

κ + · · · < 0.

That is, the weakly nonlocal solitary wave ψ− is unstable with
respect to its local counterpart.
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FIG. 2. (Color online) The minimum discrete eigenvalue of the
operator L1 as a function of the amplitude A2

−. Here the dashed curve
corresponds to κ = 0.5; the bottom, middle, and top solid curves
correspond to κ = 0, κ = 0.04, and κ = 0.08, respectively.
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FIG. 3. Development of instability for the local ψ−–solution
κ = 0 (right) and weakly nonlocal κ = 0.05 (left). Here h = 0.5
and γ = 0.2.

In Fig. 2 we present the minimum discrete eigenvalue λ of
the operator L1 as a function of the amplitude A2

− (the dashed
curve corresponds to κ = 0.5; the bottom, middle, and top
solid curves correspond to κ = 0, κ = 0.04, and κ = 0.08,
respectively). Obviously the operator L1 has negative eigen-
values for all A2

− and κ. Consequently, the ψ−–solution is
unstable with respect to arbitrary square integrable perturba-
tions for any choice of h, γ , and κ.

As follows from Fig. 2, the nonlocality reduces the unstable
growth rates and tends to suppress the development of
instability. In Fig. 3 we present the development of instability
for local (right) and nonlocal (left, κ = 0.08) solitary solutions
obtained by the direct numerical integration of Eq. (1.3).
The nonlocal solution demonstrates the lower growth rate of
instability as compared to the local one, though the solution
remains unstable in general.

IV. STABILITY OF ψ+ NEAR THE BIFURCATION
LINE h = γ

In this section we consider the stability properties of
the ψ+–solution when the driver’s strength h is close to
the dissipation parameter γ , h ∼ γ . We introduce the small
parameter ε � 1 defined via the expression

A2
+ = 1 +

√
h2 − γ 2 = 1 + ε

and impose the following ansatz for the perturbations u and v

in Eqs. (2.7):

u(x,t) = U (x)e(�+γ )t , v(x,t) = V (x)e(�+γ )t , (4.1)

where � is real. Obviously, the solution is stable (unsta-
ble) provided � < 0 (� > 0). Now, the eigenvalue problem
Eqs. (2.7) can be presented in the following matrix form:

L
(

U

V

)
= �

(
U

V

)
, (4.2)

where

L =
(

0 L0

−L1 −2γ

)
. (4.3)

When h = γ the spectrum of the eigenvalue problem Eq. (4.2)
coincides with that for an undamped undriven weakly nonlocal
NLS soliton. The spectrum fills the imaginary axis with a
gap separated by the zero. As h deviates from γ the phase
invariance is broken and the split of the zero eigenvalue
occurs (Fig. 4). These emerging eigenvalues may lead to the
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FIG. 4. Split of the zero eigenvalue of the operator L for h �= γ .

instability of the solution. We now evaluate the positions of
these eigenvalues.

Combining two equations in Eq. (4.2) we get

L1L0V = λV, (4.4)

where

λ = −� (� + 2γ ) . (4.5)

Proceeding to the perturbation analysis we write the following
expansions:

λ = λ0 + ελ1 + · · · ,

V = V0 + εV1 + · · · , (4.6)

L0,1 = L0
0,1 + εL1

0,1 + · · · .

We consider the split of the zero eigenvalue, then λ0 = 0 and
at the order O(ε0) the equation yields L0

0V0 = 0 with V0 = φ0,
where we have introduced the notation φ0 = φ+|h=γ .

At the first order we get

L0
1L1

0φ0 + L0
1L0

0V1 = λ1φ0. (4.7)

Multiplying both sides of Eq. (4.7) by φ0(L0
1)−1 and integrating

over the whole line −∞ < x < ∞ for the eigenvalue λ1 we
get

λ1 = 〈L1
0φ0|φ0〉

〈(L0
1)−1φ0|φ0〉

. (4.8)

In deriving Eq. (4.8) we took into account that 〈φ0|L0
0V1〉 =

〈L0
0φ0|V1〉 = 0.
To calculate the denominator in Eq. (4.8) we solve the

equation (
L0

1

)−1
φ0 = 
0

or

L0
1
0 = φ0.

The function 
0 can be found using the standard procedure
of the variation of parameters:


0 = Re

{
−φ0

2
− φ0

i − 2
√

κ

√
1 − φ2

0

1 + 4κφ2
0

× [F (�|κ2) − 2�(κ,�|κ2)]

}
, (4.9)

where F and � are the complete and incomplete
elliptic integrals of the first and third types, re-
spectively, � = arcsin(

√
(1 + φ0)/(1 − φ0)/

√
k) and k =

(2
√

κ + i)/(2
√

κ − i). In Fig. 5 we provide the plots of 
0

for different values of κ.
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FIG. 5. (Color online) Plots of the function 
0 [Eq. (4.9)] for
different values of the parameters κ: κ = 0.5 (dashed curve), κ = 0
(solid top curve), and κ = 0.05 (solid bottom curve).

Finally, the eigenvalue λ1 to the first order of approximation
is given by the expression

λ1 =
〈
L1

0φ0|φ0
〉

〈
0|φ0〉 , (4.10)

where

L1
0 = −1 − 4φ0(1 + 4κ)

(1 + 4κφ2
0)3

∂φ0

∂ε

∣∣∣∣
ε=0

,
∂φ0

∂ε

∣∣∣∣
ε=0

= φ0

2

⎡
⎣1 −

√
1 − φ2

0

1 + 4κφ2
0

ln

⎛
⎝
√

1 − φ2
0 +

√
1 + 4κφ2

0

φ0
√

1 + 4κ

⎞
⎠
⎤
⎦ .

(4.11)

As follows from Eqs. (4.9) and (4.11), the functions 
0 and L1
0

do not contain the variable x explicitly. Then the integrals in
Eq. (4.10) can be calculated without restoring the dependence
of φ0 on x from Eq. (2.4). This is achieved by the change of
the integration variable:∫ ∞

−∞
f [φ0(x)] dx = 2

∫ 1

0

f (y)

y ′ dy,

where y ′ = y
√

(1 − y2)/(1 + 4κy2) and f (x) is an arbitrary
even function of the variable x [note that L1

0 and 
0 in
Eq. (4.10) are even functions of x].

From Eq. (4.5) the maximum eigenvalue of the operator L
yields

� = −γ +
√

γ 2 − ελ1. (4.12)

If λ1 is positive (negative) then � < 0 (� > 0) and the solitary
wave is stable (unstable). In Fig. 6 we present the dependence
of λ1 on the nonlocality parameter κ. Obviously, λ1 is positive
for all κ. Consequently, the ψ+–solution is stable for all κ

and h ∼ γ .
As follows from Eqs. (2.6) and (4.1), the rate of the decay of

the perturbation v is given by 	 = |�|. Increasing the degree
of nonlocality κ, we decrease λ1 and, consequently, 	. Thus,
nonlocality suppresses both the growth rate of instability in
the case of unstable perturbations and the rate of the decay of
the perturbation in stable contexts.
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FIG. 6. The splitting eigenvalue λ1 as a function of the nonlocality
parameter κ.

V. STABILITY DIAGRAM FOR ψ+–SOLUTION

To determine stability properties of the ψ+–solution for
arbitrary values of h and γ we solved the eigenvalue problem
Eq. (4.2) numerically within the intervals 0 < h,γ < 1.5. The
results are presented in Fig. 7. The solitary wave ψ+ exists
above the line h = γ and is unstable with respect to continuous
spectrum excitations for h >

√
1 + γ 2 (see, e.g., Ref. [5]).

The stability properties of ψ+ with respect to local mode
perturbations crucially depend on the value of the nonlocality
parameter κ. The local soliton (κ = 0) is stable in the region
A in Fig. 7. Increasing the nonlocality degree results in the
increased stability domains. The weakly nonlocal solution with
κ = 0.05 is stable in A and attains an additional stability region
B, while for κ = 0.5 the solitary wave is stable in the regions
A, B, and C. Obviously, nonlocality favors the suppression of
instability for the ψ+–solution.

1.41.21.00.80.60.40.20

0.3

0.6

0.9

1.2

1.5
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γ
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C

=0

1 � γ 2

I

II

D

=0.5

=0.05

FIG. 7. (Color online) Stability diagram for the ψ+–solution. In
the domain I (h < γ ) no nontrivial solutions exist. In the domain II
(h >

√
1 + γ 2) the solution ψ+ exists but is unstable with respect to

continuous spectrum perturbations. Dashed domains correspond to
the regions of linear stability of the ψ+ solitary wave: κ = 0 (A),
κ = 0.05 (A and B), and κ = 0.5 (A, B, and C). The solution is
unstable with respect to local mode perturbations in D for κ = 0.5,
D and C for κ = 0.05, and D, C, and B for the local soliton κ = 0.
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FIG. 8. Evolution of the local [κ = 0, (a) and (c)] and nonlocal
[κ = 0.05, (b) and (d)] ψ+–solution for different sets of the
parameters h and γ : h = 1.1 and γ = 0.3 in (a) and (b); h = 0.7
and γ = 0.3 in (c) and (d). On all plots the contour plots of |ψ+| are
depicted.

We confirmed the predictions of linear stability analysis by
the direct numerical integration of Eq. (1.3), taking the pertur-
bation Eq. (2.6) in the form δψ(x,t = 0) = 10−4sech(x)e−iθ+ .
In Fig. 8 we provide the evolution of the ψ+ solution (contour
plots of |ψ+| are depicted) for two different sets of the
parameters h and γ : h = 1.1 and γ = 0.3 for Figs. 8(a) and
8(b) and h = 0.7 and γ = 0.3 for Figs. 8(c) and 8(d). In
Fig. 8(a) the local soliton (κ = 0) undergoes the transition to
the spatiotemporal chaos, while in Fig. 8(c) the solution decays
to zero. In Figs. 8(b) and 8(d) the corresponding evolution of
the nonlocal (κ = 0.05) solitary wave is presented. In both
cases the nonlocal solution is stable.

VI. CONCLUSIONS

In this paper we have studied analytically and numerically
the linear stability of weakly nonlocal solitary waves of
the parametrically driven, damped nonlinear equation. We
considered the most general class of perturbations represented
by square integrable functions.

Though the solutions can be derived in an implicit form
only, we establish two analytical facts. First, using the maxi-
mum principle we prove that one of the solitary wave solutions
remains unstable in the nonlocal case, despite the well-known
stabilizing effect of nonlocality. Second, we show that the
second solution is stable in the vicinity of the bifurcation
line h = γ (that is, when the value of the driver’s strength is
close enough to the value of the dissipation parameter γ ). We
also perform the numerical investigation of the corresponding
eigenvalue problem and obtain the stability diagram for the
second solitary wave. The nonlocality is shown to extend the
domains of linear stability in the (h, γ )-plane. The results of

056603-5



MAXIM A. MOLCHAN PHYSICAL REVIEW E 84, 056603 (2011)

the direct numerical integration of the governing equation are
in perfect agreement with the predictions of the linear stability
analysis.
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