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Laser-driven plasma beat-wave propagation in a density-modulated plasma
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A laser-driven plasma beat wave, propagating through a plasma with a periodic density modulation, can
generate two sideband plasma waves. One sideband moves with a smaller phase velocity than the pump plasma
wave and the other propagates with a larger phase velocity. The plasma beat wave with a smaller phase velocity
can accelerate modest-energy electrons to gain substantial energy and the electrons are further accelerated by the
main plasma wave. The large phase velocity plasma wave can accelerate these electrons to higher energies. As
a result, the electrons can attain high energies during the acceleration by the plasma waves in the presence of a
periodic density modulation. The analytical results are compared with particle-in-cell simulations and are found
to be in reasonable agreement.
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I. INTRODUCTION

Acceleration of electrons by laser-driven plasma waves to
ultrarelativistic energies over a short distance has emerged
as an attractive alternative to conventional accelerators [1–7].
There are three major types of laser-driven plasma-based
accelerators: the resonantly laser-driven plasma waves for
electron acceleration, the laser wake-field accelerator, and the
plasma beat-wave accelerator [8–15]. An intense laser can
create a plasma wave that would propagate with a phase
velocity equal to the group velocity of light in a plasma.
This density wave would have a sizable longitudinal electric
field component that would also propagate at nearly the
speed of light and be ideal for accelerating electrons over
extremely short distances [16,17]. The plasma wave can be
driven either by beating two copropagating lasers, differing
in frequencies by the plasma frequency, or by a single
short-pulse laser of duration equal to the plasma period.
In the beat-wave scheme, two lasers exert a longitudinal
ponderomotive force on the electrons that resonantly drives
a large-amplitude plasma wave with a potential much higher
than the ponderomotive potential. The plasma wave can grow
significantly when the resonance condition between the plasma
frequency and laser frequencies is fulfilled. The plasma wave
can accelerate the preaccelerated electrons to high energy
in a low-density plasma (n � 0.1nc, where nc is the critical
density for the laser) [18,19]. Several experiments, however,
reported highly relativistic electron generation from the plasma
itself, without any external preacceleration. Koyama et al. [20]
have performed an experiment to demonstrate the acceleration
of a quasimonoenergetic electron beam by trapping elec-
trons in a plasma wave. Fritzler et al. [21] have observed
55-MeV electrons from gas jet targets irradiated by 1-μm,
(3 × 1018)-W/cm2, 70-fs laser pulses at an electron density
of n ∼ 2.5 × 1019 cm−3. Lin et al. [22] have investigated the
electron acceleration in two counterpropagating plasma waves
and found that two counterpropagating plasma waves enhance
the acceleration of the trapped electron.
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Since a plasma wave is sensitive to density variations, which
change the plasma frequency, the existence of a density ripple
in the form of an ion wave excited by stimulated Brillouin
scattering (SBS) could greatly affect the coupling of plasma
oscillations and generate two sideband plasma waves. One
sideband moves with a lower phase velocity than the pump
plasma wave and the other with a higher phase velocity.
Kaw et al. [23] treated the mode-coupling problem in this
connection. This process can be used to transfer energy to
the main body of the electrons from plasma waves generated
by the density ripple. Darrow et al. [24] have presented a
model for beat-wave excitation of electron plasma waves in
a rippled density plasma. The temporal development of the
beat wave and coupled modes was analyzed and consequently
predicted the beat-wave saturation mechanism in cold as well
as in warm plasmas [25]. Leemans et al. [26] have examined
the nonlinear dynamics of the laser-driven plasma beat wave
in the presence of a strong short-wavelength density ripple
using the relativistic Lagrangian-oscillator model. Suk et al.
[27] have proposed a type of density transition for plasma
wake-field acceleration and found that the plasma electrons can
be trapped due the proposed density transition. Kim et al. [28]
have studied the laser wake-field acceleration in a plasma
with a sharp density ramp. Their particle-in-cell simulations
revealed substantial enhancement in electron energy due to the
sudden change in the phase velocity of the plasma wave.

In this paper we study the plasma beat-wave acceleration
of electrons in the presence of a density ripple (or a sound
wave or periodic density modulation). The density ripple can
be in the plasma prior to launching the main laser pulse.
The sound wave can be generated internally via SBS of
a prepulse. The density ripple couples with the oscillatory
velocity of electrons to produce nonlinear currents driving
sideband plasma waves. Thus the main plasma wave (ωp,�k)
generates two sideband plasma waves of the wave vectors
�k + �q (slow wave) and �k − �q (fast wave) in the presence
of a density ripple of wave vector �q. The plasma wave of
low phase velocity accelerates the modest-energy electrons
to gain substantial energies. The electrons are accelerated to
high energies by the main plasma wave. They can be further
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accelerated to higher energies by the plasma wave of higher
phase velocity. The theoretical treatment is studied in Sec. II,
where the expression for plasma-wave generation is derived in
the presence of a periodic density modulation. Consequently,
the formulation for electron acceleration by a plasma beat
wave in the presence of two other daughter waves is given
and the analytical results are discussed in Sec. III. To solve
the relativistic equation of motion for a set of electrons and
ions, we use a two-dimensional particle-in-cell simulation
code using an object-oriented particle-in-cell method. The
plasma is assumed by macroparticles that have three velocity
components and contributes to charge and current density
on two-dimensional spatial grids. The particles follow the
equation of motion in each time step. The electron energy gain
and the energy spectra are discussed in Sec. IV. A summary is
given in Sec. V.

II. PLASMA-WAVE GENERATION

Let us consider a plasma with a periodic density modulation
and the electron temperature Te. The electron density in the
plasma is n0

0 + nq , where nq = Re[n0
q exp(iqz)] is the density

with a ripple and q is the propagation vector of the ripple
wave. Such a density modulation or ripple can be observed in a
tunnel-ionized plasma through stimulated Brillouin scattering,
coincidentally with a beat excited plasma wave. Two collinear
laser beams of large amplitude propagate in a plasma with
electric fields

�E01 = Rex̂A01 exp[−i(ω01t − k01z)], (1)
�E02 = Rex̂A02 exp[−i(ω02t − k02z)], (2)

where |A01|2x=0 = A0
01 exp(−x2/r2

01), |A02|2x=0 = A0
02

exp(−x2/r2
02), ω01 − ω02 ≈ ωp, ω01 � ωp, ω02 � ωp, ω01 and

ω02 are the laser frequencies, �k01 and �k02 are the wave vectors
of the laser beams, and r01 and r02 are the laser spot sizes. They
produce oscillatory velocities �υ0j = e �E0j /miω0j (j = 1,2)
and exert a ponderomotive force �Fp = −(e/2c)(�υ01 × �B∗

02 +
�υ∗

02 × �B01) = ẑiek0φp0 exp[−i(ω0t − k0z)] on them, where
φp0 = eA01A02/2mω01ω02, ω0 = ω01 − ω02, �k0 = �k01 − �k02,
�B0j = c�k0j × �E0j /ω0j , and −e and m are the electron charge
and mass, respectively. Because of the large mass and the
slow response of the ions, we consider them immobile. The
ponderomotive force drives a large-amplitude beat wave in a
plasma. We write the Eulerian equation for the plasma-wave
electric field driven by the ponderomotive force of the beating
laser pumps as [Eq. (1) of Ref. [24]]

Ëp + ω2
pEp + υ2

thE
′′
p = 1

2A01A02ω
2
0 sin(�kz − �ωt), (3)

where ωp = ω0
p[1 + Re{(n0

q/n0
0) exp(iqz)}]1/2, ω0

p =
(4πn0

0e
2/m)1/2 is the unperturbed plasma frequency,

υ2
th = 3Te/m, Te is the electron temperature, and �k = kp

and �ω = ωp are the frequency and wave-number differences
of the two laser pumps. Under the cold plasma approximation,
we set υth ≈ 0 and the solution of Eq. (3) can be in the

form [25]

�Ep = ReẑA0(t) exp

[
−i

({
1 + Re

[
nq

n0
0

exp(iqz)

]}1/2

ω0
pt

− kpz + θ0

)]
, (4)

where θ0 is the initial phase of the plasma beat wave. The
given solution of Eq. (3) requires a small value of nq/n0

0.
We follow the theory given by Rosenbluth and Liu [19], the
large-amplitude plasma beat wave grows linearly in time as
A(t) = A(0) + (ωp/2)φp0t, where A(0) is the plasma-wave
amplitude at time t = 0 (which can be characterized by
the beat-wave driver strength). However, for the other case
(without density modulation), the plasma beat wave also grows
secularly with time as predicted by Darrow et al. [25]. The
early-time behavior is similar to that in the density-modulated
case. However, at later times the saturation of the plasma beat-
wave amplitude may be expected due to the relativistic mass
detuning, but some appropriate propagation time is necessary
to consider this effect. The early-time secular growth of the
plasma beat wave has been adopted in the present analysis,
where the main concern is to determine the role of the phase
velocities of the three plasma waves that play an important
role in electron energy enhancement during acceleration.

Due to the density ripple (mildly varying over the plasma
period), the beat wave is frequency modulated with amplitude
modulation n0

q/2n0
0 in the z space. Because of the nonlinear

interaction of an electrostatic wave with the rippled plasma
(if the amplitude of the modulation is small), the pump
plasma wave generates two significant sidebands during the
interaction with a density ripple. The self-consistent fields
of the plasma-wave sideband can be obtained by considering
the amplitude of the modulation as a small parameter and
expanding the field �Ep as

�Ep = ẑA0(t)

(
2 cos

(
ω0

pt − kpz + θ0
) − n0

q

2n0
0

ω0
pt

{
sin

[
ω0

pt

− z(kp− q) + θ1
] −sin

[
ω0

pt− z(kp+ q) + θ2
]})

, (5)

where θ1 = θ2 ≈ θ0 + π/2 and the values of θ0 lie between
0 and π/2. We neglect the higher-order harmonics and keep
only lower-order sidebands because of the small modulation
amplitude. The amplitude of the lowest-order sideband is seen
to grow in time as in a parametric oscillator.

III. ELECTRON ACCELERATION

The electron momentum in the presence of the plasma beat
wave and the sidebands is governed by the equation

d �p
dt

= −e �Ep. (6)

Equation (6) is an ordinary differential equation. We
solve this numerically by the Runge-Kutta method to have
the electron energy γ = (1 + p2

z/m2c2)1/2 as a function of
the propagation distance z for optimum value of the initial
phase θ by assuming the initial electron energy to be γ0 and
the electron to have the momentum pz0 = mυz0, where υz0 is
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the initial electron velocity in the z direction and c is the speed
of light in vacuum. Throughout this paper, time and distance
are normalized by 1/ω0

p and c/ω0
p, respectively. Velocity,

momentum, and energy are normalized by c, mc, and mc2,
respectively, and the field amplitudes are normalized as a02 →
eA02/mω02c, a01 → eA01/mω01c, and a0 → eA0/mω0

pc. The
laser parameters are as follows: a01 = a02 = 1 (corresponding
to the peak laser intensity I01 ≈ I02 ≈ 1.37 × 1018 W/cm2),
the wavelength of the first laser considered is λ01 ∼ 1 μm,

the wavelength of the second laser has been chosen according
to the resonant condition for beat-wave excitation, and the
initial waist size is r01 ≈ r02 ∼ 8.2 μm. The uniform com-
ponent density is n0

0 ≈ 1019 cm−3. The amplitude of periodic
modulation is 5% (n0

q/n0
0 = 0.05) and 10% (n0

q/n0
0 = 0.1) of

the uniform plasma density. The ripple wave vector is chosen as
q = 0.2kp,0.5kp and pz0 = 1.125mc,3mc. We examine these
numerical parameters for an optimum value of the initial phase
of the pump wave to solve the above differential equation.
The analytical and simulations results are presented in the
following.

IV. NUMERICAL RESULTS

A. Analytical results

Figure 1 shows the maximum electron energy as a function
of the initial phase of the pump plasma beat wave for
a01 = a02 = 1, n0

0 ≈ 1019 cm−3, n0
q = 0.1n0

0 (with density
ripple), n0

q = 0 (without density ripple), q = 0.2kp, and pz0 =
1.125mc.

The maximum electron gain during acceleration is sensitive
to the initial phase of the plasma beat wave. For a certain
initial phase of the beat wave, the electrons enters the
accelerating phase and gain sufficient energy and hence attains
the maximum energy for an optimum value of the initial phase
of the plasma beat wave. The electron energy gain is much
larger in the presence of a density ripple for a certain initial
phase of the plasma beat wave. Our results show that the
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FIG. 1. Maximum electron energy γmmc2 (MeV) as a function of
the initial phase of the plasma beat wave θ0 (rad) at a propagation time
of 16/ω0

p. The numerical parameters are a01 = a02 = 1 and λ01 ∼
1 μm, the wavelength of the second laser has been chosen according
to the resonant condition for beat-wave excitation, r01 ∼ 8.2 μm,

n0
0 ≈ 1019 cm−3, n0

q = 0.1n0
0 (with density ripple), n0

q = 0 (without
density ripple), q = 0.2kp , and pz0 = 1.125mc.
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FIG. 2. Electron energy γmc2 (MeV) as a function of the propa-
gation time 1/ω0

p with plasma density ripple (n0
q = 0.1n0

0, top curve)
and without density ripple (n0

q = 0, bottom curve) for a01 = a02 = 1,
n0

0 ≈ 1019 cm−3, q = 0.2kp , and pz0 = 1.125mc.

electron energy is maximized for particular values of the initial
phase of the beat wave (0, 2π ) for both cases. The change in
the initial electron phase decreases the electron energy due to
wave-particle dephasing. The energy of the electrons over time
may be further change because electrons have varying initial
phases and speeds relative to the wave.

The electron energy gains are presented in Fig. 2 for
numerical parameters that are different from those given above.
The effect of a density ripple could be seen from these results.
The electron experiences a force by the plasma waves and
moves toward the axis of the wave. Initially, the electrons
are accelerated by the main plasma wave. As time passes, the
slow plasma wave traps the energetic electrons and accelerates
them further. The fast plasma wave accelerates the energetic
electrons to higher energies.

In the given example, the electron gains about 75 MeV
of energy (at a propagation time of 16/ω0

p) in the presence
of a density ripple (top curve) and about 25 MeV of energy
(at a propagation time of 16/ω0

p) without a density ripple
(bottom curve), which implies that the density ripple effect
is significant. This is because there is only one pump plasma
wave that is responsible for acceleration of the electron in the
absence of a density ripple, while if a density ripple exists in the
plasma, the pump plasma wave generates two sideband plasma
waves that can increase the electron energy further. Hence the
electron can attain higher energy during acceleration by the
plasma wave in the presence of a density ripple.

The effect of the wave number of the ripple wave in the
presence of a density modulation could be seen in Fig. 3(a).
We have plotted the electron energy gain for different wave
numbers of the ripple wave (q = 0.2kp,0.5kp). The electron
gains less energy for a larger wave number of the ripple wave
(q/k = 0.5, top curve). The electron can gain higher energy by
increasing the ripple spacing to speed up the wave. The initial
energy of the electrons can also affect the electron energy gain
during acceleration. Figure 3(b) shows the electron energies
for different initial electron energies (pz0 = 2mc,3mc) in the
presence of a density ripple. In this mechanism, the electron
energy also increases with the initial electron energy. It is
shown that if the electron has a sufficient initial energy to
interact with the plasma waves, it can gain a large amount of
energy during acceleration. The analytical result shows that
the electron gains about 100 MeV of energy (at a propagation
time of 16/ω0

p) for an initial electron energy of pz0 = 3
(top curve).
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FIG. 3. Electron energy γmc2 (MeV) as a function of the
propagation time 1/ω0

p in the presence of a plasma density ripple for
(a) different wave numbers of the ripple wave, q/k = 0.5 (top curve)
and q/k = 0.2 (bottom curve), and (b) different initial energies of
the electrons, pz0 = 3mc (top curve) and pz0 = 2mc (bottom curve).
Other numerical parameters are a01 = a02 = 1, n0

0 ≈ 1019 cm−3,
n0

q = 0.1n0
0, and q = 0.2kp .

B. Two-dimensional particle-in-cell simulations

To validate the theoretical model we perform two-
dimensional (2D) simulations using a 2D particle-in-cell
(PIC) code. The simulation parameters are the same as those
used previously for the analytical calculation. Two lasers are
launched from the left boundary and propagate in a preformed
plasma. A moving window is used to simulate a 50-μm-long
plasma system to observe the simulation results. The physical
dimension of the simulation is 50 × 50 μm2, where the grid
size �x = λ01/20 and �y = λ01/4 is chosen for the number
of grids in a 2D simulation box (Nx , Ny) = (1000, 200). The
number of particles per cell is N = 4 in 2D simulations. The
time step dt is calculated by the correlation using the Courant
theorem during the simulations. The amplitudes of the periodic

FIG. 4. (Color online) Electron energy γmc2 (MeV) as a function
of the propagation time 1/ω0

p with plasma density ripple for
10% density modulation [n0

q = 0.1n0
0, gray (red) particles] and 5%

density modulation (n0
q = 0.05n0

0, black particles). Other simulation
parameters are a01 = a02 = 1, n0

0 ≈ 1019 cm−3, pz0 = 1.125mc, and
q = 0.2kp ,

dN
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FIG. 5. (Color online) Energy spectra at the propagation time
of 16/ω0

p with plasma density ripple for 10% density modulation
[dashed (red) curve] and 5% density modulation [solid (black) curve].
Other simulation parameters are the same as those of Fig. 4.

density modulation are 10% (n0
q = 0.1n0

0) and 5% density
modulation (n0

q = 0.05n0
0) of the uniform plasma density.

The results of the PIC simulations are shown in Fig. 4,
which represents the energies of the macroparticles during
acceleration in the presence of different ripple amplitudes
[10%, gray (red) particles and 5%, black particles]. The
electron energies are observed up to time of the order of
16/ω0

p. The main purpose of this simulation is to analyze the
effects of plasma density modulation on the electron energy
gain by a plasma beat wave. To observe this, we consider
two cases of different amplitudes of density modulations. The
simulations based on the PIC code show the electron energy
gain (in time of 16ω0

p) to be almost the same as we observed
from our analytical solutions for the same amplitude of the
density ripple (10%). The simulation results also indicate that
the small amplitude of the density modulation reduces the
electron energy gain during acceleration. For stronger density
modulation, the stronger sidebands can be excited. In this case,
the strong trapping of the electrons in the coupling waves
leads to electron energy enhancement. To confirm this, we
show the energy spectra observed in simulations for the same
parameters as those of Fig. 4. Figure 5 shows the corresponding
energy spectra of electrons for different percentages of density
modulations [10%, gray (red) curve and 5%, black curve] at the
same time of 16/ω0

p. The deviation (5%–10%) of the amplitude
of the density modulation significantly reduces the number of
accelerated particles but enhances the considerable electron
energy gain during acceleration. The accelerated electrons
from a rippled plasma have average energies of 72 MeV (for
10% amplitude of the ripple density) and 56 MeV (for 5%
amplitude of the ripple density). However, the stronger plasma
density modulation is reasonable for energetic electron beam
generation (also predicted from analytical results). The smaller
plasma density modulation is desirable for an adequate number
of accelerated particles.

V. CONCLUSION

We studied the relativistic acceleration of electrons by
the plasma beat wave in the presence of a periodic density
modulation. The pump plasma beat wave excites two sideband
plasma waves during the interaction with a density ripple
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existing in a plasma. These three plasma waves of different
phase velocities can accelerate electrons to high energies
in a stepwise way. Our study also shows that the electron
can gain more energy by increasing the ripple spacing to
speed up the wave. Furthermore, the electron energy gain
is sensitive to the initial phase of the pump wave. The
electron energy can also be maximized by optimizing the
initial phase of the plasma beat wave due to the wave-particle
phase matching. The initial electron energy plays an important
role in gaining energy during acceleration. The higher initial
electron energy increases the electron energy gain. If the
electrons have considerable initial energies, the electrons’
velocity can be comparable to the phase velocity of the plasma
wave, resulting in a higher energy gain during acceleration.
We also validate the theoretical treatment by the 2D PIC

simulations. The simulation results revealed that a density
ripple in a plasma leads to efficient acceleration of electrons
by a plasma beat wave. The requisite amplitude modulation
of plasma density enhances the electron energy gain during
this mechanism. The simulation results are in good agreement
with analytical results. The acceleration of the electrons by
the plasma wave in the presence of a density ripple may be
undesirable in laser-driven fusion, but it would be good for
plasma accelerators.
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