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Shape change, engulfment, and breakup of partially engulfed compound drops undergoing
thermocapillary migration
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Compound drops comprise two or more immiscible phases, one of which entirely or partially engulfs the
others. In this work we consider the thermocapillary-induced motion of partially engulfed compound drops,
composed of two phases, in an immiscible fluid. If the capillary number is negligibly small, Ca � 1, the partially
engulfed compound drop is composed of three spherical surface segments, intersecting at contact angles that are
determined by the three interfacial tensions associated with the three fluid phases that make up the compound
drop and the ambient medium. Corrections to the shapes of the undeformable case at Ca = 0 are expected to
be of the order Ca. However, as the drop propagates through the nonisothermal fluid, the temperature at the
three-phase contact line and, hence, the contact angles, may considerably change, resulting in a dramatic change
of the compound drop shape. Moreover, the changes in the interfacial tensions may be so significant that the
partially engulfed configuration may become impossible and either two immiscible parts of the compound drop
separate or one of them becomes completely engulfed by the other.
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I. INTRODUCTION

Bulk fluid motion induced by interfacial dynamics has
been studied for over a century. One of the most interesting
phenomena is the thermocapillary drift of fluid particles
through a viscous fluid. The thermocapillary flow is induced
by a gradient of the surface tension at the interface as a result
of a nonuniform temperature or surfactant distribution in the
surrounding media. The surface tension gradient results in a
tangential stress on the interface, which causes motion of the
surrounding liquid by viscous traction. Then, the submerged
droplet or bubble will move in the direction of decreasing
interfacial tension, thus decreasing its surface energy.

Young, Goldstein, and Block [1] obtained a theoretical
prediction for the migration velocity of a single spherical
drop, which is placed in a viscous fluid with an imposed
constant temperature gradient, assuming negligible Reynolds,
Re; capillary, Ca; and Peclet, Pe, numbers. Later Bratukhin [2]
constructed the correction to this solution assuming that all
three parameters are proportional to a single small parame-
ter, the Marangoni number. Balasubramaniam and Chai [3]
considered Re, Ca, and Pe as independent parameters and
showed that the solution constructed in Ref. [1] satisfies the full
Navier-Stokes equations in the case of negligible convective
transport. This remarkable result is valid, however, solely for a
single-phase drop in an unbounded media. The boundary of a
drop would deform even at 0 Reynolds and Peclet numbers, if
other particles or boundaries are present in the system or when
the drop itself consists of two or more immiscible phases,
one of which completely or partially engulfs the others. The
present study is focused on the latter case of a two-phase
partially engulfed compound drop.

Nonhomogeneous temperature or concentration distribu-
tion at the interface of a drop may be imposed by distant
boundary conditions (the case considered in, e.g., Refs. [1–3])
or it may be caused by heat transfer between the phases in
suspension that eventually results in a spontaneous thermo-
capillary migration of drops relative to each other (see Ref. [4]

and the literature cited therein). Spontaneous thermocapillary
migration occurs also due to thermo- and solutohydrodynamic
instability of a single drop in the presence of interphase heat or
mass transfer or chemical reactions, that result in a breaking of
the radial symmetry of the temperature and/or concentration
distributions, and induce self-sustained translational drop
motion (see Ref. [5] and the literature cited therein). The
dynamics of compound drops has attracted the attention of
scientists in recent years due to their wide range of applications
in many fields of physics, biology, and engineering. Multiphase
droplets are encountered in processes such as melting of ice
particles in the atmosphere; direct contact heat exchange; and
rapid evaporation of drops in a superheated liquid, liquid
membranes, and liquid bilayers.

The first thorough analysis of static two-liquid drop config-
urations was performed by Torza and Mason [6]. They showed
that two immiscible drops embedded in a third immiscible
fluid, initially in contact, will achieve particular types of
configuration: complete engulfment, partial engulfment, or
nonengulfment depending solely on the surface tensions
between the three pairs of the phases involved. Mahadevan
et al. [7] studied the statics of compound droplets made of two
immiscible fluids on a rigid substrate, in the limit when gravity
is dominated by capillarity, and found a richer set of possible
configurations. In particular, configurations with four phases
merging along a single contact line were shown to occur for a
range of interfacial energies and droplet volumes.

Most of the studies of the dynamics of compound two-phase
drops with complete and partial engulfment were conducted
under the limiting assumption of nondeformable interfaces
(i.e., 0 capillary numbers). In practice, the nondeformable case
is typical for tiny droplets, while larger fluid particles are
substantially deformed by the flow. A comprehensive review
of earlier works on the subject can be found in Ref. [8].

A number of works concerning thermocapillary migration
of compound drops with complete engulfment are available in
the literature as well. The dynamics of concentric compound
drops under externally imposed temperature or surfactant
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concentration gradient was studied by Borhan et al. [9] and Haj
Hariri et al. [10]. The case of eccentric compound drops was
investigated by Morton et al. [11]. The motion that results
from both a temperature field and residual contaminations
applied at the surface of a liquid system was analyzed by
Lyell and Carpenter [12]. Tsemakh et al. [13] have studied the
locomotion of a fully engulfed viscous compound drop, which
was induced by an internal secretion of a weak surface-active
substance. Their analysis considered also nonlinear effects
such as deformation of the interfaces for small capillary
numbers using the method of perturbations. Self-propelling of
bislugs in capillary tubes [14] is another interesting example
of the spontaneous motion of compound drops.

The motion of nearly spherical partially engulfed com-
pound drops with one of the phases forming a thin film
on the surface of another one was studied by Sadhal and
Johnson [15] making use of the perturbation expansion in
terms of small thickness of the film. Oguz [16] and Voung
and Sadhal [17] employed the toroidal coordinate system to
construct the exact solution for the creeping flow induced by
the growth and translation of an axisymmetric liquid-vapor
drop or liquid-liquid partially engulfed undeformed compound
drop.

A series of studies by Palaniappan, Kim, and Daripa
[18–20] is devoted to the special configuration of a partially
engulfed compound drop, formed by overlapping spherical
segments with a contact angle of π/2, and with a further
assumption that one of the dispersed phases is gaseous
(inviscid). These solutions do not satisfy the tangential stress
balance at the inner interface separating the two finite domains.
The authors argue that this imbalance can be in some cases
annihilated by the Marangoni traction with some control
mechanism.

A numerical method based on boundary integral equations
was developed by Bazhlekov [21] and Bazhlekov et al. [22],
who present a few model computations. These include the
deformation in a shear flow of a two-drop aggregate having
initially a static equilibrium shape and the engulfment pro-
cess starting with an initially nonequilibrium configuration.
Recently, Rosenfeld et al. [23] used perturbation technique
to study the stationary deformation of a partially engulfed
compound drop falling in a viscous fluid under the effect of
gravity.

Despite its great importance, the subject of thermocapillary
migration of a partially engulfed compound drop was not
investigated until recently. Rosenfeld et al. [24] employed
toroidal coordinates and examined the motion of a partially
engulfed compound drop induced by the Marangoni effect
due to an imposed linear temperature field. The particular
case studied there was limited by the assumption of equal
thermal conductivities of all three phases and hence in that case
the temperature field remained unperturbed. Later, Rosenfeld
et al. [25] extended these studies to the cases of different
thermal conductivities of the phases and to the spontaneous
thermocapillary induced motion, with the surface tension
gradients resulting from the interfacial heat transfer and the
geometric nonuniformity of the system.

It was found that, typically, the motion of a partially
engulfed compound drop is induced in the direction of the tem-
perature gradient similar to the case of a single-phase droplet.

Nevertheless, it was demonstrated that some interesting cases
exist, in which the hybrid drop moved against the temperature
gradient. Such behavior was observed in certain ranges of the
volume ratio of the drop phases and the associated phases
contact angles when the motion was driven mostly by surface
tension gradients at the inner interface of the compound drop.

The goal of the present work is to study the physical
evolution of the shape of partially engulfed compound drops
undergoing thermocapillary migration in a linear temperature
field. The paper is organized as follows: Below, in Sec. II, we
analyze characteristic time scales and governing parameters
of the problem, formulate the mathematical model, and
briefly describe the method of solution. Possible scenarios
of compound-drop shape evolution are described in Sec. II
as well. Several examples of dynamic evolution of the drop’s
shape due to thermocapillary forcing are presented in Sec. III.
The paper closes with a summary of the main results and a
discussion of their possible generalization in Sec. IV.

II. STATEMENT OF THE PROBLEM

Consider a partially engulfed compound fluid drop em-
bedded in a nonisothermal viscous medium (fluid 2), with
the phases being immiscible. The compound drop consists of
two phases (fluids 1 and 3) and possesses three fluid-fluid
interfaces, �ij , that intersect at a three-fluid contact line. In
its equilibrium configuration, the compound drop comprises
three spherical surface segments, intersecting at contact
angles, which are determined by the force balance at the triple
junction [6]:

cos θi = (
γ̂ 2

jk − γ̂ 2
ij − γ̂ 2

ik

)/
(2γ̂ij γ̂ik), θi ∈ (0,π ) . (1)

In this article we do not employ indicial summation.
Subscripts designate relations to phases or interfaces. Thus,
i is the number of the phase corresponding to angle θi (see
Fig. 1) and γ̂mn denotes the interfacial tensions between phases
m and n. Note that the nondeformed shape possesses an axial
symmetry. A schematic description of a partially engulfed
compound drop is depicted in Fig. 1.

We consider, henceforth, a nonisothermal environment with
the temperature variation along the interfaces induced by an
externally imposed linear field with a constant gradient, ∇T̂ ,

collinear to the axis of the drop. The nonuniform interfacial

FIG. 1. Configuration of a partially engulfed fluid-fluid
compound drop.
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tension results in an axisymmetric thermocapillary flow and a
net migration of the drop.

The interfacial tensions γ̂ij are, in general, functions of the
thermodynamic state variables. In this work we assume that
the temperature variations along each interface are not large
and that

γ̂ij = γ̂ij (T̂ ) = γ̂ij (T̂0) − γ̂ T
ij (T̂0)(T̂ − T̂0), (2)

where T̂ is the local temperature and T̂0 is the temperature
at the three-phase contact line. Normally, interfacial tension
decreases with temperature and the rates of change of γ̂ij with
temperature, γ̂ T

ij , are positive.
We render the length, velocity, stream function, stress,

temperature, and interfacial tensions nondimensional using
R∗, U ∗, R∗2U ∗, μ2U

∗/R∗, R∗|∇T̂ |, and γ̂ ∗ = γ̂ 0
12(T̂0|t=0),

respectively. Here R∗ is the radius of a sphere having a
volume equal to the volume of the compound drop, μi

denotes the viscosity of phase i, and U ∗ (following Young
et al. [1]) is a velocity proportional to that of the thermo-
capillary migration velocity of a spherical drop of radius
R∗ submerged in fluid 2, U ∗ = γ̂ T

∗ R∗|∇T̂ |/μ2 , with γ̂ T
∗

being some characteristic value of temperature derivative of
surface tension. The Reynolds number associated with the
problem Re = U ∗R∗/μ 2, is typically of the order 10−4 or less.
Consequently, in this paper we consider it negligibly small and
adopt a quasistationary creeping flow approximation. Thus, the
bulk flow is governed by the Stokes equations that have the
form:

∇ · u = 0, ∇ · σ = 0 ,
(3)

σ = −pI + λ i(∇u + ∇uT ), x ∈ �i,

where �i denotes the domain occupied by fluid i, while u,
p, and σ are the velocity, dynamic pressure, and stress fields
in the respective domains with λ i = μi/μ 2. The scaled inter-

facial tensions are γij (T ) = γ 0
i j − γ̂ T

i j

γ̂ ∗ R∗|∇T̂ |T , with γ 0
i j =

γ̂i j (T̂0)/γ̂ ∗ and T = (T̂ − T̂0)/(R∗|∇T̂ |). Additional govern-
ing parameters of the problem are the capillary number, Ca =
Ca12 = μ2U

∗/γ̂ ∗ = γ̂ T
∗ R ∗|∇T̂ |/γ̂ ∗, and the ratios γ̂ T

i j /γ̂
T

∗
that are addressed below as the relative thermal activities of
the interfaces. Capillary number varies from vanishingly small
to order 1. In the present study we concentrate on the case
Ca � 1. In terms of these parameters the scaled interfacial
tensions are

γij = γij (T ) = γ 0
i j − γ̂ T

i j

γ̂ T∗
Ca T . (4)

The interfacial conditions are the continuity of the velocity
field,

[u] = 0 , x ∈ �ij , i = 1,2 , j = 2,3 , i �= j, (5)

and the stress balance,

[σ ] · n =
(γij

Ca

)
(∇ · n) n − 1

Ca
∇Sγij ,

(6)
x ∈ �ij , i = 1,2, j = 2,3, i �= j,

where n denotes a unit outer normal and ∇S = ∇ − (∇ · n)n
is a surface gradient at the corresponding surface. Here and
below [] denotes the jump across each surface of the drop

from the outside to the inside. Projections of Eq. (6) to normal
and tangential directions, respectively, are (for axisymmetric
surfaces that are considered in the present work)

[σ ] : nn =
(γij

Ca

)
(∇ · n) ,

(7)
x ∈ �ij , i = 1,2, j = 2,3, i �= j,

and, making use of Eq. (4),

[σ ] : ns = γ̂ T
i j

γ̂ T∗

∂ T

∂ s
, x ∈ �ij , i = 1,2, j = 2,3, i �= j,

(8)

with s being a unit tangent vector to the interface.
Note that, for the problem under consideration, the time

scales for the net motion of the compound drop and for
the deformation of its surfaces are t∗ = R/U ∗ and tS =
	R μ2/γ12 = Ca	R/Rt∗, respectively, with 	R being a
characteristic deviation from the equilibrium shape. These are
always larger than the one associated with the conformation of
the viscous flow to any intermediate shape, tF = Ret∗, since
the latter is proportional to the Reynolds number which is
vanishingly small.

A deformation of the interfaces of the compound drop can
result from three processes. The basic shape may be altered and
the spherical segment interfaces can evolve mainly following
changes in the three-phase contact angles. In addition, the
various interfaces can deform to deviate from their basic
spherical segment shapes due to the tension variation on them
and due to the flow-induced stresses. It follows from Eq. (7)
that, at the leading order in small Ca, the compound drop
interfaces may be considered nondeformable at each time step
as well as at times of the order t∗. However, in contrast to
the case of a single-phase drop, at times of the order t∗/Ca
a considerable change in the two-phase partially engulfed
drop configuration can take place even when tension and
flow-driven deformation are small. Thus, studying the former
kind of shape evolution of an, otherwise, “nondeformable
compound drop” is the main subject of this paper. As is shown
in the following section, in some cases a critical change of
the topology of the aggregate may occur, resulting in either a
separation of the compound object into two single-phase drops
or a complete engulfment of one of the drop immiscible parts
by the other.

It was mentioned above that the resulting shape of the
compound drop is determined by the contact angles θi , related
to the interfacial tensions by Eq. (1). Since the interfacial
tensions depend on the temperature at the three-phase contact
line, they will change with the propagation of the drop to the
hotter (or cooler) regions of the ambient medium.

The formulations of the problem should be completed by
the heat equation and corresponding boundary conditions. In
order to isolate the effect of shape evolution and to avoid
computations of the bulk thermal fields, we follow Rosenfeld
et al. [23] and restrict our study to the case of equal thermal
conductivities of all three phases, where, in the absence of
significant convective effects, the temperature field remains
unperturbed. The generalization to the case of arbitrary heat
conductivities is straightforward.
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Choose a coordinate system with the z axis collinear to
the temperature gradient and the axis of the drop, with the
three-phase contact line located initially at the z = 0 plane. Let
T̂0 = T̂ |ẑ=0. Then, in scaled variables, T = z and, hence, the
interfacial tensions and the contact angles are the functions of
z as well, with ZC being the position of the three-phase contact
line

γij = γij (z) = γ 0
i j − γ̂ T

i j

/
γ̂ T

∗ Ca z

= γi j [ZC(t)] − γ̂ T
i j

/
γ̂ T

∗ Ca [z − ZC(t)]. (9)

Each interface can be considered as nondeformable if the
first term in the right-hand-side of Eq. (9) is much larger than
the second one. Since at each interface z − ZC(t) = O(1) and
Ca � 1, this condition holds as long as γi j [ZC(t)] = O(1).
In scaled variables, the velocity of the drop is of the order
1. Hence, during the time of O(1), the expected deviation
from the initial shape is small, of O(Ca). However, with the
passage of time of O(1/Ca) the drop moves to the distance
of O(1/Ca) and the contact angles and the shape of the drop
are expected to change significantly, while the assumption of
nondeformability of the drop is still valid. In the present work
we are interested in the behavior of the compound drop in a
time scale of O(1/Ca), when the drop is much smaller than the
distance it travels. The velocity of the compound drop at any
moment can be calculated, to the leading order, as the velocity
of the nondeformable drop with contact angles computed
according to Eq. (1) with γi j = γi j [ZC(t)]. The velocity
calculations were performed making use of the presentation of
the general solution for the Stokes stream function in toroidal
coordinates [26] following Rosenfeld et al. [23].

Recall that two immiscible fluids, 1 and 3, embedded
in a third immiscible fluid, 2, can achieve four types of
configurations [6]: complete engulfment of phase 3 by phase 1,
complete engulfment of phase 1 by phase 3, partial engulfment,
or nonengulfment. It follows from Eq. (1) that the particular
type of configuration depends solely on the ratios of surface
tensions between the three pairs of the phases involved, two of
which are independent parameters.

A phase diagram of possible configurations of two immis-
cible drops at the (γ12/γ13,γ23/γ13) plane is presented in Fig. 2.
Domains A, B, C, and D separated by solid lines correspond
to the following configurations: phase 3 inside phase 1, partial
engulfment, phase 1 inside phase 3, and separated drops,
respectively.

If a compound drop, initially of the partially engulfed
configuration corresponding to some point in the domain
B, undergoes thermocapillary migration, it propagates in
the temperature field and the ratios of interfacial tensions
continuously change. Thus, each case of the drop dynamics
can be reflected by a curve at the phase plane, parametrized
by T . Obviously, four different scenarios of the drop behavior
are possible:

(I) The curve intersects the boundary of domain B and
comes to domain A. Phase 1 completely engulfs phase 3.
(II) The curve intersects the boundary of domain B and

comes to domain D. The two-phase drop splits into two
single-phase ones.
(III) The curve intersects the boundary of domain B and
comes to domain C. Phase 3 completely engulfs phase 1.

FIG. 2. Phase diagram of possible configurations of two immis-
cible drops and possible scenarios of their dynamic change with
interfacial tension ratios. A, phase 1 engulfed by phase 3; B, partial
engulfment; C, phase 3 engulfed by phase 1; D, separation. Marked
lines are possible scenarios of the evolution of the partially engulfed
drop. I, phase 3 engulfed by phase 1; II, the drop’s immiscible parts
separate; III, phase 1 engulfed by phase 3; IV, the drop remains
partially engulfed.

(IV) The curve does not intersect the boundary of domain B.
The drop keeps the partially engulfed configuration.

These scenarios are illustrated in Fig. 2 by correspondingly
marked dashed lines.

III. EXAMPLES OF THE DYNMAMIC EVOLUTION
OF A NONDEFORMABLE COMPOUND DROP

Rosenfeld et al. [23,24] computed the thermocapillary
induced velocity of a partially engulfed compound drop
of various given shapes and various dependencies of the
interfacial tensions on the temperature. It was demonstrated
that, normally, the motion of a drop is induced in the direction
of the temperature gradient similar to the case of a single-phase
droplet. However, some cases in which the hybrid drop
moved against the temperature gradient were observed as
well. Since for cases in which the motion is in the direction
of the temperature gradient the interfacial tensions typically
decrease, whereas for cases where the motion is in the opposite
direction they grow, one can anticipate quite different behavior
patterns of the aggregate. We consider these cases separately
in Secs. III A and III B, respectively.

To illustrate the effect of interfacial tension variation on the
dynamic change of shape of a partially engulfed compound
drop, we consider drops to have initially the same shape
but different linear dependencies of surface tensions on the
temperature, leading to entirely different scenarios of drop
evolution. For the common initial shape, we chose the one
with contact angles θ1 = 0.8722π, θ2 = 0.95π, and θ3 =
0.1778π, resulting from the specific surface tension values
γ̂12 = 0.061N/m, γ̂13 = 0.018N/m, and γ̂23 = 0.045N/m,
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FIG. 3. The shape evolution for a partially engulfed compound
drop undergoing thermocapillary migration in the direction of the
temperature gradient (upward) with (a) V1/V3 = 0.2, (b) V1/V3 = 1,

and (c) V1/V3 = 5. γ12 = 1 − 0.1Ca T , γ13 = 0.2952 − 0.1Ca T ,

γ23 = 0.7374 − 0.1Ca T . The vertical positions of ZC from bottom
to top are at 0, 0.26/Ca, 0.32/Ca, and 0.326/Ca. Eventually, phase 1
is engulfed by phase 3.

quoted by Vuong and Sadhal [17] and used as base examples
also in Refs. [23,24].

A. Migration in the direction of the temperature gradient

Various scenarios of the shape evolution for compound
drops migrating in the direction of the temperature gradient
are presented in Figs. 3–6. The three-phase contact line of
the shapes at each row in these figures corresponds to a
specific vertical position, ZC , while columns (a), (b), and (c)
correspond to volume ratios, V1/V3, of 0.2, 1, and 5, respec-
tively. Figure 3 illustrates the dynamics of compound drops
with equal thermal activities of the interfaces, i.e., interfacial
tensions at all three interfaces having equal derivatives with
respect to temperature,

γ12 = 1 − 0.1 Ca T , γ13 = 0.2952 − 0.1 Ca T ,
(10)

γ23 = 0.7374 − 0.1 Ca T .

The drop attains a velocity in the direction of the applied
temperature gradient and migrates upward. Since the initial
values of surface tensions are different, their ratios change
with time and lead to the change in the shape of the aggregate
according to Eq. (1). In this case, the ratios γ13/γ12 and γ23/γ12
decrease while the tension at �12 becomes relatively stronger.
As a result, the surface �12 constantly shrinks and eventually
this interface vanishes. At this instant the balance of the
horizontal components of the force at the three-phase contact
line can no longer be maintained and, as a result, phase 1

FIG. 4. The shape evolution for a partially engulfed compound
drop undergoing termocapillary migration in the direction of
the temperature gradient (upward) with γ12 = 1 − 0.4Ca T , γ13 =
0.2952 − 0.1Ca T , and γ23 = 0.7374 − 0.1CaT . (a) V1/V3 = 0.2.
(b) V1/V3 = 1. (c) V1/V3 = 5. The vertical positions of ZC from
bottom to top are at 0, 0.6/Ca, 1.3/Ca, and 0.136/Ca, respectively.
Eventually, phase 3 is completely engulfed by phase 1.

becomes entirely engulfed by phase 3, i.e., scenario III takes
place. In Fig. 3, the �12 positions of the three-phase contact
line for each row are 0, 0.26/Ca, 0.32/Ca, and 0.326/Ca,
respectively.

A different and opposite scenario I is illustrated in Fig. 4.
Here, the thermal activity of the interface 1–2 is 4 times higher
than the others,

γ12 = 1 − 0.4 Ca T , γ13 = 0.2952 − 0.1 Ca T ,
(11)

γ23 = 0.7374 − 0.1 Ca T .

The positions of the 3-phase contact line for each row are
0, 0.6/Ca, 1.3/Ca, and 1.36/Ca, respectively. In this case,
the ratio γ13/γ12 increases, while γ23/γ12 decreases, and, thus,
the tension at �23 becomes relatively stronger. This interface
shrinks and eventually disappears. Phase 3 becomes entirely
engulfed by phase 1.

Yet another scenario II is presented in Fig. 5, where the
interface separating the drop phases is thermally inactive,

γ12 = 1 − 0.1 Ca T , γ13 = 0.2952,
(12)

γ23 = 0.7374 − 0.1 Ca T .

The positions of the contact lines for each row are 0, 5/Ca,
7/Ca, and 7.21/Ca, respectively. Since, in this case, the inner
interface 1–3 is not thermally active, its tension does not
change with the propagation of the drop, while the surface
tensions at the outer interfaces decrease. As a result the tension
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FIG. 5. The shape evolution for a partially engulfed compound
drop undergoing thermocapillary migration in the direction of
the temperature gradient (upward) with γ12 = 1 − 0.1CaT , γ13 =
0.2952, and γ23 = 0.7374 − 0.1 CaT . (a) V1/V3 = 0.2. (b) V1/V3 =
1. (c) V1/V3 = 5. The vertical positions of ZC from bottom to top are
at 0, 5/Ca, 7/Ca, and 7.21/Ca, respectively. Eventually, drop parts 1
and 3 separate.

at �13 becomes relatively stronger, this interface shrinks with
the drop progress and eventually disappears. The immiscible
parts of the compound drop separate.

The three scenarios described above lead to different
changes in the topology of the compound object, although
the initial configuration is the same. Note that such changes do
not take place (scenario IV) if the ratios of interfacial tensions
change very slowly or do not change at all, as in the case

γ12 = 1 − 0.1T/Ca, γ13 = 0.2952 − 0.02952 Ca T ,
(13)

γ23 = 0.7374 − 0.07374 Ca T .

As it was demonstrated, the qualitative type of the evolution
of the compound object is determined solely by the temper-
ature dependence of the interfacial tensions involved and is
independent of the volumes and viscosities of the phases.
These parameters, however, strongly affect the dynamics of
the process in time. To study this dynamics we calculated
quasistationary thermocapillary migration velocities of the
compound drop as functions of the contact line positions for the
cases depicted in Figs. 3–5 for various values of viscosity ratio.

The velocity was computed making use of the general
solution for the Stokes stream function in toroidal coordinates
as in Refs. [17] and [26]. The coefficients entering this
general solution were determined following the procedure
developed in Ref. [23]. The results of the velocity calculation
are presented in Fig. 6. Figures 6(a) and 6(b), Figs. 6(c) and

6(d), and Figs. 6(e) and 6(f) are computed for surface tensions
given by Eqs. (10), (11), and (12), respectively.

Figures 6(a), 6(c), and 6(e) illustrate the dependence of
the migration velocities on the phases’ volume ratio. Dashed,
dotted, and solid curves in these figures are computed for
V1/V3 = 0.2, 1, and 6, corresponding to the left, middle, and
right columns in Figs. 3–5, respectively. In Figs. 6(a) and 6(b)
one can see that the migration velocities decrease as the phase
1 velocity becomes more and more engulfed by phase 3 and
attains some positive values at the limiting entirely engulfed
configurations. The migration velocities decrease with the
growth of the volume ratio V1/V3 and almost vanishes at the
limiting thin shell configuration at V1/V3 = 5 as is obvious in
Fig. 6(a). Both phenomena are due to the increase of the Stokes
drag and to the retarding effect of the Marangoni traction at
the inner interface �13, as found in Ref. [23]. In the cases
depicted in Fig. 6(a), this interface constantly grows with the
propagation of the drop and the retardation effect becomes
more significant.

In Fig. 6(b) one can see that the migration velocities
decrease with the growth of the viscosity of the drop. However,
this dependence is weaker for configurations that are close to
the limiting one with the complete engulfment of phase 1.

Figures 6(c) and 6(d) illustrate the case resulting in the total
engulfment of phase 3 by phase 1, with thermal activity of the
interface �12 being 4 times higher than that of the other two
(see Fig. 4). The dynamic change of the velocity drastically
differs from that in the cases of equal thermal activities of
the interfaces depicted in Fig. 6(a). Here, the surface of the
interface �12 is constantly augmented (see Fig. 5), resulting
in the growth of the net Marangoni force exerted on the drop.
In the case V1/V3 = 0.2, this leads to a monotonous growth
of the migration velocity, while for the higher volume ratios
the increase in the resistance prevails at intermediate stages of
the process and the velocity dependence on the position is not
monotonic. The dependence of the velocity on the viscosity of
phase 1 becomes more pronounced as it engulfs phase 3, as is
evident in Fig. 6(d).

Figures 6(e) and 6(f) show the increase of velocity of the
compound drop with a thermally nonactive inner interface �13

during the process, resulting in the separation of the parts of
the drop. This phenomenon can be explained by the increase
in size of the thermally active surfaces. The dependence on
the viscosity of phase 1 becomes more pronounced with the
separation of the phases. However, the effect of each parameter
on the velocity is, in this case, weaker than in the processes
leading to the complete engulfment.

An interesting question is what happens to the drop parts
after the separation occurs. Do the parts separate or will the
motion continue in the touching drop configuration. Obviously,
this behavior depends on the migration velocity that the two
drops would attain if separated by a small gap. If the velocity
of the leading drop exceeds that of the trailing one they will
naturally separate, whereas, in the opposite case, they maintain
the touching drops configuration. These velocities can be
computed making use of bispherical coordinates following
Morton et al. [11]. However, some conclusions concerning the
cases shown in the Fig. 6 can be made without computations.
Thus, it was shown in Morton et al. [11] that, if the drops
have the same viscosities and surface properties, the larger one
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FIG. 6. Thermocapillary migration velocity of a partially engulfed compound drop versus the location of the three-phase contact line. (a)
and (b) γ12 = 1 − 0.1Ca T ,γ13 = 0.2952 − 0.1CaT ,γ23 = 0.7374 − 0.1CaT ; (c) and (d) γ12 = 1 − 0.4 CaT , γ13 = 0.2952 − 0.1CaT ,γ23 =
0.7374 − 0.1CaT ; (e) and (f) γ13 = 0.2952, γ12 = 1 − 0.1 CaT , γ23 = 0.7374 − 0.1 CaT . In (a), (c), and (e), λ 1 = λ 3 = 1 and V1/V3 =
0.2, 1, and 5 for solid, dotted, and dashed lines, respectively. In (b), (d), and (f) V1/V3 = 1, λ 3 = 1, and λ 1 = 0.1, 1, and 10 for solid,
dotted, and dashed lines, respectively.

moves faster. Hence, in the case of equal or close viscosities
of the drop parts, it is anticipated that the process illustrated
in Fig. 5(c) will continue to a separation of the drops, while in
the other two cases the motion will continue as an aggregate
of touching drops (under the assumption of axial symmetry).
Furthermore, when the two daughter drops are of equal size,
the one with a lower viscosity moves faster and, hence, the
drops depicted in Fig. 5(b) will separate if λ 1 < λ 3 and will
preserve a touching drops configuration in the opposite case.
Note, however, that the cases where the trailing drop moves
faster than the leading one if separated are expected to be
unstable with respect to nonaxisymmetric disturbances.

B. Anomalous migration in the direction opposite
to the temperature gradient

The computations of Refs. [24,25] revealed that a partially
engulfed compound drop can move in a direction opposite
to the temperature gradient in cases where the temperature
dependence of the surface tension at the inner interface 1-3 is
much stronger than that at the outer interfaces. To isolate the
effect we consider first the case where only the inner interface

is thermally active, while the surface tensions at the outer
interfaces do not change with the temperature. Here we chose
U ∗ = γ̂ T

13R
∗|∇T̂ |/μ2 for the characteristic velocity.

Figure 7 shows the thermocapillary migration velocities of
various compound drops with λ 1 = λ 3 = 1, γ12 = 1, γ13 =
0.2952 − CaT , and γ23 = 0.7374 as functions of the three-
phase contact line positions. The time dependence of these
positions can be easily obtained by integrating the equation
dZC/dt = U (ZC). Solid, dashed, dashed-dotted, and dashed
lines are calculated for the volume ratios V 3/V1 = 9, 5, 3, and
2, respectively. Since the velocity is negative, the drop moves
in the direction opposite to the temperature gradient toward
negative z.

In Fig. 7(a) all four cases are plotted using the same scale.
One can see that the magnitude of the velocity decreases with
the growth of the volume ratio and seems to monotonically
decay with the propagation of the aggregate to cooler regions.
More accurate analysis [see Figs. 7(b)–7(d)] revealed, how-
ever, that only for V 3/V1 = 2 (dashed line) is the migration
velocity monotonic, while for the higher volume ratios the
velocity achieves several extrema including a zero maximum
at some locations.
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FIG. 7. Thermocapillary migration velocity of a partially engulfed compound drop versus the location of the three-phase contact line.
γ12 = 1, γ13 = 0.2952 − CaT , γ23 = 0.7374, λ 1 = λ 3 = 1. Solid, dotted, dashed-dotted, and dashed lines are computed for V1/V3 = 9, 5, 3,

and 2, respectively.

The shapes of the drops with interfacial tensions γ12 =
1, γ13 = 0.2952 − CaT , and γ23 = 0.7374 and volume ratios
V 3/V1 = 2, 3, 5, and 9 at various positions of the three-phase
contact line are demonstrated in Figs. 8(a)–8(d), respectively.
The migration velocity is negative, and the drops migrate
downward. The upper row in Fig. 8 shows the initial configu-
rations at ZC = 0. The second row in Fig. 8 presents the shapes
at ZC = –0.05/Ca. The third and the fourth shapes in Fig. 8(a)
are calculated for ZC = −0.2/Ca and −0.8/Ca, respectively,
while in Figs. 8(b)–8(d) these shapes correspond to positions
where the migration velocity is 0 and to a following local
minimum of the velocity [see Figs. 7(b)–7(d)]. The lowest
row of shapes in Fig. 8 corresponds to the touching drops
configurations at ZC = −1.422/Ca.

It is evident from Figs. 7 and 8 that the migration velocity
vanishes for the shapes with flat inner interface. This is not
a surprise since, at such configurations, surface tension is
constant along each of the interfaces, including the thermally
active one, and there is no reason for a thermocapillary flow
to exist. In such stationary states all the fluids are quiescent as
none of the interfaces exerts any shear on the bulk phases. At
this equilibrium position the drop would not move. However,
these equilibrium positions are not stable. Indeed, any small
shift downward will result in a negative migration velocity,
and the drop will proceed slowly moving in the direction
opposite to the temperature gradient until the inner interface
vanishes completely and, as a result, the drop parts separate. At
these limiting configurations again, since the thermally active
interface disappeared, all the interfacial tensions are constant
and no thermocapillary flow takes place.

Another interesting question is if the drop, initially located
above the equilibrium point, can reach it in finite time. The
answer is negative. In view of the maxima show in Fig. 7,
The migration velocity of the drop located in the vicinity of
the equilibrium position, Zeq, can be approximated by U =
dZC/dt = −a (ZC − Zeq)2, with a being a positive constant.
Integrating this equation yields

ZC(t) = Zeq + 1

1/(ZC(0) − Zeq) + at
.

Obviously, if ZC (0) > Zeq, the drop approaches the equi-
librium position but reaches it in infinite time. On the other
hand, if ZC (0) < Zeq, the drop will move away from the
equilibrium with its shape approaching a touching drops
configuration. The evolution scenario presented in Figs. 7 and
8 is typical solely for the special case of thermally nonactive
outer interfaces of the compound drop. However, even a
very weak dependence of the surface tension of one of these
interfaces on temperature may drastically change the behavior
of the aggregate. An illustration of this change is given in
Figs. 9 and 10, where

γ12 = 1 − 0.005 CaT , γ13 = 0.2952 − CaT ,
(14)

γ23 = 0.7374 − 0.005 CaT .

In Fig. 9 the thermocapillary migration velocities are plotted
versus the three-phase contact line positions. Solid, dashed,
dashed-dotted, and dashed lines are calculated for the volume
ratios V 3/V1 = 9, 5, 3, and 2, respectively. One can see that
for V 3/V1 = 9 (solid line) the velocity is positive and, hence,
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FIG. 8. Dynamic shape evolution of a partially engulfed
compound drop undergoing thermocapillary migration in the
direction opposite to the temperature gradient. γ12 = 1,

γ13 = 0.2952 − CaT , γ23 = 0.7374, and λ 1 = λ 3 = 1. V1/V3 =
2 (a), 3(b), 5(c), and 9(d). Locations of the three-phase contact line
from top to bottom are (a) 0, –0.05/Ca, –0.2/Ca, –0.8/Ca, and
–1.422/Ca; (b) 0, –0.05/Ca, –0.9/Ca, –1.15/Ca, and –1.422/Ca;
(c) 0, –0.05/Ca, –0.32/Ca, –0.6/Ca, and –1.422/Ca; and (d) 0,
–0.05/Ca, –0.17/Ca, –0.4/Ca, and –1.422/Ca.

the drop moves in the direction of the temperature gradient,
following one of the scenarios described in the previous
section. For smaller volume ratios, the velocity is first negative,
then vanishes, and changes sign. The drop moves in the
direction opposite to the temperature gradient toward negative
z and tends to some equilibrium position, where U = 0. In
contrast to the previous case, this equilibrium is stable with

FIG. 9. Thermocapillary migration velocity of a partially en-
gulfed compound drop versus the location of the tree-phase contact
line. λ 1 = λ 3 = 1, γ12 = 1 − 0.005 CaT , γ13 = 0.2952 − CaT , and
γ23 = 0.7374 − 0.005 CaT . Solid, dotted, dashed-dotted, and dashed
lines are computed for V1/V3 = 9, 5, 3, and 2, respectively.

FIG. 10. Dynamic shape evolution of a partially engulfed com-
pound drop undergoing thermocapillary migration in the direction
opposite to the temperature gradient. λ 1 = λ 3 = 1, γ12 = 1 −
0.005CaT , γ13 = 0.2952 − CaT , γ23 = 0.7374 − 0.005CaT , and
V1/V3 = 2 (a), 3 (b), and 5 (c). Locations of the three-phase con-
tact line from top to bottom are (a) 0, –0.1/Ca, and –0.24/Ca; (b) 0,
–0.05/Ca, and –0.12/Ca; and (c) 0, –0.02/Ca, and –0.04/Ca.

respect to the perturbation of the position of the drop, since any
change in the position results in the velocity in the direction
of the equilibrium, i.e., the drop shifted downward attains
positive velocity, while that shifted upward attains negative
velocity. Stability of the equilibrium shape with respect to
the perturbations of the interfaces is beyond the scope of this
paper. Another difference from the cases illustrated in Figs. 7
and 8 is that the fluids at equilibrium are not quiescent and
thermocapillary flow, though rather weak, exists.

At the vicinity of the equilibrium position, Zeq, the
migration velocity can be approximated by U = dZC/dt = −a

(ZC − Zeq) (see Fig. 9), with a being a positive constant.
Integrating this equation yields

ZC(t) = Zeq + (ZC(0) − Zeq)e−at .

One can see that, in contrast to the previous case, the
drop approaches equilibrium position regardless of its initial
location being above or below this equilibrium. The approach
is faster than in the previous case but, again, it takes infinite
time to reach the equilibrium.

The evolution of the shapes of the drops with interfacial
tensions (14) and volume ratios V3/V1 = 2, 3, and 5 is demon-
strated in Figs. 10(a)–10(c), respectively. The upper and lower
rows show the initial and stable equilibrium configurations,
respectively. The middle row corresponds to intermediate
configurations. Evidently, the equilibrium configurations are
located at much smaller distance from the initial position than
in the previous case.

IV. CONCLUSIONS AND DISCUSSION

In this work we studied the dynamic change of the
configuration of a fluid-fluid partially engulfed compound
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drop undergoing thermocapillary migration in a nonisothermal
ambient medium. Under the assumption that the capillary
number is small, Ca � 1, at each time step the deviation
of interfaces of the compound object from spherical segment
shapes is negligible. However, as the drop propagates far
enough [to a distance of O(1/Ca)] through the nonisothermal
fluid, the temperature at the three-phase contact line and,
hence, the contact angles may considerably change, resulting
in a change of the compound drop configuration.

If the drop drifts in the direction of the temperature gradient,
the change in the interfacial tension normally results either in
separation of the immiscible parts of the compound object or in
a complete engulfment of one of the drop phases by the other.
The specific scenario depends on the relative rate of change
of surface tensions with temperature at the interfaces of the
compound object. Generally, the interface with the slowest
decrease of its surface tension tends to shrink and eventually
vanishes. If this is the inner interface, the two-phase drop
splits into two single-phase ones, while in the opposite case
complete engulfment takes place. In the special case when the
ratios between surface tensions change much slower than these
parameters themselves, no topological changes are expected
at the distances of O(1/Ca).

The qualitative type of the evolution of the compound object
is determined solely by the temperature dependence of the
interfacial tensions. However, the dynamics of the process is
affected by the volumes and viscosities of the drop phases. In
general, the migration velocity decreases with the increase of
the viscosity of each of the phases. The dependence on the
volume ratio, however, is more complex.

After the separation of compound object parts, the two
drops either detach and move apart or they continue migrating
in a touching drop aggregate, depending on which daughter
drop, leading or trailing, would move faster when separated.
The type of behavior after separation is determined by the
interplay of all the parameters of the system, except for the
surface tension of the inner interface, which disappears.

If the temperature dependence of the surface tension at the
inner interface 1-3 is much stronger than that at the outer inter-
faces, the compound drop can move in the direction opposite
to the temperature gradient, i.e., to the cooler regions of the
ambient fluid. Since in this case the interfacial tensions grow

with the propagation of the aggregate, whereas for the motion
in the opposite direction they decrease, the deformation pattern
is quite different. If the surface tensions of the outer interfaces
are temperature independent, no thermocapillary flow takes
place when the compound drop attains a configuration with a
flat inner interface as all interfacial tensions become constant.
However, the stationary configuration with a flat inner interface
is unstable and the evolution proceeds to a complete separation
of the drop’s immiscible parts, at which point all motions cease
again on the surfaces and in the bulks.

Nevertheless, a weak dependence of outer interfaces on
temperature drastically changes the limiting behavior of such
compound drops. In this case, a stable equilibrium configura-
tion with a curved inner interface is typical. In contrast to the
previous case, the compound drop does not move or change its
shape at this configuration, but the bulk fluids are not quiescent.
Note that the anomalous migration of the compound drop is
possible solely in the case when the dependence of interfacial
tension on temperature is at least an order of magnitude higher
than that at the outer interfaces. For thermocapillary systems
such combinations might be quite rare. However, recall
the well-known similarity between heat and mass transfer
and, therefore, between thermocapillary and solutocapillary
effects (see, e.g., Subramanian and Balasubramaniam, [27]).
Thus, our results are equally applicable to the Marangoni
migration of compound drops in a nonuniform concentration
field. The effect of the Marangoni migration in the direction
opposite to the concentration gradient is, perhaps, more readily
realized when the tension variations are caused by a preferred
adsorption of a surface-active substance on the inner interface
rather then by temperature variations.

Note finally that, while the linear approximation (2) is
well justified for modest temperature variations, the results
of this work can be easily generalized to the case of nonlinear
dependence of surface tension on the temperature that is typical
when the temperature changes considerably.
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