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Elastic turbulence in a curvilinear channel flow
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We report detailed quantitative studies of elastic turbulence in a curvilinear channel flow in a dilute polymer
solution of high molecular weight polyacrylamide in a high viscosity water-sugar solvent. Detailed studies of
the average and rms velocity and velocity gradients profiles reveal the emergence of a boundary layer associated
with the nonuniform distribution of the elastic stresses across the channel. The characteristic boundary width
is independent of the Weissenberg number Wi and proportional to the channel width, which is consistent with
the findings our early investigations of the boundary layer in elastic turbulence in different flow geometries. The
nonuniform distribution of the elastic stresses across the channel and appearance of the characteristic spatial
scales of the order of the boundary layer width of both velocity and velocity gradient in the correlation functions
of the velocity and velocity gradient fields in a bulk flow may suggest that excessive elastic stresses, concentrated
in the boundary layer, are ejected into the bulk flow similar to jets observed in passive scalar mixing in elastic
turbulence observed recently. Finally, the experimental results show that one of the main predictions of the theory
of elastic turbulence, namely, the saturation of the normalized rms velocity gradient in the bulk flow of elastic
turbulence contradicts the experimental observations both qualitatively and quantitatively in spite of the fact that
the theory explains well the observed sharp power-law decay of the velocity power spectrum. The experimental
findings call for further development of theory of elastic turbulence in a bounded container, similar to what was
done for a passive scalar problem.
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I. INTRODUCTION

The addition of small amount of long polymer molecules
into a fluid makes it elastic and capable of storing elastic
stresses that may strongly alter flow properties [1]. First of
all, the elastic stresses generated by the polymer stretching
in the flow becomes the main source of nonlinearity in the
polymer solution flow at low Reynolds numbers (Re). As a
result, an elastic instability shows up when the elastic energy
overcomes the dissipation due to polymer relaxation. The ratio
of the nonlinear elastic term to the linear relaxation is defined
by the Weissenberg number Wi [1], which is the main control
parameter in the problem, and the elastic instability occurs in
a shear flow with curvilinear trajectories at Wic � 1. Above
the purely elastic instability, a path to a chaotic flow in a form
of irregular flow patterns at Wi > Wic was studied in three
flow geometries: Couette flow between cylinders, von Karman
swirling flow between two disks, and flow in a curvilinear
channel [2–4]. Further increase of Wi at vanishingly small
Re leads to the most remarkable phenomenon discovered
recently experimentally [2] and then studied during the last
decade in an increasing number of experimental [3–8] and
theoretical [9–12] papers, namely “elastic turbulence.” It is
spatially smooth and random in time flow, which is driven by
strong polymer stretching and resulting elastic stresses and
is observed at sufficiently large Wi and at vanishingly small
Re. Many properties of the elastic turbulence regime, namely,
statistics of velocity and velocity gradient fields, spatial
and temporal velocity correlation functions and power-law
behavior of velocity power spectrum, a new length scale (the
boundary layer width and its properties), scaling, and statistical
properties of torque and pressure fluctuations, were observed
and investigated experimentally in von Karman swirling flow
between two disks and only a few of them theoretically and
numerically [7].

On the other hand, a detailed description of similar proper-
ties in a channel flow is lacking, though elastic turbulence in a
curvilinear channel was used to demonstrate its effectiveness
in mixing in macro- as well as in microchannels [3–5,13,14].
In a 3 mm2 square cross-section curvilinear channel the
longitudinal and transverse flow velocity components were
measured by a laser Doppler anemometer at the bend N = 12
near the middle of the half-ring at a fixed value of Wi, about
twice larger than at the onset of the elastic instability. The
power spectra of the longitudinal and transversal velocity
components show a broad region of an algebraic decay f −3.3

in the frequency domain. The rms of velocity fluctuations
were 0.09〈V 〉 and 0.04〈V 〉 for the longitudinal and transverse
components, respectively, where 〈V 〉 is the mean longitudinal
velocity. Since the power spectra were measured at a point
where the mean velocity was more than 10 times higher
than its rms value, the Taylor hypothesis could be used to
transfer the power-law decay in the frequency domain to
the wave-number k domain. Then the measured power-law
decay in the frequency spectrum f −3.3 gave the wave-number
spectrum k−3.3, which is very close to the scaling exponent
found in the von Karman swirling flow between two disks
in both frequency and wave-number domains [2,7]. Other
measurements of the flow velocity were carried out in a
microchannel of a similar design as the 3-mm channel but
scaled down 30 times compared with the macrochannel version
[5,13]. In order to define the onset of the elastic instability, both
the longitudinal and the transverse velocity field components
were measured by microscopic particle image velocimetry
(micro-PIV) as a function of the pressure drop �p along the
channel. The resulting flow resistance, defined as �p/V̄ , as
a function of the pressure drop shows sharp but continuous
change in the dependence that determines the instability onset.
A similar dependence is observed on the plot of V rms

θ as
well as V rms

r versus �p [5,13]. Temporal dependencies of
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the longitudinal velocity as well as its correlation function
were also measured and the velocity correlation time was
determined. By using 0.2-μm fluorescent particles streamwise
vortices were visualized by means of horizontal confocal
scanning microscopy in the middle plane of the channel [5,13].
In the recent detailed studies of mixing in a curvilinear channel
of 1 mm2 square cross section using elastic turbulence, some
partial characterization of the velocity field necessary for
quantitative characterization of mixing, namely, both average
〈Vr〉 and rms V rms

r radial and 〈Vθ 〉 and V rms
θ longitudinal

velocity profiles across the channel, dependence of 〈Vθ 〉 on
Wi, profiles of rms of longitudinal ∂Vθ/∂r , and radial ∂Vr/∂r

velocity gradients, was carried out [14].
A theory of elastic turbulence was developed and published

in Ref. [15] right away after publication of the experimental
results [2]. The main concern of the theory was to explain the
key experimental observation in elastic turbulence, namely,
the sharp algebraic decay of the velocity power spectrum with
the scaling exponent δ between −3.3 and −3.6 [2,3]. Due to
the sharp velocity spectrum decay, the velocity and velocity
gradient are both determined mostly by the large scale, that is,
the vessel size. It means that elastic turbulence is essentially
spatially smooth and random in time flow, dominated by
nonlinear interaction of a few large-scale modes. It is the same
random flow that occurs in hydrodynamic turbulence below the
dissipation scale and is called the Batchelor flow regime [16].
It results from stretching and folding of an elastic stress field,
similar to the stretching and folding of a passive scalar field in
the Batchelor regime of mixing. A crucial difference between
elastic turbulence and passive scalar mixing is that in the case
of elastic turbulence the corresponding elastic stress field is not
passive but reacts back on the driving velocity field and in such
way stabilizes the flow [9,15]. There are two aspects of theory
of polymer stretching in a flow. First is a description of the
statistics of polymer stretching and of a coil-stretch transition
in a spatially smooth and random in time flow. The second
is a characterization of the properties of elastic turbulence
resulting from the polymer stretching.

The first aspect requires a microscopic approach to
the problem, which provides a quantitative prediction on
the coil-stretch transition of a polymer and on a saturation
of the polymer stretching in a spatially isotropic random
unbounded flow, as well as a detailed prescription of its
experimental verification [17,18]. These predictions were
tested experimentally, and good agreement was found [19,20].
The coil-stretch transition has a remarkable macroscopic
consequence on a flow: Properties of the polymer solution
become essentially non-Newtonian and the stretched polymers
significantly alter the flow due to their back reaction. The
second aspect, on the other hand, requires a macroscopic
description of elastic turbulence, which has been developed
by Lebedev et al. [9,15] and is based on polymers with linear
elasticity and the feedback reaction on the flow. The theory
of elastic turbulence uses the set of equations for the elastic
stress tensor and velocity fields. Hydrodynamic description of
a polymer solution flow and of dynamics of elastic stresses
for linear polymers is analogous to that of a small-scale
fast dynamo in magneto-hydrodynamics (MHD) and also
of turbulent advection of a passive scalar in the Batchelor
regime [9,16], though some significant differences exist. The

stretching of the magnetic lines is similar to the polymer
stretching, and the difference with MHD lies in the relaxation
term that replaces the diffusion term in MHD description,
whereas in the passive scalar advection problem the dynamo
effect, that is, feedback reaction on the flow, is absent. In all
three cases the basic physics is the same, rather general and
directly related to the classical Batchelor regime of mixing:
stretching and folding of the passive scalar, magnetic, or stress
fields by a random advecting flow.

Theory of elastic turbulence in an unbounded flow of a
polymer solution is based on the following assumptions [9,15].
(i) A statistically stationary state occurs due to the feedback
reaction of stretched polymers (or the elastic stress) on the
velocity field that leads to a saturation of the elastic stress σp

and rms of the velocity gradients (∂Vi/∂xj )rms [and so Wiloc =
(∂Vi/∂xj )rmsλ, where λ is the longest polymer relaxation
time], even for polymers with linear elasticity [9,15]. The
saturation value in a bulk of elastic turbulence is Wiloc � 1 and
constant at all Wi above the coil-stretch transition. It is the key
theoretical prediction [9,15]. (ii) Both dissipative terms due to
viscosity and polymer relaxation, which appear in the equation
for the dissipation of elastic energy [15], are of the same
order, that is, σp/λ ∼ η(∇V )2 or otherwise σpλ/η ∼ Wi2loc,
where η is the viscosity. Then both assumptions lead to the
following result: The normalized elastic stress σpλ/η � 1 and
also saturates. These two important theoretical predictions
deserve a stringent experimental test. Indeed, the value of
elastic stresses was measured in the recent experiment in a mi-
croscopic arrangement of a swirling flow [21] and strong dis-
crepancy was identified. The first prediction on the saturation
of Wiloc in a bulk flow of elastic turbulence was examined in a
swirling macroscopic flow [7] and quantitative disagreement
was found. On the other hand, the further theoretical analysis
leads to a powerlike decaying spatial spectrum for the elastic
stresses and for the velocity field fluctuations with the exponent
|δ| > 3 in a good accord with the experimental results [2,3].
The close value of the exponent in the velocity power
spectra decay was also obtained in the numerical simulations
of elastic turbulence based on the Kolmogorov shear flow
of a dilute polymer solution described by the Oldroyd-B
model [10,11].

In this paper we provide a complete characterization
of the channel flow in the elastic turbulence regime and
present statistics, correlations and scaling of velocity and
velocity gradient fields in the bulk as well as in the
vicinity of the wall, and also properties of the velocity
gradient boundary layer that provide us the possibility also
to further test the theoretical prediction about the saturation
of Wiloc.

The paper is organized as follows. In Sec. II, the experi-
mental setup is described in detail. In Sec. III the experimental
results are presented. Here we first describe in Sec. III A
flow structure and experimental determination of the elastic
instability threshold. Then in Sec. III B various velocity and
velocity gradient profiles and a determination of the boundary
layer widths of velocity and velocity gradient and its functional
dependence are described. Temporal and spatial correlation
functions of velocity and velocity gradients and correlation
times and lengths as a function of Wi are presented in
Sec. III C. Finally, statistics of velocity and velocity gradients
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and structure function scalings are discussed in Sec. III D. A
discussion of the experimental results is given in Sec. IV and
conclusions are presented in Sec. V.

II. EXPERIMENTAL SETUP AND PROCEDURE

The experiments were conducted in a curvilinear channel
of about 1 mm2 square cross section machined out of Plexiglas
(Lucite). The width size was chosen to reduce by an order of
magnitude the amount of a working fluid (polymer solution)
used in the first experiment with the channel cross section of
3 mm2 [3,4] and to increase spatial resolution of a velocity field
in peripheral regions compared with the second experiment,
where a microchannel of 100 μm2 square cross section was
used [5,13]. The channel used in the current experiment
contained 63 pairs of identical smoothly connected half rings
(bends or units) with inner and outer radii of Ri = 1 mm
and R0 = 2 mm, respectively, and sufficiently high gap ratio
d/Ri = 1, the same as in the previous experiment [14], which
was intended to facilitate the onset of the elastic instability at
sufficiently low Wi. Here d = R0 − Ri is the channel width.
The precise dimensions of the channel were 0.95 mm width at
the midplane of the channel, where measurements of mixing
were performed (with ±0.05-μm differences in the width at
the top and bottom of the channel), and 1.025 mm depth. Thus,
the entire channel length was approximately 59.4 cm measured
along a channel midplane (see Fig. 1). The channel main body
and the lid were squeezed between two stainless steel plates to
seal the channel with an O-ring against leaks and to preserve
a flatness along the channel.

The pulse Nd-YAG laser of the 532 nm wavelength
(New Wave Research Ltd.), which produced pulses of power
30 mJ/5 ns with time delay between the pulses of 10 μs,
was used to conduct particle image velocimetry (PIV) mea-
surements. Time differences between two consecutive images
were chosen depending on Wi between 0.51 and 1.84 ms,
and laser pulses and the camera were synchronized via the
control units of the PIV laser system. For visualization of
velocity field measurements, red fluorescent particles (Duke
Scientific Ltd.) of 2 μm at concentration of 150 ppm were
used. As in the previous setups [3,4,14], the channel was
illuminated from the side by a laser beam transformed by
an appropriate optical setup containing two cylindrical lenses

mirror

Laser beam

Concentrated sugar solution 
with 80ppm of PAAM

CCD camera

microscopic objective EF 4/0.12 (Leitz Wetzlar)

Curved 1mm channel (plexi glass)

Material inflow   

Cylindrical Lens

Lens

FIG. 1. (Color online) Schematic drawing of the experimental
setup.

to a broad light sheet of a thickness about ∼50 μm in
the observation region (see Fig. 1). A thinner light sheet
causes a permanent damage to Plexiglas. The laser beam
sheet produced a thin cut in the three-dimensional (3D)
flow, parallel to the top and bottom of the channel at its
midplane. Fluorescent light emitted by the particles in the
direction perpendicular to the beam plane was detected by
a charge coupled device (CCD) via a microscope objective
EF 4.0/0.12 (Leitz Wetzlar) mounted on the plastic tube
(guide). The CCD camera Grasshopper, Model Gras-1455M-C
(Grey Point Research), of 16-bit grayscale resolution and with
spatial resolution of 1280 × 768 pixels at up to 30 frames/s
rate was used. Together with the microscope objective, it
provided a PIV spatial resolution of 0.576 μm/pixel. The
size of the PIV image was 1280 × 384 pixels. The window
size to get velocity vectors was taken at 32 × 8 pixels, which
corresponded to 18.4 × 4.6 μm2. A total of 130 velocity
vectors in the transverse direction to the flow were obtained
from PIV. Thus, the velocity gradients were calculated on a
dr = 4.6 μm step. The images were taken at a rate of 10 fps.
Since each two consecutive images were transformed into one
velocity field, the final rate of the velocity field sampling was
5 Hz. A total of 1000 velocity fields were used for averaging.

The velocity profile in the channel flow of the Newtonian
solvent measured by PIV has been used for calibration.
Figure 2 presents the results of longitudinal velocity profiles
Vθ (r/d) across the channel in a laminar flow of the solvent for
various pressure drops. (We use in the channel middle plane
the coordinates z and r as longitudinal and transversal to the
channel walls, respectively, and Vθ and Vr as the longitudinal
and radial components of the velocity field, respectively.) We
visualize just a part of the channel cross section to increase
a spatial resolution, since later on we use only the velocity
maximum values and the velocities in a peripheral region
close to the wall. Due to curvature in serpentine geometry
of the channel, the profiles of the longitudinal velocity are
not symmetric relative to the middle plane, in contrast to
a straight channel. Figure 3 shows a linear dependence of
the maximum values of the velocity profiles V max

θ (or the

FIG. 2. (Color online) Longitudinal velocity profiles across a
channel of a solvent laminar flow in a curvilinear channel at various
pressure drops (starting from small values at bottom to top; r = 0
corresponds to the inner channel wall).
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FIG. 3. Maximum velocity profile versus pressure drop along the
channel �P for the solvent of water with 65%; sucrose in a laminar
channel flow.

discharge) in a laminar flow of the solvent as a function of
the pressure drop �P along the channel, which is used for
calibration.

As a working fluid, a 65%; sucrose-water solvent with
addition of 1%; NaCl, 250 ppm of NaN3, and 80 ppm
by weight high molecular weight polyacrylamide (PAAm)
(Mw = 18 Mda, supplied by Polysciences), was used. It was
prepared from a master water solution contained 3000 ppm of
PAAm, 1%; NaCl, 250 ppm of NaN3, and 3%; of iso-propanol
[14]. The viscosities of the solvent ηs = 113.8 mPa · s and
the polymer solution η = 137.6mPa · s were measured at
22 ± 0.5 ◦C, the same temperature kept during the experiment.
The longest polymer relaxation time measured by the stress
relaxation method was λ = 11.5 s and was found to be
independent of the shear rate [21] (it differs from values
used in Refs. [5,13], where the polymer relaxation time was
measured by the small-amplitude oscillation method). The
solution density was ρ = 1.303 ± 0.03 g cm−3. The inflow
of a polymer solution into the channel was generated via two
inlets by compressed nitrogen gas at pressures between about

FIG. 4. (Color online) The mean longitudinal velocity at r/d =
0.5 as a function of Wi. Arrows indicate the elastic instability
onset and the ending of a transitional regime to elastic turbulence,
respectively. Solid line is a linear fit to the data.

FIG. 5. Root mean square of the longitudinal velocity V rms
θ versus

Wi. Arrows indicate the elastic instability onset and the ending of a
transitional regime to elastic turbulence, respectively.

2400 and 58 600 Pa, depending on Wi. The gas pressure was
regulated and measured via a regulated pressure gauge with
a precision of ±5 Pa. The compressed gas was fed into two
plastic cylinders containing a working polymer solution. The
cylinders were connected to the channel inlets by Tygon tubes
with inner diameter of 1.0 mm, sufficiently large to prevent
a possibility of an elastic instability already in the tubes.
The Weissenberg numbers Wi = (2V max

θ /d)λ reached in the
experiment by such an arrangement were in the range from
0 to 950. The maximum Re = V max

θ dρ/η was ∼0.54, so that
the inertial effects in the flow were negligible, as was already
shown in the earlier experiments [3–5,13].

III. PROPERTIES OF ELASTIC TURBULENCE

A. Flow structure and experimental determination of the elastic
instability threshold

We searched experimentally for the onset of the elastic
instability in our channel with the aspect ratio d/Ri = 1. In
order to figure out the range of the elastic turbulence region,

FIG. 6. Root mean square of the transversal velocity V rms
r versus

Wi. Arrows indicate the elastic instability onset and the ending of a
transitional regime to elastic turbulence, respectively.
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FIG. 7. (Color online) The local Weissenberg number Wiloc =
(∂Vθ/∂r)rmsλ averaged over r/d from 0.2 to 0.5 as a function of
Wi. Arrows indicate the elastic instability onset and the ending of a
transitional regime to elastic turbulence, respectively. The solid line
is a linear fit to the data in the elastic turbulence regime.

we plot the values of 〈Vθ 〉 at r/d = 0.5 and V rms
θ as a function

of Wi in Figs. 4 and 5. From both plots one concludes that the
elastic instability onset corresponds to the change in the slope
that occurs at Wic � 200 on the both plots. A similar change
in the slope takes place in the dependence of V rms

r on Wi at
about the same value of Wic though the data is noisier (Fig. 6).
An additional change in functional behavior of V rms

θ and V rms
r

versus Wi occurs at Wi ≈ 350–400, where the transition region
to elastic turbulence is ended. The more accurate value of Wi �
350 for this transition is determined from the plot in Fig. 5,
and then the corresponding arrows indicate the onset of the
elastic instability and the end of the transitional region toward
elastic turbulence in all three plots in Figs. 4, 5, and 6. Thus,
the range of developed elastic turbulence can be considered
for Wi from about 350 up to 950.

Using the results of the PIV measurements one calculates
the various components of the velocity gradient field as a
function of r at different values of Wi. Figure 7 presents

FIG. 8. (Color online) (∂Vr/∂r)rms averaged over r/d from 0.2 to
0.5 versus Wi. The solid line is a linear fit to the data (∂Vr/∂r)rms =
(5.64 ± 0.15) + (0.055 ± 0.002)Wi in the elastic turbulence regime
from Wi = 350 to 950.

FIG. 9. (Color online) Mean longitudinal velocity profiles across
the channel of a polymer solution flow for various Wi (starting from
small values from bottom to top; r = 0 corresponds to the inner
channel wall). Symbols on the curves are used as markers.

the data for Wiloc ≡ (∂Vθ/∂r)rmsλ versus Wi averaged over
r/d from 0.2 to 0.5 in the bulk flow. In the range of elastic
turbulence for Wi from 350 to 950 the data in log-linear pre-
sentation in Fig. 7 are fitted by a linear fit, which gives Wiloc =
82.2 exp(Wi/919.2). Figure 8 shows (∂Vr/∂r)rms averaged
over r/d from 0.2 to 0.5 in the bulk flow region as a function of
Wi. Here the data can be also fitted linearly by (∂Vr/∂r)rms =
5.64 + 0.055Wi in the elastic turbulence range. All PIV data
were averaged over 1000 velocity fields to get both average
velocity and its rms values as well as the velocity gradient
components.

B. Velocity and velocity gradient profiles and the boundary
layer problem

As demonstrated above, a channel flow of a polymer
solution at sufficiently large Wi above the elastic instability
threshold Wic is chaotic with large velocity fluctuations.
Figure 9 shows the profiles of the average longitudinal velocity

FIG. 10. The entire mean longitudinal velocity profile across the
channel of a polymer solution flow for Wi = 951.

056325-5



YONGGUN JUN AND VICTOR STEINBERG PHYSICAL REVIEW E 84, 056325 (2011)

FIG. 11. (Color online) Mean transversal velocity profiles across
the channel of a polymer solution flow for various Wi.

〈Vθ 〉 across the channel for various values of Wi from below
the elastic instability up to the highest values. A boundary
layer characterized by a sharp drop of 〈Vθ 〉 at about r/d � 0.1
is clearly seen at Wi above 192. A full profile of 〈Vθ 〉 across
the channel at Wi = 951 is presented in Fig. 10, where both
boundary layers are clearly identified.

From the same velocity measurements the profiles of the
average transversal velocity 〈Vr〉, and the rms fluctuations of
the longitudinal V rms

θ and transversal V rms
r components of the

velocity for various Wi are also obtained (see Figs. 11–13).
First, by comparing Figs. 9 and 11 one finds that 〈Vr〉 is

close to zero inside the error bars across the channel, and 〈Vθ 〉
exceeds it by more than two orders of magnitude, whereas rms
values of the longitudinal and transversal components are of
the same order of magnitude that follows from Figs. 12 and
13. Figure 14 shows (∂Vθ/∂r)rms versus r/d at various Wi in
the whole range of its variations. Analogously, the component
(∂Vr/∂r)rms as a function of r/d is plotted for various Wi

FIG. 12. (Color online) RMS fluctuations of the longitudinal
velocity profiles across the channel of a polymer solution flow for
various Wi (starting from small values from bottom to top; r = 0
corresponds to the inner channel wall). Symbols on the curves are
used as markers.

FIG. 13. (Color online) rms fluctuations of transversal velocity
profiles across the channel of a polymer solution flow for various Wi
(starting from small values from bottom to top; r = 0 corresponds to
the inner channel wall). Symbols on the curves are used as markers.

in Fig. 15. As before, all PIV data were averaged over 1000
velocity fields to get both average velocity and its rms values
as well as the velocity gradient components. One can see on
both plots that both (∂Vθ/∂r)rms and (∂Vr/∂r)rms approach
zero values at r/d < 0.05, which is an artifact of low spatial
resolution of the PIV images near the wall due to smaller
concentration of seeding particles in the near-wall region.

Second, we present in Figs. 16 and 17 time dependencies of
Vθ (t) and Vr (t) in the bulk flow for the fixed value of r/d = 0.5
and at several values of Wi on a time interval much larger
than λ. In the elastic turbulence regime at Wi > 350 strong
fluctuations in both components of the velocity are observed.

Clearly identified in Figs. 9, 10, 14, and 15, boundary layer
regions near the wall in both average velocity and rms values of
both components of the velocity and velocity gradient profiles
across the channel can be better studied after subtracting from
each velocity profile a linear part of the profile found in the
bulk region with the slope d〈Vθ 〉/dr (see Figs. 9 and 10) and
then rescaling its value to unity. As a result, all longitudinal

FIG. 14. (Color online) (∂Vθ/∂r)rms versus r/d for various Wi
from bottom to top. Symbols on the curves are used as markers.
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FIG. 15. (Color online) (∂Vr/∂r)rms versus r/d for various Wi
from bottom to top. Symbols on the curves are used as markers.

velocity profiles at Wi in the range of elastic turbulence above
350 collapse on a single curve, demonstrating independence of
the boundary layer width on Wi (Fig. 18). To get quantitative
information about Wi dependence of the velocity boundary
layer width lbl, we fit each velocity profile, and then the values
of lbl as fitting parameters together with error bars present
as a function of Wi in Fig. 19. The boundary layer width is
independent of Wi and also Wiloc (see inset in Fig. 19) and is
equal lbl/d � 0.1 in a good agreement with the results obtained
early in the swirling flow [7].

Finally, we present in Fig. 20 the dependencies of
(∂Vθ/∂r)rms in the bulk and and its peak values in the boundary
layer regions as a function of Wi taken from the plots in
Figs. 7 and 14. The peak values of (∂Vθ/∂r)rms in the boundary
layer exceed those in the bulk up to two times compared to at
least an order of magnitude in the swirling flow [7,22]. This
quantitative discrepancy between two flows occurs probably
due to the limitation in spatial resolution of PIV on the channel
width. Then the limited resolution smears out the peak value
of (∂Vθ/∂r)rms.

FIG. 16. (Color online) Time series of the longitudinal velocity at
r/d = 0.5 for various Wi. Symbols on the curves are used as markers.

FIG. 17. (Color online) Time series of the transversal velocity at
r/d = 0.5 for various Wi.

C. Temporal and spatial correlation functions of both velocity
components and their gradients

We studied both temporal and spatial (across the chan-
nel) correlation functions of both velocity components.
Figure 21 shows temporal correlation functions of the
longitudinal and transversal velocity components C(τ ) =
〈δV (τ )δV (0)〉/〈(δV (0))2〉, where δVθ (τ ) ≡ Vθ (τ ) − 〈Vθ 〉 and
δVr (τ ) ≡ Vr (τ ) − 〈Vr〉 at several Wi values in the elastic tur-
bulence regime taken at the bend N = 42. The corresponding
correlation time calculated as τcorr = ∫

tC(t)dt/
∫

C(t)dt for
both velocity components as a function of Wi are presented
in Fig. 22. As can be seen in Fig. 22, the correlation time for
δVθ (τ ) is considerably larger than for δVr (τ ).

The spatial correlation functions C(r/d) =
〈δV (r/d)δV (0)〉/〈(δV (0))2〉 and the corresponding
correlation lengths for both velocity components
calculated as lcorr/d = ∫

(r/d)C(r/d)dr/d/
∫

C(r/d)dr/d

are shown for several Wi in Figs. 23 and 24. Here
δVθ (r/d) ≡ Vθ (r/d) − 〈Vθ 〉 and δVr (r/d) ≡ Vr (r/d) − 〈Vr〉.
The correlation lengths for both components are rather

FIG. 18. (Color online) Normalized and scaled down 〈Ṽθ 〉(r/d)
velocity profiles at various Wi. Symbols on the curves are used as
markers.
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FIG. 19. Velocity boundary layer width lbl versus Wi. (Inset)
Velocity boundary layer width lbl versus Wiloc.

close and independent of Wi. Using the Taylor hypothesis
one can compare the correlation lengths along the flow
with those across the flow. As follows from the data in
Fig. 22, the correlation time for the longitudinal component
of velocity is about τcorr/λ � 4 that gives for, let us say,
Wi = 600 the normalized correlation length along the flow
�/d = τcorr〈Vθ 〉 � 370 that is about 2000 times larger than
lcorr/d. Similarly, the correlation functions C̃θ (r/d) and
C̃r (r/d), as well as the corresponding correlation lengths
˜lθ,corr/d and ˜lr,corr/d of the both transverse velocity gradients
∂Vθ/∂r and ∂Vr/∂r , are also calculated, and the results
for different Wi were presented in Figs. 25 and 26. First,
the correlation functions have minimum at r/d ≈ 0.06 that
probably corresponds to the peak location of (∂Vθ/∂r)rms

and, second, the correlation lengths are up to an order of
magnitude shorter than for the velocities (see Fig. 26 versus
Fig. 24) and grow with Wi.

D. Statistics of velocity gradients and their structure functions

Further verification of the scaling laws in elastic turbulence
in the channel flow comes from the statistical analysis of the
velocity field. We point out that the statistical analysis of the

FIG. 20. (Color online) The peak values of (∂Vθ/∂r)rms in the
bulk and boundary layer versus Wi.

FIG. 21. (Color online) Temporal correlation functions Cθ (τ ) of
Vθ (t) and temporal correlation functions Cr (τ ) of Vr (t), respectively,
at several Wi above Wic taken at the bend N = 42. Symbols on the
curves are used as markers.

longitudinal velocity component in spatial and in particular
temporal domains show large scatter due to insufficient data
that makes the analysis unreliable. On the other hand, the
same analysis in a spatial domain of the both components of
the velocity gradients exhibits much better results.

First, we conducted the statistical analysis of the spatial
increments of the normalized radial gradients of the lon-
gitudinal velocity δ(∂Vθ/∂r)/δ(∂Vθ/∂r)rms ≡ [∂Vθ/∂r(r/d +
δr/d) − ∂Vθ/∂(r/d)]/δ(∂Vθ/∂r)rms in a wide range of spatial
scales in increments from 9.2 to 46 μm taken with a 4.6-μm
step at Wi = 951 for the bend N = 42. The corresponding
probability distribution functions (PDFs) of the spatial in-
crements of the normalized longitudinal velocity gradients
δ(∂Vθ/∂r)/δ(∂Vθ/∂r)rms have a small Gaussian cap and show
well-pronounced exponential tails, clear scale invariance, and
symmetry with small scatter in spite of low statistics (see
Fig. 27). Further analysis can be done in an equivalent way
either by direct calculations of the structure functions or by
calculations of the moments of PDFs. The corresponding
second moments of PDFs S2,θ (δr/d) as a function of δr/d in
log-log coordinates for several values of Wi show the scaling

FIG. 22. (Color online) Normalized correlation times τθ,corr/λ

and τr,corr/λ versus Wi for both Vθ and Vr , respectively.
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FIG. 23. (Color online) Spatial correlation functions Cθ (r/d)
of Vθ (r/d) and spatial correlation functions Cr (r/d) of Vr (r/d),
respectively, at several Wi above Wic taken at the bend N = 42.
Symbols on the curves are used as markers.

region in δr/d between 0.01 and 0.05 in Fig. 28. The structure
functions of the higher even orders up to p = 8 Sp,θ (δr/d)
as a function of δr/d are plotted in log-log coordinates at
Wi = 951 in Fig. 29. Due to the symmetrical shape of the
PDFs odd moments are zero. The power dependence of the
structure functions (or moments) Sp,θ (δr/d) ∼ (δr/d)ζp,θ is
found in the range of δr/d between 0.004 and 0.05. The
plot in Fig. 30 demonstrates independence of the scaling
exponents ζ2,θ and ζ4,θ of Wi in the whole range of elastic
turbulence. The dependence of ζp,θ is surprisingly close
to the linear scaling with ζp,θ = 0.75p shown by a solid
line (see Fig. 31). The latter is very different from passive
scalar behavior [14]. Analogous analysis was conducted
also for the normalized radial gradients of the transverse
velocity δ(∂Vr/∂r)/δ(∂Vr/∂r)rms ≡ [∂Vr/∂r(r/d + δr/d) −
∂Vr/∂r(r/d)]/δ(∂Vr/∂r)rms. The obtained results were very
similar to the normalized radial gradient of the longitudinal
velocity component. The corresponding PDFs also exhibit
similar features: small Gaussian cap, exponential tails (though
not so clean), scale invariance, and symmetry (see Fig. 32). As
a result, the second S2,r (δr/d) and higher order even moments

FIG. 24. (Color online) Normalized correlation length lθ,corr/d

and lr,corr/d versus Wi for both Vθ and Vr , respectively.

FIG. 25. (Color online) Spatial correlation functions C̃θ (r/d)
of ∂Vθ/∂r and spatial correlation functions C̃r (r/d) of ∂Vr/∂r ,
respectively, at several Wi above Wic taken at the bend N = 42.
Symbols on the curves are used as markers.

Sp,r (δr/d) (or structure functions) up to p = 8 show scaling in
the same range of scales (Figs. 33–35), and the dependencies
of their scaling exponents ζp,r on Wi (see Fig. 35) and p (see
Fig. 36) are close to those found for δ(∂Vθ/∂r)/δ(∂Vθ/∂r)rms.

IV. DISCUSSION

Let us summarize the main observations reported above.
(i) A well-defined threshold of the elastic instability in a

curvilinear channel flow is identified from the dependencies
of the average longitudinal velocity and rms values of
the longitudinal and transversal velocity fluctuations on Wi
(Figs. 4–6). The transition to an elastic turbulence regime
is determined from V rms

θ as well as V rms
r dependencies on

Wi (Figs. 5 and 6). In the elastic turbulence regime, an
exponential dependence of Wiloc on Wi is observed (Fig. 7).
(ii) The profiles of the average longitudinal velocity are altered
drastically in elastic turbulence compared to a laminar flow
(Fig. 9). In the elastic turbulence regime, the characteristic
boundary layer is clearly identified near the wall (Figs. 9 and
10). Being normalized and rescaled, all velocity profiles are
collapsed on one curve with a horizontal flat part in the bulk

FIG. 26. (Color online) Normalized correlation length ˜lθ,corr/d

and l̃r,corr/d versus Wi for both ∂Vθ/∂r and ∂Vr/∂r , respectively.
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and sharp change near the wall, so that all profiles have the
same boundary layer width independent of Wi, which is equal
lbl/d � 0.1 (Figs. 18 and 19). (iii) On the other hand, a profile
of (∂Vθ/∂r)rms (Fig. 14) shows a peak closer to the wall,
inside the velocity boundary layer discussed above, whose
location near the channel wall is also independent of Wi.
As we discussed in our early papers on elastic turbulence
in a swirling flow [6,7], the peak in (∂Vθ/∂r)rms means
also the maximum in elastic stresses, and so the boundary
layer is defined by the nonuniform spatial distribution of the
elastic stresses across the channel. (iv) The correlation times
determined from the temporal correlation functions for both
velocity components differ up to 5 times. The correlation time
for the transversal velocity component τr,corr is of the order of
the polymer relaxation time, whereas the correlation time of the
longitudinal velocity component τθ,corr is several times larger
(Figs. 21 and 22). (v) The correlation lengths found from the
spatial correlation functions of the both velocity components
are lcorr/d ≈ 0.18 in the elastic turbulence regime (Figs. 23 and
24). On the other hand, the correlation lengths obtained from
the spatial correlation functions of the radial gradients of the
longitudinal and transversal velocity components are up to an
order of magnitude smaller than for the velocity components
in the whole range of elastic turbulence (Figs. 25 and 26).
(vi) PDFs of the spatial increments of the radial gradients
of the longitudinal and transversal velocity components in a
wide range of length scales up to the boundary layer width
demonstrate the scale invariance and exponential tails (Figs. 27
and 32). It is very much reminiscent of the properties of
the PDFs of passive scalar mixing in the Batchelor regime
studied in elastic turbulence of the curvilinear flow of a
polymer solution [14]. On the other hand, the second and
higher order even moments of the PDFs, contrary to the
passive scalar logarithmic dependence on spatial scales, show
an algebraic increase (Figs. 28–30 and 33–35) with the
spatial increment and with the scaling exponents ζp,θ and

FIG. 27. (Color online) PDFs of the spatial increments
of the normalized longitudinal velocity radial gradient
δ(∂Vθ/∂r)/δ(∂Vθ/∂r)rms = [∂Vθ/∂r(r/d + δr/d) − ∂Vθ/∂r(r/d)]/
δ(∂Vθ/∂r)rms at different length scales (from 9.2 to 46 μm with
a step of 4.6 μm) at Wi = 951 based on its spatial velocity field
measurements for the bend N = 42.

FIG. 28. (Color online) Second moments S2,θ (δr/d) of PDFs
of the longitudinal velocity gradient increments δ(∂Vθ/∂r) versus
δr/d/δ(∂Vθ/∂r)rms for several values of Wi (in log-log coordinates).

ζp,r , where dependence on p mildly deviates from a linear
one (Figs. 31 and 36).

There are several important messages which follow from
the observations summarized above. (i) The elastic instability
transition in a curvilinear channel is a continuous one (forward
bifurcation) as already found in our early experiments [4,5,13],
in contrast to those observed in Couette-Taylor [4] and
swirling flows [4,7]. (ii) Contrary to the predictions, Wiloc

grows with Wi in the elastic turbulence regime and its value
exceeds that theoretically predicted by more than two orders
of magnitude. (iii) The profiles of the average longitudinal
velocity component reveal the emergence of a boundary layer
whose width is independent of Wi in the whole range of
elastic turbulence. Being scaled by the channel width, it is
also independent on the characteristic size of the system and
equal lbl/d � 0.1. Both the existence of the boundary layer
and the independence of its width on the control parameters
of the flow are rather surprising features, in particular, if one

FIG. 29. (Color online) Structure functions Sp,θ (δr/d)
of the longitudinal velocity gradient spatial increments
δ(∂Vθ/∂r)/δ(∂Vθ/∂r)rms up to p = 8 (only even) for Wi = 951 (in
log-log coordinates).
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FIG. 30. (Color online) Scaling exponents of the second
S2,θ (δr/d) and fourth S4,θ (δr/d) moments of the longitudinal velocity
gradient increments δ(∂Vθ/∂r)/δ(∂Vθ/∂r)rms for various Wi.

takes into account that the channel width is smaller than the
dissipation scale, the only characteristic inner scale of a flow
defined by the dissipation rate and viscosity. This fact was
already reported in Refs. [6,7] for the swirling flow. (iv) The
boundary layer observed in the average velocity profiles is a
reflection of a nonuniform distribution of the rms values of the
radial gradient of the longitudinal velocity fluctuations. Indeed,
the latter profiles exhibit more intricate behavior with sharp
peaks inside the velocity boundary layer, whose locations
are independent of Wi but the peak values grow with Wi.
Since (∂Vθ/∂r)rms controls the degree of polymer stretching
in a random flow and in this way the elastic stress, one
concludes that a similar nonuniform distribution of the elastic
stresses can be expected near the wall in elastic turbulence.
Direct measurement of the elastic stress is a subject for future
experiments.

FIG. 31. (Color online) Scaling exponents ζp,θ of the structure
functions of the longitudinal velocity gradient spatial increments
δ(∂Vθ/∂r)/δ(∂Vθ/∂r)rms versus p for various Wi. The solid line is
ζp,θ = 0.75p.

FIG. 32. (Color online) PDFs of the spatial
increments of the normalized transversal velocity radial
gradient δ(∂Vr/∂r)/δ(∂Vr/∂r)rms = [∂Vr/∂r(r/d + δr/d) −
∂Vr/∂r(r/d)]/δ(∂Vr/∂r)rms at different length scales from 9.2 to
46 μm with a step of 4.6 μm at Wi = 951 based on its spatial
velocity field measurements for the bend N = 42.

The nonuniform distribution of the elastic stresses across
the channel and appearance of the characteristic spatial scales
of the order of the boundary layer width of both velocity and
velocity gradient in the spatial correlation functions of the
velocity and velocity gradient fields in a bulk flow suggest that
rare and strong parcels of excessive elastic stresses, concen-
trated in the boundary layer, are ejected into the bulk flow,
similar to jets in passive scalar mixing in elastic turbulence
observed recently [13,14,23]. The rare and strong ejection
of jets of excessive passive scalar occurs in the diffusion
boundary layer and protrudes into the peripheral region and
even further into the bulk of the channel flow [14,24,25]. These
jets considerably alter mixing and significantly reduce mixing
efficiency. Similarly, in such a way the elastic stresses are
introduced into the flow. This suggestion is also supported

FIG. 33. (Color online) Second moments S2,r (δr/d) of PDFs of
the transversal velocity gradient increments δ(∂Vr/∂r)/δ(∂Vr/∂r)rms

versus δr/d for several values of Wi (in log-log coordinates).
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FIG. 34. (Color online) Structure functions Sp,r (r/d) of the
transversal velocity gradient increments δ(∂Vr/∂r)/δ(∂Vr/∂r)rms up
to p = 6 (only even) for Wi = 951 (in log-log coordinates).

by the observations of rare and strong spikes in torque and
pressure measurements in the swirling flow of a polymer
solution in elastic turbulence regime [7,8]. (v) Since elastic
turbulence is a smooth random flow, where only a few large
spatial scale modes dominate the dynamics, one expects that
lcorr should be of the order of d. We find in the experiment that
the correlation length of the velocity field lcorr is about twice
larger than the velocity boundary layer lbl and much smaller
than the channel width d. Moreover, the correlation length
defined from the correlation function of the velocity gradients
l̃corr is about an order of magnitude smaller than lcorr, which
relates it to the characteristic spatial scale corresponding to the
peak location of (∂Vθ/∂r)rms near the wall inside the velocity
boundary layer width. Then, due to possible eruption of jets
of elastic stresses, this characteristic scale is also observed
in the bulk. (vi) The same range of spatial scales is found in
the scaling region of the structure functions of the velocity
gradients Sp, which once more indicates a possible influence

FIG. 35. (Color online) Scaling exponents of the second
S2,r (δr/d) and fourth S4,r (δr/d) moments of the transversal velocity
gradient increments δ(∂Vr/∂r)/δ(∂Vr/∂r)rms for various Wi.

FIG. 36. (Color online) Scaling exponents ζp,r of the struc-
ture functions of the transversal velocity gradients increments
δ(∂Vr/∂r)/δ(∂Vr/∂r)rms versus p for various Wi. The solid line is
ζp,θ = 0.75p.

of jets protruding from the boundary layer into the bulk of the
flow.

V. CONCLUSIONS

To conclude, the experimental results show that one of the
main predictions of the theory of elastic turbulence, namely,
the saturation of Wiloc in the bulk flow of elastic turbulence,
contradicts the experimental observations both qualitatively
and quantitatively in spite of the fact that the theory explains
quantitatively well the observed sharp power-law decay of the
velocity power spectrum [9,15]. The nonuniform distribution
of (∂Vθ/∂r)rms across the channel points out the nonuniform
distribution of elastic stresses. The latter may lead to the
rare and strong eruption of the jets of elastic stresses from
the boundary layer, where the excess of the elastic stresses
is found, into the bulk and in this way to the introduction
of small spatial scales into the bulk flow corresponding
to the correlation lengths. This suggestion is based on the
analogy with dynamics of a passive scalar near the wall in
elastic turbulence in a curvilinear channel flow of a polymer
solution [14]. It is also supported by the observed rare and
strong drops in the torque and pressure measurements in
von Karman swirling flow in the elastic turbulence regime
of polymer solutions [7,8]. The existence of the resulting
velocity boundary layer width and its peculiar properties
observed in the experiment require a proper theoretical
description. Thus, the experimental findings call for further
development of a theory of elastic turbulence in a bounded
container, similar to what was done for the passive scalar
problem [23].
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