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Spatiotemporal mode structure of nonlinearly coupled drift wave modes
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This paper presents full cross-section measurements of drift waves in the linear magnetized plasma of the
Mirabelle device. Drift wave modes are studied in regimes of weakly developed turbulence. The drift wave modes
develop azimuthal space-time structures of plasma density, plasma potential, and visible light fluctuations. A fast
camera diagnostic is used to record visible light fluctuations of the plasma column in an azimuthal cross section
with a temporal resolution of 10 μs corresponding approximately to 10% of the typical drift wave period. Mode
coupling and drift wave dispersion are studied by spatiotemporal Fourier decomposition of the camera frames.
The observed coupling between modes is compared to calculations of nonlinearly coupled oscillators described
by the Kuramoto model.
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I. INTRODUCTION

Over the past two decades drift waves have been exten-
sively studied in the framework of anomalous energy and
particle transport in magnetized plasmas designed for nuclear
fusion [1,2]. Drift waves are basically density and potential
fluctuations with dynamics parallel and perpendicular to
the ambient magnetic field. A common diagnostic for drift
waves is the Langmuir probe, which provides a spatially
localized measurement of density, temperature, and potential.
In particular, probe arrays arranged in the azimuthal or poloidal
direction are now well established to study the drift wave
dynamics perpendicular to the magnetic field [3–5]. However,
probe arrays covering the full plasma cross section are too
complex to build and would create a strong perturbation to
the plasma. Here the (noninvasive) fast camera diagnostic
represents a complementary diagnostic to Langmuir probes by
measuring light fluctuations in the entire perpendicular cross
section [6]. The camera measurements can be directly used for
investigations of the dynamics of drift waves due to the high
degree of correlation between light and density fluctuations in
low-temperature plasmas [7,8]. During the past few years the
temporal resolution of fast cameras has permanently increased
with increasing quantum efficiencies of the complementary
metal oxide semiconductor sensors. Nowadays, the frame rate
is high enough to resolve drift wave dynamics. The spatial
resolution perpendicular to the magnetic field can easily go
below the millimeter range, depending on the parameters of the
optics. The resolution parallel to the magnetic field, i.e., along
the lines of sight of the camera, depends on the optical system.
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The optics used in the present work is a usual objective, which
sharply images objects within a certain distance; however, the
plasma is an expanded transparent light-emitting medium and
thus a large part of the plasma is beyond the focused object
distance. The farther away the light is from the focused object
distance, the more blurred the picture is and thus light is more
spread out on the camera chip. Taking this effect into account
and according to the integration along the lines of sight, the
main light contribution originates from a localized region with
some lengths of the depth of field around the focused object
distance. Consequently, the fast camera diagnostic provides all
means to study drift wave turbulence including the nonlinear
coupling between drift wave modes.

Various models for drift wave coupling have been proposed
and developed further [9,10]. Three-wave coupling is a major
mechanism of energy transfer between modes [11]. The
spatiotemporal Fourier decomposition of camera frames is
a useful tool for investigations on the dispersion and mode
coupling of drift waves. This method is used in the present
paper. It is shown that periodic pulling, synchronization,
and desynchronization due to mode coupling in turbulence
can be reproduced by the Kuramoto model for a set of
nonlinearly coupled oscillators [12]. The Kuramoto model
has been used to model the transition from incoherent to
coherent states for ensembles of coupled flashing fireflies,
spiking neurons, and pulsing dictyostelium discoideum cells
[13–15]. It has been investigated for several years with focus
on the thermodynamic limit N → ∞ (i.e., an infinite number
of oscillators), where closed solutions have been found for
the time evolution of an oscillator ensemble with unimodal
frequency distributions [16]. Recently, the Kuramoto model
has been used to investigate the effects of connection topology
in small-world networks; it has been found that a single
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link between interacting clusters can be crucial to make a
transition into a coherent state [17]. Despite the simplicity of
the model, its behavior has been proven to be nontrivial and its
understanding has attracted a lot of attention during the past
decade [18].

The present paper is organized as follows. First we discuss
drift waves in the cylindrical plasma device Mirabelle and the
fast camera as a diagnostic for the spatiotemporal dynamics
of drift waves. Then we investigate the dispersion relation and
the mode coupling in weakly developed drift wave turbulence
based on Fourier decomposition of azimuthal light fluctuation
measurements. Finally, the drift wave mode coupling is
compared to the Kuramoto model.

A. Experimental device

The drift wave experiments are conducted in the linearly
magnetized plasma of the cylindrical device Mirabelle [19],
depicted in Fig. 1. The device consists of two identical
cylindrical chambers at both ends (0.7 m long, 0.9 m in
diameter) and a cylindrical midsection 0.3 m in diameter and
1.4 m long. In the midsection a set of 24 magnetic field coils
creates a homogeneous magnetic field with a magnetic field
induction up to 130 mT.

One of the large chambers is used for generating helium
plasma by a thermionic hot cathode discharge. Emitted
electrons are accelerated toward the grid, which is biased
positively with Vga relative to the surrounding anode. In
front of the grid a limiter (with a hole diameter of 15 cm)
is used to reduce the diameter of the plasma column. In
the midsection fast electrons ionize the gas and create a
magnetized plasma column. The typical neutral gas pressure is

FIG. 1. (Color online) Thermionic plasma device Mirabelle:
(a) three-dimensional drawing and (b) schematic.

p = 2 × 10−2 Pa. The peak electron density is approximately
equal to 3 × 1016 m−3 and the peak electron temperature is
approximately equal to 5 eV.

The plasma is diagnosed by a fast camera of the type
Photron FASTCAM SA1.1. It is positioned in front of one
end chamber [Fig. 1(b)], opposite the filament chamber, and
aligned parallel to the plasma column. The camera focus is
set to the middle of the plasma column, i.e., to a distance
of g = 1.5 m. The objective has a diameter of 50 mm, a
focal length of f = 50 mm, and the lens f-number is κ = 1.2
(maximum aperture). The distance between the nearest and
farthest point where an object appears sharp is the depth of
field L. It is given by L = 2gdh(g − f )/[d2

h − (g − f )2] and
yields 4.18 cm. The quantity dh = f 2(κσ )−1 is the hyperfocal
distance with σ = 20 μm being the width of one pixel (the
criterion for the maximum diameter of the circle of confusion).
The camera records the transparent light-emitting plasma by
integration along the lines of sight. For a rough estimation
of the region from where most of the light comes to the
camera, the energy detected by one single pixel is calculated
in dependence on the distance between the camera and a
light-emitting object. Figure 2 depicts the diameter of the
circle of confusion as well as the fraction of emitted energy
that arrives at the camera lens. The width of the light-emitting
object is assumed to be 0.58 mm (the spatial resolution in
the focused object distance), the total emitted energy into the
spherical wave is E0, and thus the fraction of energy at the
camera lens E(z)/E0 decreases proportionally to z−2. Finally,
the energy detected by one pixel is a combination of the z−2

dependence and the diameter of the circle of confusion, i.e.,
E(z)(πr2

cc)−1. It peaks at the focused object distance and has a
width (full width at half maximum) in the range of the depth of
field. For larger light-emitting objects the peak broadens due to
a superposition of neighboring circles of confusion. However,
for structures in the plasma of a typical size of approximately
1 cm the calculation gives a rough estimation of the region.
Consequently, most of the collected light originates from a
region of approximately 30% of the plasma column around
the focused object distance. The camera has a dynamic range
of 12 bits and a maximum frame rate of f = 675 kHz. The
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FIG. 2. (Color online) Localization of the recorded emitted light.
The dash-dotted (black) line shows the radius of the circle of
confusion rcc and the dashed (blue) line is the energy of a light-
emitting object arriving at the camera lens. The energy per pixel is a
combination of both curves (red), i.e., [E(z)/E0](πr2

cc)
−1.
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number of recording pixels on the chip as well as the collected
light decreases with increasing frame rate. As a compromise
between exposure time, temporal resolution, and the number
of pixels, a frame rate of 90 kHz with an exposure time of
11.1 μs is used with a recording chip size of 200 × 200 pixels.

The experiments shown in Refs. [7,8] give evidence that
light fluctuations recorded by the camera are well correlated
with plasma electron density fluctuations. It is demonstrated
that the major part of the light emission originates from
transitions in excited neutral atoms. Generally speaking, the
line intensity of an excited neutral atom is proportional to
njne〈ve(Te)σjk(Te)〉, with nj = n0 being the neutral density,
ne the electron density, and σjk the cross section of a transition
from state j = 0 to k. The neutral density can be regarded
as spatially and temporally constant due to the low ionization
degree in the thermionic discharge (≈0.02%). Furthermore,
temperature fluctuations are negligible in the Mirabelle device
[20]. Neutral atoms, once excited to the first metastable level
by impact with high-energy electrons, can be excited to a next
higher level by impact with low-energy electrons (1−5 eV)
from the plasma bulk. Since the effective mean free path
length of primary electrons is smaller than the length of the
plasma column, the density of primary electrons is already
considerable reduced in the observed plasma volume. This is
supported by the strong correlation between measured radial
ion saturation current profiles and radial light profiles [21].

B. Drift waves in the Mirabelle device

In the magnetized plasma column of the Mirabelle device
midsection drift waves have been extensively studied [22–25].
Typical operation and plasma parameters used for the present
investigations are listed in Table I.

The drift wave instability occurs in the region of density and
temperature gradients. The density profile of the plasma is a
flat-top type with a hollow shape, resulting in a density gradient

TABLE I. Typical plasma and operational parameters of the
plasma device Mirabelle. Quantities with a radial dependence are
given in the plasma center. CF denotes collision frequency.

Parameter Value Unit

column length l 1.4 m
magnetic field B 57 mT
neutral gas pressure pHe 0.19 Pa
electron density ne �3 × 1016 m−3

electron temperature Te ≈1−5 eV
ion temperature Ti <0.05 eV
plasma β 1.5 × 10−5

Debye length λD 85 μm
drift scale ρs 7.15 mm
electron gyroradius rce 0.12 mm
ion gyroradius rci 1.13 mm
ion plasma frequency ωpi 1.1 × 108 rad/s
electron plasma frequency ωpe 9.8 × 109 rad/s
ion cyclotron frequency ωci 1.4 × 106 rad/s
electron cyclotron frequency ωce 1.0 × 1010 rad/s
electron-neutral CF νne 3.1 × 106 s−1

electron-ion CF νei 1.5 × 105 s−1

ion-neutral CF νni 3.1 × 104 s−1

length Ln ≈ −9 cm at a radius r = 3 cm. The temperature
profile is a Gaussian distribution and exhibits a gradient length
LT ≈ 4.5 cm. In contrast to the flute mode instability, drift
waves exhibit a finite parallel wavelength that is basically
determined by the plasma resistivity and the sheaths at the end
plates [26,27]. Here the parallel wavelength of drift waves in a
helium plasma is measured by two axially separated Langmuir
probes positioned on one magnetic field line. The measurement
yields a parallel wavelength of (1.8 ± 0.1) m. The minimal
perpendicular wavelength covered by the camera diagnos-
tic is, according to the pixel resolution of 0.8 mm/pixel,
approximately 3 mm. The covered mode numbers in the
density gradient region (r = 3.2 cm) are m ≈ 1−80 and in the
core plasma (r = 0.5 cm) m = 1−10. The strongest observed
coherent mode numbers are up to m = 4 in a frequency range
between 1 and 15 kHz.

Figure 3(a) shows the frequency spectrum of ion saturation
current fluctuations of a coherent m = 3 drift wave mode at
f = 4.5 kHz. The spectrum of the light fluctuations [Fig. 3(b)]
peaks at the same frequency. The amplitude is smaller relative
to the background level due to the low signal-to-noise ratio
of camera measurements. A snapshot of the light fluctuations
observed in the azimuthal cross section is shown in Fig. 3(c),
which clearly displays an m = 3 mode. The light fluctuation
level correlates with the density and temperature gradient;
it is zero in the center and peaks at r = 3 cm, the region
of maximum density and temperature gradient. Both the
normalized density and light fluctuation level are about 5% in
the maximum gradient region. A time series of an azimuthal
pixel array in the gradient region, taken from the camera
frames, yields the space-time diagram depicted in Fig. 3(d).
The slope of the phase fronts indicates the azimuthal velocity
of the m = 3 mode. Similar space-time diagrams are obtained
from density fluctuation measurements using Langmuir probe
arrays [3–5].
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FIG. 3. (Color online) Spectra of (a) ion saturation current
fluctuations and (b) visible light fluctuations of a coherent m = 3 drift
wave mode. (c) Mode structure of light fluctuations in the azimuthal
cross section. (d) Space-time diagram of an azimuthal camera pixel
array at r = 3 cm.
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The azimuthal propagation of drift waves is proportional to
the electron diamagnetic drift. The frequency measured by a
fixed probe is given by Ref. [28]

ωdw(r,m) = −ezkBTek⊥
eB

(
1 + k2

⊥ρ2
s

) (∂r ln n + ∂r ln Te), (1)

where kB is the Boltzmann constant, Te(r) is the electron
temperature, e is the elementary charge, B is the magnetic
induction, ρs = (miTe/eB

2)1/2 is the drift scale, k⊥(r,m) =
m/r is the perpendicular wave number, and n(r) is the
density. Generally speaking, the wave propagation in the
laboratory frame is Doppler shifted by the E × B drift ωE×B =
−ez∂rφ/B caused by the background potential profile φ(r). In
thermionic discharges the electric potential profile is often
parabolic, resulting in a rigid-body rotation of the plasma
column [24,29]. The potential profile in the Mirabelle device
plasmas depends basically on the magnetic induction B and
the diameter of the limiter [20]. The smaller the diameter of
the limiter, the stronger the radial potential gradient and the
E × B drift are. Finally, the measured drift wave frequency in
the laboratory frame is

ω = ωdw + mωE×B. (2)

II. MODE STRUCTURE OF WEAKLY DEVELOPED DRIFT
WAVE TURBULENCE

Since the camera recordings allow for measurements
of the spatiotemporal drift wave structure in an azimuthal
cross section the camera movies are used to decompose
the fluctuations in a weakly developed turbulent state into
individual mode numbers to study the coupling across the
individual spatial scales. The mode decomposition is done by
the extraction of azimuthal pixel arrays for each radius and
the calculation of the Fourier transform. Figure 4 shows the

Fourier decomposition of a camera frame at one time instant
[Fig. 4(a1)] into its first six modes m = 1−6 [Figs. 4(b1)–(g1)].
An inverse Fourier transform of the first six modes yields,
in a good approximation, the camera frame picture. The
decomposed mode structures show a maximum fluctuation
level at the position of maximum density and temperature
gradient (r = 3 cm), while in the center the fluctuation level
is zero. The m = 2 mode has the largest amplitude, followed
by the modes m = 1 and 3. For larger mode numbers the
amplitude decreases monotonically.

All decomposed modes show a spiral-like structure with
the same winding direction. In time the mode structures
propagate into the counterclockwise direction. The bottom
row of Fig. 4 shows the radial profiles of the squared intensity
of light fluctuations, which corresponds to the energy of the
drift wave fluctuations. The profiles peak at a radial position
and decay to zero toward the center and to larger radii. The
width of the profiles decreases with increasing mode numbers.
For the mode numbers m = 1−5 the radial positions of the
maxima increase with increasing mode number. This is in
agreement with calculations and measurements of drift waves
in cylindrical geometry [30–32].

The mode amplitudes vary with time. An increase of a cer-
tain mode number leads to a decrease of another mode number.
Figure 5 depicts the time evolution of the decomposed modes
m = 1−3 of four consecutive camera frames. During a time
interval τ = 33 μs the total fluctuation energy of each mode
changes. While the amplitude of the mode m = 1 decreases,
the amplitudes of the modes m = 2 and 3 increase. The modes
propagate in the same azimuthal direction, although core
fluctuations propagate more slowly than edge fluctuations.
Thus phase defects of the modes occur periodically at different
radii between the center and the gradient region. For example,
the mode m = 2 splits radially at r ≈ 1.5 cm [Figs. 5(e)
and 5(f)] and then two radially separated azimuthal modes,

x (cm)

y 
(c

m
)

(a
1
)

−3 0 3

−3

0

3
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FIG. 4. (Color online) Fourier decomposition of one camera frame recording weakly developed drift wave turbulence. The first row shows
the light fluctuations in the azimuthal cross section and the second row shows the corresponding radial fluctuation amplitude profiles for (a)
the camera measurement and (b)–(g) the decomposed modes m = 1−6. The propagation direction of the mode structures is counterclockwise.
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Ĩ
/I

0

−3 0 3

−0.5

0

0.5

FIG. 5. (Color online) Time evolution of the decomposed modes
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from the same camera frame.

a m = 2 mode close to the center and one in the gradient
region, propagate independently. As a result, the amplitude
of the outer m = 2 mode increases and the amplitude of the
inner m = 2 mode decreases [Figs. 5(g) and 5(h)]. This is
also observed for the other decomposed modes (for example,
for m = 3 [Figs. 5(k) and 5(l)]). The modes are not pure
azimuthal eigenmodes but exhibit radial components due to
the radial phase defects and the spiral-like mode structure.
Figure 6 shows the average mode-number spectrum of the
spatiotemporal time series (the average over 400 ms). The
spectrum is flat for small mode numbers, m = 1−3, and then
decreases with k−3.0 before it reaches the noise level at about
m = 17. Most of the fluctuation energy is contained in the large
scale modes. The number of interacting modes is low and the
spectrum is not completely flat for low mode numbers (m = 2
is dominant). To distinguish the state of the investigated plasma
from fully developed turbulence, we call it weakly developed
turbulence, as it has been used in Refs. [29,33]. In turbulence
the presence of several mode numbers at the same time allows,
with the use of the camera diagnostic, for the measurement of
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The vertical lines indicate the error bars obtained from the temporal
average of the frequency.

the radial evolution of the frequencies, which differs between
the modes due to the drift wave dispersion.

The time series of the phases of the single Fourier modes at
several radii have been evaluated. The average change of the
phase angle with time corresponds to the average frequency
〈φ(ri)/t〉 = 〈ω(ri)〉. Figure 7 shows the radial evolution
of the frequency for the drift wave modes m = 1−4. The fre-
quencies are Doppler shifted by approximately 1.5 kHz due to
the background potential profile. For all modes the frequency
is about zero close to the center and increases until it reaches
the maximum values at approximately r = 3 cm. This agrees
with the radially different frequencies observed in the temporal
evolution of the decomposed modes in Fig. 5. Below r = 8 mm
the resolution of the azimuthal pixel arrays becomes poor. Here
a possible small misalignment of the center of the azimuthal
pixel arrays may result in an error for the mode decomposition.
Consequently, the error for the calculated frequency is larger
close to the center. For the modes m = 2 and 3 the average
frequency stays roughly constant from r = 3 cm up to larger
radii. For m = 1 and 4 the frequency decreases toward larger
radii. The measurements can be compared to the dispersion
of the Hasegawa-Wakatani model, the standard model for
three-dimensional drift wave turbulence [34,35]. The real part
of the dispersion relation is equal to the Hasegawa-Mima
equation (1). Figure 8 shows the frequencies [Fig. 8(a)]
obtained from the camera measurement and the fits [Fig. 8(b)]
to the (E × B)-corrected Hasegawa-Mima equation (2). The
input parameters ne(r), Te(r), and φ(r) are changed until
the deviation between measured and calculated frequencies
is minimal, while the fitted profiles are kept within the error
bars of the profile measurements [Fig. 8(c)]. The calculated
frequencies are in qualitative agreement with the camera
measurements according to the following facts [see Figs. 8(a)
and 8(b)]. The larger the mode number, the larger the maximum
frequency is. For all modes the frequency increases from
zero close to the center to its maximum in the density and
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temperature gradient region. At small radii the radial position,
where the frequency starts growing, increases with the mode
number. However, there are discrepancies in the quantitative
values. The maximum frequencies of the fit for all modes are
approximately 10% smaller. In the range 0.5 < r < 1.5 cm
the fitted frequencies of the modes, except for m = 1, increase
similarly; in the measurement the frequencies of the modes
are radially separated. At larger radii the fit deviates from
the measurement especially for the modes m = 2 and 3;
while the frequencies of these modes stay almost constant
from r = 3 cm, they decay in the fit toward larger radii. At
r = 4 cm the fitted density profile is outside the error bar of
the measured profile. The discrepancies result from the large
error of the measured frequencies, especially at smaller and
larger radii (Fig. 7). Small deviations of the fitted profiles result
in significant changes of the calculated frequencies since the
drift wave dispersion is very sensitive to ne(r), Te(r), and
φ(r). For radii r > 3 cm in particular the measured potential
and density profile change considerably. Furthermore, the
measured frequencies may be blurred in the radial and axial
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FIG. 9. (Color online) Phase differences of decomposed modes
over the time of the transient.

directions due to the line of sight integration of the camera
diagnostic. Also, the temporary locking of modes described
in the following section may change the averaged frequency
resulting in deviations from the dispersion relation.

A. Nonlinear coupling

The Fourier mode decomposition of the camera frames
allows for calculating the phases of each Fourier mode
component for each time instant. After subtraction of phases
between different modes, coupling effects in weakly developed
turbulent states become visible. Figure 9 depicts the differ-
ences between various mode phases in time measured at the
radius r = 3.2 cm. In time three different regimes of coupling
are observed: from 0 to 1.9 ms, weak turbulence; from 1.9 to
3.4 ms, temporary synchronization; and from 3.4 to 4.4 ms,
turbulence. Curve (1,2), for the modes m = 1 and 2, exhibits a
small ripple, which occurs with a certain beat frequency. The
beat frequency is a sign of large detuning between coupled
oscillators [36] and it results in a periodic pulling on the
oscillators frequencies [37].

For other mode combinations beats are also observed,
but, in addition, temporary synchronization occurs, indicated
by a constant phase difference. Such interplay between
periodic frequency pulling and transient phase locking can
be considered an identifying characteristic of nonlinear mode
coupling in weakly developed turbulence and can be simulated
using the Kuramoto model. The Kuramoto model has served
as a paradigm for interacting limit cycle oscillators with weak
coupling in a dissipative system [12]. The system consists of
N interacting oscillators, where each of them is perturbed by
the others. The perturbation is added in the angular term of the
harmonic oscillator Hamiltonian in action angle coordinates

dθm

dt
= ωm +

N∑

n=1

Km,n sin(θm − θn), (3)

where ωm is the natural frequency of oscillator m and Km,n

are the elements of the perturbation strength matrix given by
the other oscillators. The perturbation must have a value of
Km,n < 1 to ignore terms higher than O(2). The dynamics of
the Kuramoto system can be visualized by considering two
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FIG. 10. (a) Trajectories of the two-oscillator Kuramoto model
with fixed points [ω = ω2 − ω1 = 0,

∑
K = K1,2 + K2,1 = 1

(solid line)] and without fixed points [ω = {1.1, − 1.1}, ∑
K = 1

(dashed and dotted lines)]. Evolution of the phase differences �

between two oscillators and the coupled signal S for (b) and (c) the
phase locked case and (d) and (e) the quasiperiodic case (periodic
pulling).

interacting oscillators, which yield an equation for the phase
difference ψ = θ2 − θ1:

dψ

dt
= (ω2 − ω1) − (K1,2 + K2,1) sin(ψ). (4)

Figure 10(a) shows three trajectories of Eq. (4) in the phase
space {ψ,dψ/dt}. It exhibits attracting fixed points (solid
black circle) as long as ω2 − ω1 < K1,2 + K2,1. Figures 10(b)
and 10(c) show a numerical solution of Eq. (4) for the time
evolution of the phase difference ψ for the case in which a
fixed point is present. It is found that the phase difference
rapidly converges to a constant value and the coupled signal
of both oscillators is periodic. When ω2 − ω1 > K1,2 + K2,1

the trajectory is larger than dψ/dt = 0 and there are no fixed
points in phase space [Fig. 10(a)]. If the trajectory is then near
the axis, the phase difference changes on two different time
scales: If dψ/dt is close to zero the phase difference changes
slowly and is almost constant followed by an abrupt jump,
during dψ/dt � 0.

This phase slippage appears periodically and the oscillators
exhibit a quasiperiodic motion [Figs. 10(d) and 10(e)]. This is
what is often called periodic pulling [37–39]. If the trajectory
is at values much larger than dψ/dt = 0 due to a higher
frequency difference, the periodic slippage becomes more and
more frequent until the phase difference becomes a straight
line with a constant slope and the oscillators act independently.
The parameter space {ω2 − ω1,K1,2 + K2,1} for the region of

entrainment has a symmetric, tonguelike shape (an Arnol’d
tongue). If higher-order terms are taken into account in
Eq. (3), deviations in the tongue symmetry are observed due
to nonlinear effects. Note that for the case of a simple forced
oscillator Eq. (4) becomes [40]

dψ

dt
= (ωf − ω0) − Kf,0 sin(ψ), (5)

where ψ = θf − θ0 is the phase difference between the
oscillator and the periodic forcing term and Kf,0 is the forcing
amplitude. This equation can be used as a simple model for the
quasiperiodicity by external entrainment and the observation
of symmetric tongues at low forcing amplitudes as observed in
coherent states in magnetized plasma columns [38,41]. Here
the entrainment tongues become asymmetric close to moderate
forcing amplitudes.

Phase locking has also been studied in systems exhibiting
chaotic dynamics (in Ref. [42], for example, the Rössler system
was used) where phase slippage was also observed. In these
dynamical systems the phase slippage is nonperiodic. Instead
it appears at erratic times, apparently being stochastic. Exper-
iments in plasma discharge tubes [43] and magnetized plasma
columns in weakly developed turbulent states [41,44,45] have
shown similar behavior.

The simplest system with erratic phase slippage is a
Langevin-type extension of the Kuramoto model

dθm

dt
= ωm + ξ (σ,t) +

N∑

n=1

Km,n sin(θm − θn), (6)

where ξ (σ,t) is a noise term and σ is its variance due to
a Gaussian probability distribution with 〈ξ (σ,t)〉 = 0 and
〈ξ (σ,t)ξ (σ,t ′)〉 = δ(t − t ′). As the variance is larger, phase
slippage becomes more frequent [43] until the phase difference
resembles a random walk. An example with six interacting
oscillators, all connected to each other, can be seen in Fig. 11(a)
. Here the coupling coefficients are generated by a random
matrix according to a Gaussian probability distribution and the
variance is changed to simulate the three regimes observed in
the measurement. The only boundary condition is a reduction
of the coupling coefficients of the m = 1 mode by a factor
of 0.1 since the measurement exhibits weak coupling of the
m = 1 mode with other modes. It is found that the experimen-
tally observed temporal evolution of the phase differences in
the three regimes can be reproduced by applying the random
matrix to the Kuramoto equation.

Recent studies in network dynamics have led to the search
for methods to infer the network topology of interacting
oscillators. We have applied the method proposed in Ref. [46]
for inferring the network topology [Fig. 11(b)]. In this way
the coupling matrix Km,n is calculated from Eq. (3) from the
measured time series of the phase differences between the
modes by an error minimization procedure. Some experimen-
tally observed features of the growth of the phase difference
between modes can be reproduced, e.g., the similar growth
between the modes (2,3) and (2,5). There is a high stability of
mode pairs (3,4), which is also observed in the measurement
[Fig. 9].

Using the Kuramoto model as an energy dissipative system
for modeling the internal phase coupling in drift wave
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FIG. 11. (Color online) Calculated phase differences due to
the Kuramoto model for five interacting oscillators with arbitrary
coupling constants derived from (a) a random coupling matrix and
(b) a coupling matrix obtained from the measurements.

turbulence yields considerable agreement with the measure-
ment. Several open-loop control experiments of drift waves
demonstrate that an artificially driven drift wave mode couples
to certain single drift wave modes [4,25,41,44,45,47,48].
Nonlinear coupling effects such as frequency pulling, synchro-
nization, and Arnol’d tongues have been observed. The parallel
currents j‖ are the important link in the coupling chain between
the artificial and driven modes [4,41,44]. If a single mode
shows synchronization to an external artificial mode, then also
two interacting modes would have the tendency to mutually
synchronize. Consequently, it is assumed that fluctuations of
the parallel currents, caused by one drift wave mode, couple to
potential and density fluctuations of another drift wave mode
according to the equation system for density and potential
fluctuations of the Hasegawa-Wakatani model [34,49]. Indeed,
Fig. 9 demonstrates internal periodic pulling and synchroniza-
tion of drift wave modes in weakly developed turbulence. We
assume that the coupling matrix Km,n can be regarded as the
individual coupling strength between the parallel currents of
the single drift wave modes. The noise term ξ may represent
the perturbations from different plasma fluctuations. Fur-
thermore, temporary synchronization of modes in turbulence
may influence the cross-field transport. However, for precise
conclusions more well-defined investigations need to be done.

III. CONCLUSION

In the present work we have investigated spatiotemporal
drift wave dynamics by measuring visible light fluctuations in
the azimuthal cross section of a linear magnetized plasma. It
is demonstrated that the Fourier decomposition of the cross
section is a useful tool for the investigation of the dynamics of
coupled modes in turbulence. The evolution of the fluctuation
amplitude of each mode can be analyzed in temporal and radial
dimension. Based on this procedure, the radial evolution of
the frequency of the decomposed drift wave modes has been
evaluated from measurements in weakly developed drift wave
turbulence. It shows that the measurements are in agreement
with calculations of the real part of the Hasegawa-Wakatani
dispersion relation. Observed radial breaks of the mode
structure are related to the radial change of the frequency.
The modes exhibit azimuthal and radial components due to
the radial breaks and the spiral-like mode structure.

In Ref. [50] it is shown that spiral structures are a general
phenomenon in magnetized rotating plasmas. However, the
origin of the spiral-like mode structure in the present work is
ambiguous. Using the Mirabelle device and other thermionic
plasma devices, spiral structures have been observed for
flutelike modes, where centrifugal effects are believed to be re-
sponsible [51–53]. For drift waves, spiral-like structures have
been observed in collisional plasmas [54]. Here the explanation
is a radial dependence of the Coulomb collisionality. (Electron
collisions determine the phase shift between potential and
density fluctuations as well as the E × B drift advection.) In
the present work, the collisionality is low νei/ωci ≈ 0.05; in
addition, the core fluctuations lag behind the edge fluctuations,
in contrast to the observations in Refs. [50–54]. However, the
observed spiral structure can also be a measurement artifact.
Since the camera is not a pure two-dimensional diagnostic,
it maps not only the azimuthal cross section but the three-
dimensional structure of drift waves due to the line of sight
integration of light (approximatively one-third of the plasma
column). In this way, the view along the magnetic field,
i.e., along the parallel drift wave structure, may distort the
azimuthal mode structure, resulting in spiral arms of maxima
and minima.

The coupling of modes is studied by evaluating the temporal
dependence of the phase differences between different mode
numbers. It turns out that for certain temporal intervals
modes are locked and for other intervals modes are unlocked.
The effect of synchronization and desynchronization has
been investigated by a simple model of nonlinearly coupled
oscillators. Synchronization and desynchronization of coupled
oscillators are found only if the additional noise level increases
above a certain threshold. Below that level, the oscillators stay
synchronized as soon as synchronization sets in. In drift wave
turbulence, the noise may arise from the large number of other
modes present or from fluctuations due to other instabilities in
the plasma column, e.g., beam-plasma interactions [55,56].
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[47] D. Block, C. Schröder, T. Klinger, and A. Piel, Contrib. Plasma

Phys. 41, 455 (2001).
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