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Hydrodynamic interaction between two nonspherical capsules in shear flow
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The hydrodynamic interaction between two nonspherical capsules suspended in a simple shear flow is studied
numerically using a front-tracking method. The capsules are enclosed by thin shells which develop in-plane
tensions and bending moments due to a preferred three-dimensional unstressed configuration. Computations are
performed for capsules with spherical, oblate spheroidal, and biconcave unstressed shapes for a wide range of
dimensionless shear rates and initial separation distances between the two capsules. The bending modulus and
viscosity ratio between the internal and surrounding fluids are chosen to be those of healthy red blood cells.
Depending on the initial separation distance, we find that two spherical capsules in shear flow either cross over
each other or undergo spiraling motion. In addition, the long-time interaction behavior of capsules also depends
strongly on the unstressed shapes. More oblate or biconcave capsules exhibit two additional type of interactions,
namely swapping and continuous rotation, which occur only when each capsule undergoes tumbling motion.
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I. INTRODUCTION

The dynamics of deformable objects such as liquid droplets,
elastic capsules, lipid vesicles, and red blood cells in flows has
received growing interest experimentally [1–4], theoretically
[5–7], and numerically [8–12] in recent years. This is because
of their importance in a wide range of industries such as the
pharmaceutical industry as well as in basic physiology, the
most relevant of which is blood flow and understanding how
its constituents such as red blood cells affect the flow charac-
teristics. Therefore, it is important to understand how multiple
cells interact with each other in flows as well as the collective
behavior and rheology of a flowing suspension of cells.

The dynamics of a single cell or elastic capsule is relatively
well understood. In a simple shear flow, elastic capsules exhibit
a stationary tank-treading behavior if the initial unstressed
shape is a sphere [8]. For spheroidal or biconcave unstressed
shapes such as the red blood cell, transients to a tumbling state
can occur. Alternatively, the capsules may undergo swinging
motion in which they exhibit periodic oscillations in both
deformation and orientation superimposed on a tank-treading
mode [13–15]. In addition to the shape of the capsule, the
dynamics of the capsule also depends on viscosity ratio
between the internal and suspending fluids, applied shear
rate, membrane modulus of elasticity, and membrane bending
modulus.

However, not much has been studied about the hydrody-
namic interaction between capsules. The first study of the
hydrodynamic interaction between capsules was investigated
by Breyiannis and Pozrikidis [16] who considered a two-
dimensional suspension of capsules in shear flow. Three-
dimensional situation where two identical spherical capsules
interact in simple shear flow was considered by Lac et al. [17].
The study was later extended by considering the case where the
centers of mass of the spherical capsules are not constrained
to be in the same shear plane [18]. It has been found that
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hydrodynamic interaction leads to large capsule deformation
and an irreversible shift in the trajectories of the capsules
when they slide over each other with reduced dissipation.
Similar irreversible trajectory shifts that increase the initial
cross flow separation of the capsules have also been observed
for a pair of droplets [19]. This irreversible trajectory shift
leads to self-diffusion effects in a suspension of liquid droplets
or capsules. Doddi and Bagchi [20] studied the effect of
inertia on the hydrodynamic interaction between two spherical
capsules in shear flow. Based on their simulations, different
types of interaction such as self-diffusive type interaction and
spiraling motion are identified at finite inertia. The spiraling
motion, in which the capsules reversed their direction of
motion progressively in time, is due to the assumption that
the flow domain is periodic in the undisturbed flow direction.
Finally, it is worth noting that several numerical techniques has
been proposed recently [11,21,22] to simulate a large number
of three-dimensional deformable particles in order to capture
suspension rheology and self-diffusion which are important in
many applications. On the other hand, experimentally, Kantsler
et al. [23] were the first to study the hydrodynamic interaction
of two vesicles of similar size and discussed their implications
for the rheology of semidilute suspension of vesicles. As in the
case of droplets and capsules, deformable vesicles can cross
over each other and the interaction is responsible for the large
deformation of vesicles at the near-contact position and the
irreversible trajectory shift in the cross flow direction.

In this article we investigate numerically the hydrodynamic
interaction between two identical elastic capsules for different
initial unstressed shapes, namely spherical, oblate spherical,
and biconcave, and for a range of the initial positions of the
capsules and the dimensionless shear rate. In our numerical
study, the viscosity ratio between the internal and surrounding
fluid is assumed to match that of red blood cells in vivo. An
important feature of our numerical method is the inclusion of
the capsule membrane bending stiffness [24]. Previous authors
have typically neglected the effect of bending moments in
order to reduce the computational cost. Here we use a value
for the membrane bending stiffness corresponding to that of
the healthy red blood cells. So the objective of our present
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FIG. 1. Initial configuration of a pair of capsules in shear flow.
The coordinates of the capsule centered at O2 are denoted by
(x0,−y0).

study is to identify different behaviors and types of interaction
of capsules in shear flow for a variety of unstressed shapes,
considering cases where the viscosity ratio is different from
unity, and where the bending stiffness is taken into account.

II. NUMERICAL METHOD

A. Governing equations

In the present study we consider the hydrodynamic inter-
action between two nonspherical capsules suspended in an
ambient fluid with viscosity μe, subject to a shear flow as
shown in Fig. 1. Each capsule contains a Newtonian fluid with
viscosity λμe and is enclosed by a thin shell with undeformed
thickness h̄. For incompressible fluids, the governing equations
are

ρ[ut + (u · ∇)u] = −∇p + ∇ · [μ(∇u + ∇uT )] + f , (1)

∇ · u = 0, (2)

where u = (u,v,w)T is the fluid velocity, p is the pressure, and
ρ and μ are the density and viscosity of the fluid, respectively.
The effect of the thin shell �S(t) immersed in the fluid results
in a singular force f which has the form

f (x,t) =
∫

�S (t)
Fs(t)δ[x − X(t)]d�S, (3)

where X(t) is a material point and Fs(t) is the force at time t .
Here δ(x) is the three-dimensional Dirac function. The shell
follows the local fluid velocity as

d X(t)

dt
=

∫
�F

u(x,t)δ[x − X(t)]dx. (4)

In describing the kinematics of the capsule membrane, we
adopt the thin-shell model [25,26] formulated based on the
Kirchhoff-Love hypothesis. Consider a shell body �S whose
undeformed and deformed middle surfaces are denoted by �̄

and �, respectively. The surface basis vectors corresponding
to �̄ and � are

āα = X̄(ξ 1,ξ 2),α, aα = X(ξ 1,ξ 2),α, (5)

respectively, where X̄ and X are the positions of a material
point associated with the curvilinear coordinates (ξ 1,ξ 2) on
the shell middle surface in its undeformed and deformed
configurations, respectively. Here and henceforth a comma
is used to denote partial differentiation, Greek indices take the

values 1 and 2, lowercase Latin indices range from 1 to 3,
summation over repeated indices is implied, and a quantity in
the undeformed configuration is represented with a bar. The
local covariant basis vectors are defined as

gα = aα + ξ 3(ηa3),α, g3 = ηa3, (6)

where ξ 3 is the thickness coordinate, η is the thickness stretch,
and a3 is the unit normal vector to the middle surface. The
contravariant basis vector gi is defined such that gi · gj = δ

j

i

where δ
j

i is the Kronecker delta. The corresponding covariant
and contravariant components of the metric tensors are gij =
gi · gj and gij = gi · gj , respectively. In term of the co- and
contravariant basis vectors, the deformation gradient tensor F
for the shell body may be expressed in the form [27]

F = ∂ X

∂ X̄
= ∂ X

∂ξ i
⊗ ḡi = gi ⊗ ḡi . (7)

Using the local covariant basis vectors expressed in Eq. (6),
the deformation gradient can be rewritten as

F = aα ⊗ ḡα + ηa3 ⊗ ḡ3 + ξ 3(ηa3),α ⊗ ḡα. (8)

The right Cauchy-Green strain tensor is then given in terms of
the deformation gradient tensor F as

C = FTF = gij ḡi ⊗ ḡj . (9)

To describe the mechanical response of the thin shell we
assign strain-energy functions W , per unit undeformed volume
of �̄, and H, per unit area of �. The total strain energy of the
thin shell is defined by

S =
∫

�̄S

Wd�̄S +
∫

�

Hd�. (10)

For the incompressible hyperelastic material, such as Mooney
elastic solids or biological membranes, we consider the
Mooney-Rivlin strain energy function per unit undeformed
volume

W (C) = c1
(
IC

1 − 3
) + c2

(
IC

2 − 3
)
, (11)

where c1 and c2 are material constants and IC
1 and IC

2 are
the invariants of the right Cauchy-Green tensor C. The neo-
Hookean strain energy function

W (C) = E

6

(
IC

1 − 3
)

(12)

is a special case of the Mooney-Rivlin strain energy function
with c2 = 0 and c1 = E/6, where E is the Young’s modulus.
To model the red blood cell membrane, we use the strain energy
function proposed by Skalak et al. [28]

W = Es

4

(
1

2
I 2

1 + I1 − I2

)
+ c11Es

8
I 2

2 , (13)

where Es = Eh̄ is the surface elastic modulus, c11 is a
large constant represents the ratio between the area dilatation
modulus and the shear modulus, and the invariants I1 and I2

are given in [29]. In addition, we consider the Helfrich [30]
bending energy function for biological membranes, given by

H = 2κB

(
κm − κR

m

)2
, (14)
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where κB is the scalar bending modulus and κR
m is the reference

mean curvature. The mean curvature κm is computed from the
relation

2κm = καβgαβ, (15)

where καβ = aα,β · a3 is the component of the curvature tensor.
The Kirchhoff stress tensor can be expressed as

τ = τ ij gi ⊗ gj , (16)

with the components τ ij = 2 ∂W
∂gij

− psg
ij , where ps denotes

the hydrostatic pressure. The hydrostatic pressure can be
calculated from the plane stress assumption by requiring that
τ 33 = 0. The thickness strain g33 and thickness stretch η can
be computed from the incompressibility condition det F = 1.
Following [25,26], we define the stress resultant ni and the
moment resultant mα as

ni =
∫ h̄/2

−h̄/2
τ · gi ν̄dξ 3, (17)

mα =
∫ h̄/2

−h̄/2
τ · gαξ 3ν̄dξ 3, (18)

where ν̄ accounts for the curvature of the shell in the volume
integration [29]. The bending stress follows from (14) by the
work conjugacy, with the result

qαβ = ∂H

∂καβ

= 2κB

(
κm − κR

m

)
gαβ. (19)

At equilibrium, the potential energy of the shell body is
stationary, that is,

δ� = δ�int + δ�ext = 0, (20)

where δ�ext is the variation of the potential energy of the
external forces. The variation of the potential of the internal
forces can be expressed as

δ�int =
∫

�̄S

∂W

∂F
: δFd�̄S +

∫
�

∂H

∂καβ

δκαβd�. (21)

Substituting Eqs. (8) and (19) into (21) and a straightforward
manipulation yields the following formulation:∫

�̄

[nα · δaα + η n3 · δa3 + mα · (ηδa3),α]d�̄

+
∫

�

qαβ
(
δaα,β · a3 + aα,β · δa3

)
d� + δ�ext = 0.

(22)

Details for the derivation of Eq. (22) are given in [25,29].

B. Spatial discretization of the thin shell

Here we follow the C1-interpolation scheme based on the
subdivision surface proposed in [25,31] for thin-shell analysis.
The main idea behind subdivision surfaces is to represent the
smooth shell middle surface by a control mesh containing a
set of NP control points xI ,I = 1, . . . ,NP. This mesh may be
taken as a basis for introducing an interpolation of the form

x(ξ 1,ξ 2) =
∑

I

NI (ξ 1,ξ 2)xI , (23)

where I is the local numbering of the nodes and NI (ξ 1,ξ 2) is
the box-spline basis function [32]. Introducing the interpolated
parametric equation (23) into the weak form (22), we arrive at
the formulation for the internal force at node I as

f I =
∫

�̄

[
nα · ∂aα

∂xI

+ ηn3 · ∂a3

∂xI

+ mα ·
(

η
∂a3

∂xI

)
,α

]
d�̄

+
∫

�

qαβ

[(
∂aα

∂xI

)
,β

·a3 + aα,β · ∂a3

∂xI

]
d�. (24)

The internal force at node I is the sum of element contributions
as in the standard finite element method. The contribution
to the internal force at node I from a generic element can
be calculated by a one-point quadrature rule [25] with the
barycenter of the element as the Gaussian quadrature point.
The stress and moment resultants at the quadrature point are
computed by numerical integration of the stresses across the
thickness of the shell using the three-point Simpson rule.

C. Description of the immersed boundary method

The coupling between the fluid and the capsule deformation
is done using an implicit immersed boundary method [29]
which is an extension of Peskin’s immersed boundary method
[33]. In this method, the force density is computed at the
control points and is distributed to the Cartesian grid points
using a discrete δ function,

f (x,t) =
NP∑
I=1

f I (ξ 1,ξ 2,t)Dh[x − xI (t)]�ξ 1�ξ 2, (25)

where f I (ξ 1,ξ 2,t) is the force per unit area at the control point
xI whose label is (ξ 1,ξ 2) and Dh(x) is a three-dimensional
discrete δ function [34]. Once the force density is computed
at the control points and distributed to the grid, the Navier-
Stokes equations with the forcing terms are then solved for the
pressure and velocity field at the Cartesian grid points using the
projection method [35]. The velocity field is then interpolated
to find the velocity at the control points as

u(xI ,t) =
∑

x

u(x,t)Dh[x − xI (t)]h3, (26)

and this velocity is used to advance the position of the
immersed boundary in an implicit manner [29]. The method
used in the present study has been tested extensively for the
deformation of single elastic capsule in shear flow in our
previous work [24,31].

III. RESULTS

In this section we investigate the hydrodynamic interaction
of two identical capsules enclosed by thin shells with spherical,
spheroidal, and biconcave unstressed shapes in simple shear
flow given by the velocity u = (γ̇ y,0,0), where γ̇ is the
shear rate. Nondimensionalizing all variables using as length
scale the equivalent volumetric capsule radius a, time scale
the inverse shear rate γ̇ −1, and stress γ̇ μe, we find that the
deformation and interaction of the capsules are determined
by five parameters: the Reynolds number Re = ργ̇ a2/μe, the
dimensionless shear rate G = μeγ̇ a/(Eh̄), the reduced ratio of
the bending modulus to the elastic modulus κ̂B = κB/(a2Eh̄),
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y c
/
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y0/a = 0.1
y0/a = 0.2

FIG. 2. (Color online) Trajectories of the spherical capsule center
O2 with G = 0.2 and x0/a = 2.5 at different initial locations y0/a =
0, 0.1, 0.2. The circle symbols are the initial locations (x0,−y0) of
the capsule center O2.

the viscosity ratio λ, and the relative initial position of the
capsules. For a capsule of volume V , the equivalent volumetric
radius a = (3V/4π )1/3 is chosen to be sufficiently small so
that the inertia effect can be neglected (Re � 1). Therefore,
the deformation and interaction of the capsules only depend on
the last four parameters, namely, dimensionless shear rate G,
reduced bending modulus κ̂B , viscosity ratio λ, and the relative
initial position of the capsules. The healthy red blood cell
membrane’s elastic modulus Eh̄ and bending modulus κB are
on the order of 10−3 dyn/cm and 10−12 dyn/cm, respectively
[36]. Taking the volume of a red blood cell to be V ≈ 7 ×
10−11 cm3, the reduced bending modulus κ̂B is then on the
order of 10−2. The ratio of the viscosity of the red blood
cell interior fluid to the viscosity of the suspending fluid in
vivo ranges between 4 and 10. Hence, all the simulations
are performed for a fixed bending modulus κ̂B = 0.01 and
viscosity ratio λ = 4 with different initial positions and
dimensionless shear rates G. We have kept Re fixed at
Re = 0.01. Experimentally, it is most convenient to vary G

by varying the shear rate γ̇ . Thus, in practice, varying G

results in Re varying too. However, at the low values of
Reynolds numbers encountered in this study, inertia effects
are negligible and Re is not expected to affect the capsule
dynamics. Indeed, it has previously been shown that capsule

−4 −2 0 2
−1

−0.8

−0.6

−0.4

−0.2

0

xc/a

y c
/a

128x64x64 grid, 5120 elements
192x96x96 grid, 8192 elements
256x128x128 grid, 20480 elements
384x192x192 grid, 32768 elements

FIG. 3. (Color online) Grid refinement study on the trajectories
of the spherical capsules when they cross over each other.

(a)γ̇t = 0

(b)γ̇t = 5

(c)γ̇t = 10

(d)γ̇t = 13

(e)γ̇t = 15

(f)γ̇t = 20

FIG. 4. (Color online) Snapshots of capsules during a self-
diffusive type or crossing interaction, corresponding to the case of
y0/a = 0.2 in Fig. 2.

deformation, as measured by the Taylor shape parameter
Dxy = (L − B)/(L + B), where L and B are the maximum
and minimum radial distances of an ellipsoid with the same
inertia tensor [8], as well as the capsule inclination angle, are
independent of Re when Re < 0.1 [29]. Extensive simulations
over a wide range of Re have also been carried out by Doddi
and Bagchi [20]. They showed that the effect of inertia is not
important when Re < 0.5. Therefore, in this study, we have
varied G and kept Re constant.
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(a)γ̇t = 0

(b)γ̇t = 10

(c)γ̇t = 45

(d)γ̇t = 70

(e)γ̇t = 82

(f)γ̇t = 110

FIG. 5. (Color online) Snapshots of capsules during a spiraling
motion, corresponding to the case of y0/a = 0 in Fig. 2.

The deformation of the capsules is described by the Taylor
shape parameter defined above. Simulations are performed on
a computational domain of size 20a × 10a × 10a discretized
with a 256 × 128 × 128 fluid grid with Dirichlet boundary
condition for the velocity at y = ±5a and periodic at other
boundaries. We use an unstructured surface mesh of 10 242
nodes and 20 480 elements to represent the capsule surface and
the initial capsule shape is taken to be a reference state for both
in-plane tensions and bending moments. These fluid grid and
surface mesh are fine enough to capture the interaction of the
two capsules. In some calculations we perform grid refinement
study to further confirm the independence of grid sizes on the
interaction of the capsules.

0 50 100 150
−5

0

5

10

γ̇t

x
c
/a

x0/a = 5.0
x0/a = 2.5
x0/a = 2.0
x0/a = 1.6

(a)

0 50 100 150
−0.8

−0.4

0

0.4

γ̇t

y
c
/
a

(b)

FIG. 6. (Color online) Location of the spherical capsule center
O2, (xc,yc) for y0/a = 0 and various values of x0/a, and with G =
0.2: (a) xc/a vs dimensionless time γ̇ t , (b) yc/a vs γ̇ t . Snapshots for
the case of x0/a = 2.5 are depicted in Fig. 5.

A. Spherical capsules

First we investigate the hydrodynamic interaction between
two neo-Hookean spherical capsules with their centers of
mass O1 and O2 initially located in the same shear plane
at (−x0,y0,0) and (x0,−y0,0), respectively. Figure 2 shows
the trajectories of the capsule center of mass O2, (xc,yc,0), for
different initial locations y0/a = 0, 0.1, 0.2. Here we consider
G = 0.2 and x0/a = 2.5. At y0/a = 0.2, the capsules ap-
proach and interact with each other and result in an irreversible
shift in their trajectories. To confirm that the capsules behavior
does not depend on the meshes, grid refinement study is carried
out for four different fluid grids, that is, 128 × 64 × 64, 192 ×
96 × 96, 256 × 128 × 128, and 384 × 192 × 192 grids with
the corresponding surface meshes of 5120, 8192, 20 480
and 32 768 triangular elements, respectively. Figure 3 shows
the general trend toward convergence of the trajectories of
the capsules. Snapshots of capsules during the interaction are
shown in Fig. 4. As the capsules approach each other, the
vertical separation distance between them decreases first and
increases when they cross over each other. Then the vertical
separation decreases and maintains a constant value as they
move away from each other until they reach the end of the
computational domain. This type of interaction has also been
observed in [17,20] and is referred to as a self-diffusive type
interaction.

When the initial vertical coordinate is y0/a = 0.1, the
capsules approach each other due to the nonzero relative
velocity between them. However, they do not cross over each
other upon encounter, as was the case of y0/a = 0.2. Instead,
they reverse their directions of motion when their centers of
mass cross the y = 0 axis as seen in Fig. 2. After the reversal
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0 10 20 30 40 50 60
0

0.1
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γ̇t

D
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x0/a = 5.0
x0/a = 2.5
x0/a = 1.6

(a)

0 10 20 30 40 50 60
0

0.05
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0.15

0.2

0.25

γ̇t

θ/
π

x0/a = 5.0
x0/a = 2.5
x0/a = 1.6

(b)

FIG. 7. (Color online) Temporal evolution of (a) the deformation
parameter Dxy and (b) the inclination angle θ/π for a spherical
capsule with G = 0.2 at y0/a = 0 and various x0/a. Snapshots for
the case of x0/a = 2.5 are depicted in Fig. 5.

of direction, the capsules move away from each other and
subsequently reverse their directions of motion again when
they “see” each other again at the end of the computational
domain due to the periodic boundary condition. Similar motion
has been observed in [37] between two two-dimensional elastic
particles at Reynolds number Re = 0.1. Doddi and Bagchi
[20] also observed similar spiraling motion of the capsules
when they took into account the effects of inertia.

For y0/a = 0 we observe the same reversal motion as the
previous case. However the capsules do not approach each
other initially because there is no relative center velocity
imposed by the undisturbed flow. They start to move in the
opposite directions right at the beginning of the simulation.
Figure 5 shows such a sequence of capsule-capsule interac-
tions. This is quite different from what was observed in [20],
which showed no interaction between the capsules in the limit
y0/a → 0. However, Lac et al. [17] observed the crossing of
the two capsules even when there is no a priori relative center
velocity, that is, y0/a = 0. This is because the tank-treading
motion of the capsule membrane creates a three-dimensional
disturbance flow which tends to move the capsule centers off
the x axis and leads to the crossing. We believe that this
is also the reason for the spiraling motion observed in our

0 50 100 150
−6

−4

−2

0

2

4

6

8

γ̇t

x
c
/a

x0/a = 5.0
x0/a = 2.5
x0/a = 2.0
x0/a = 1.5

(a)

0 50 100 150
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

γ̇t
y

c
/a

(b)

FIG. 8. (Color online) Location of the oblate spheroidal capsule
with aspect ratio k = 0.9 and center O2 for y0/a = 0 and various
values of x0/a, and with G = 0.1: (a) xc/a vs γ̇ t , (b) yc/a vs γ̇ t .

simulation with y0/a = 0. In addition, the capsules are not
initially placed symmetrically in the periodic domain and the
flow will force the capsules to oscillate before moving to an
equilibrium position. If the capsules are located symmetrically
in the periodic domain, that is, x0/a = 5, they will deform to
a steady shape and exhibit tank-treading motion at their initial
locations without oscillating. This can be seen clearly in Fig. 6
in which the x and y coordinates of the capsule center O2 are
shown for several values of x0 along with y0/a = 0.

When the capsules are located symmetrically in the periodic
domain, that is, x0/a = 5 and y0/a = 0, the capsule center
components xc and yc will remain constant with time. In
this case, there is no interaction between the capsules and
each capsule exhibits the same motion as for the case of
single capsule in shear flow. However, for x0/a = 2.5 or
x0/a = 2, the capsules exhibit the damped oscillations in both
xc and yc as can be seen in Fig. 6 and eventually converge
to the equilibrium position x0/a = 5. This type of motion is
referred to as spiraling motion [20]. When the capsules are
placed closer to each other, that is, x0/a = 1.6, they start
to interact even before they reach a steady deformed state
and subsequently they roll over each other. And the capsule
on the right continues to move to the left to the end of
the computational domain as shown in Fig. 6(a). Figure 7
shows the evolution of deformation parameter and inclination
angle during capsule-capsule interaction. During the capsule
spiraling motion the deformation parameter and inclination
angle reach the steady states which are the same as those
at equilibrium position. But when the capsules cross over
each other the deformation parameter and inclination angle
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FIG. 9. (Color online) Temporal evolution of (a) the deformation
parameter Dxy and (b) the inclination angle θ/π for the oblate
spheroidal capsule with k = 0.9 and G = 0.1 at y0/a = 0 and various
x0/a.

change substantially before reaching the equilibrium values as
they separate. We can also see the angular deviation from the
stationary inclination angle during the crossing.

B. Oblate spheroidal capsules

Next we consider the interaction of two neo-Hookean
capsules with oblate spheroidal unstressed shapes. An oblate
spheroid with aspect ratio of k is described by the mapping
xobl = Rx,yobl = Ry,zobl = kRz, where (x,y,z) is the coor-
dinate of a point on the unit sphere and the radius R is
adjusted to preserve the capsule volume. The capsules are
inclined at an angle θ0 = π/4 with respect to the streamlines
of the undisturbed flow. Figure 8 shows the time evolution
of the centers of the oblate spheroid capsules with aspect
ratio k = 0.9 at dimensionless shear rate G = 0.1. In these
simulations, the capsules are initially located at y0/a = 0
and their horizontal separations x0/a are varied. Since the
oblate spheroids with k = 0.9 are nearly spherical capsules,
their trajectories tend to be similar to those of the spherical
capsules shown in Fig. 6. The capsule center components xc

and yc remain constant with time at x0/a = 5 while their values
oscillate for x0/a = 2.5 and x0/a = 2 in a spiraling manner.
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(a)
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x0/a = 1.55
x0/a = 1.50

(b)

FIG. 10. (Color online) Location of the oblate spheroidal capsule
with aspect ratio k = 0.3 and center O2 for y0/a = 0 and various
values of x0/a, and with G = 0.05: (a) xc/a vs γ̇ t , (b) yc/a vs γ̇ t .

And when the capsules initially placed closer to each other at
x0/a = 1.5 we will see the crossing of the two capsules.

Figure 9 shows the evolution of the deformation parameter
and the inclination angle of the capsules for different initial
locations. It can be seen that the capsules undergo periodic
oscillations in both deformation parameter and inclination
angle superimposed on the tank-treading motion, which is
commonly referred to as swinging motion [4]. The frequency

−5 0 5
−1

−0.5

0

0.5

1

xc/a

y
c
/a

x0/a = 1.5
x0/a = 1.6

FIG. 11. (Color online) Trajectories of the capsule center O2 with
k = 0.3, G = 0.05, and initial positions x0/a = 1.5 and 1.6, and
y0/a = 0. The blue dashed curve illustrates the swapping motion as
discussed in the text.
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(a)γ̇t = 5

(b)γ̇t = 14

(c)γ̇t = 16

(d)γ̇t = 30

(e)γ̇t = 36

(f)γ̇t = 40

FIG. 12. (Color online) Snapshots of oblate spheroidal capsules
with k = 0.3 and G = 0.05 and fluid velocity field (background
arrows) in the (x,y) plane illustrating a swapping motion. The initial
location of the capsule is xc/a = 1.5, yc/a = 0.

and the amplitude of the oscillations in the deformation
parameter and inclination angle are exactly the same as when

0 20 40 60 80
0.2

0.3

0.4

0.5

0.6

0.7
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D
x
y

x0/a = 1.70
x0/a = 1.60
x0/a = 1.55
x0/a = 1.50

(a)

0 20 40 60 80
−0.5

0

0.5

γ̇t

θ/
π

(b)

FIG. 13. (Color online) Temporal evolution of (a) the deformation
parameter Dxy and (b) the inclination angle θ/π for an oblate
spheroidal capsule with k = 0.3 and G = 0.05 at different x0/a and
y0/a = 0.

two capsules undergo spiraling motion (x0/a = 2, 2.5) or
when there is no interaction between capsules (x0/a = 5).
However, when the capsules cross each other (x0/a = 1.5),
there are significant differences in both deformation parameter
and inclination angle. This is because, during the crossing,
both capsules are elongated and the inclination angle changes
rapidly before return to normal when the capsules separate.

We then consider the interaction of two oblate spheroid
capsules of aspect ratio k = 0.3, inclined at the angle θ0 = π/4
with respect to the streamlines of the unperturbed flow. This
more oblate unstressed shape of aspect ratio k = 0.3 is chosen
because of its comparable sphericity [8] with the red blood
cell considered in the next section. The trajectory, deformation
parameter, and inclination angle are calculated for G = 0.05,
at initial positions y0/a = 0 with different values of x0/a.
Figure 10 shows different trajectories of the capsule O2 with
x0/a = 1.7, 1.6, 1.55, and 1.5. Despite the small variation in
the horizontal separation, the capsules exhibit different types
of interaction. When the capsules are located far enough, that
is, x0/a = 1.7, they will approach and reverse their direction
of motion upon encounter in a spiraling manner as observed
previously. For x0/a = 1.55, the capsules approach and roll
over each other and eventually separate in the x direction.
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FIG. 14. (Color online) Location of the biconcave capsule center
O2, (xc,yc) for y0/a = 0 and various values of x0/a, and with G =
0.1: (a) xc/a vs γ̇ t , (b) yc/a vs γ̇ t .

For the other two initial locations, we see a new behavior of
the capsules before they separate. At x0/a = 1.6, the capsules
rotate around each other two and a half times before separating.
At x0/a = 1.5, the capsules rotate around each other for
just one time before crossing. This motion is similar to the
swapping motion observed in [38] for two rigid spheres in
shear flow in a wall-bounded system. This can be seen clearly
in Fig. 11 where the trajectories of the capsule center O2

are shown for x0/a = 1.6 and 1.5. It is worth noting that the
final lateral shift for the case of initial location x0/a = 1.5 is
much larger than that when x0/a = 1.6. This implies that the
interaction of the capsules before separation also affects the
final lateral displacement between capsules, not just the initial
vertical separation or Reynolds number [20]. Figure 12 shows
the snapshots of the capsules with initial location x0/a = 1.5
as they rotate around each other. In Fig. 12(a) the capsules
approach and slide over each other and gradually enter the
vortex zone as shown in Fig. 12(b). The capsules then rotate
around each other which can be seen in Figs. 12(c)–12(e).
When the capsules reach their highest positions [Figs. 12(e)
and 10(b)], the shear flow is strong enough to separate them
and eventually results in a permanent separation as shown in
Fig. 12(f).

Finally, in Fig. 13, we show the evolution of the deformation
parameter and the inclination angle of the oblate spheroidal
capsules. The capsules exhibit tumbling motion in which the
capsules undergo continuous rotation as shown in Fig. 13(b).
When the capsules show the spiraling motion, the deformation

(c)γ̇t = 19

(d)γ̇t = 26

(e)γ̇t = 33

(f)γ̇t = 40

(a)γ̇t = 5

(b)γ̇t = 12

FIG. 15. (Color online) Snapshots of biconcave capsules with
G = 0.1 and fluid velocity field (background arrows) in the (x,y)
plane illustrating continuous rotating motion. The initial location of
the capsule center is x0/a = 1.4, y0/a = 0.
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parameter deviates slightly from it initial shape. But when
the capsules cross over or rotate around each other (i.e.,
swapping), we may see large distortion and compression as
shown explicitly in Fig. 12(e).

C. Biconcave capsules

Next, we perform simulations for the biconcave capsules
with Skalak’s strain energy function (13) for red blood cell
membrane. In this energy function, the area dilatation modulus
c11 is chosen to be 50, which is large enough to maintain the
constant surface area of the biconcave capsules. The mapping
for the biconcave disk shape assumed by red blood cells at
rest is given in [29]. The capsules are initially inclined at
an angle θ0 = π/4 with respect to the streamlines of the
undisturbed flow. The trajectories of biconcave capsules are
studied for G = 0.1, y0/a = 0 with three different values
of x0/a. Figure 14 shows the time history of x and y

components of the capsule center O2 with the initial location
x0/a = 1.7, 1.5,, and 1.4. Since the biconcave capsules have
comparable sphericity with the oblate spheroidal capsules
of aspect ratio k = 0.3, their behaviors during interaction
are expected to be similar to those of the oblate spheroidal
capsules of k = 0.3 as discussed in the previous section.
It can be observed that the capsules exhibit the spiraling
motion with x0/a = 1.7, but they cross each other when
the initial location is x0/a = 1.5. If the capsules are located
closer initially at x0/a = 1.4, then they will rotate around
each other. However, unlike the oblate spheroidal capsules
of k = 0.3, the biconcave capsules do not separate but keep
rotating around each other during the course of simulation.
Figure 15 shows the fluid velocity field in the (x,y) plane and
the snapshots of the biconcave capsules with initial location
x0/a = 1.4 and y0/a = 0 as they rotate around each other.
It can be seen that both capsules are trapped totally within
the recirculation zone in the middle of the domain and the
outer flow could not separate them. The two capsules behave
like one big capsule undergoing tumbling motion. Figure 16
shows the temporal evolution of the inclination angle of the
triaxial ellipsoid with the same inertia tensor as that of the
two biconcave capsules. We have refined the fluid mesh and
surface mesh to show that the rotating behavior of the two

0 10 20 30 40 50 60 70
−0.5

0

0.5

γ̇t

θ/
π

FIG. 16. Inclination angle of an ellipsoid that has the same inertia
tensor as that of the two biconcave capsules.
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x0/a = 1.5
x0/a = 1.2

FIG. 17. (Color online) Location of the x component of the
biconcave capsule center O2, xc, for y0/a = 0 and various values
of x0/a, and with G = 0.5.

capsules does not depend on the mesh sizes. Simulations
are performed on 384 × 192 × 192 with the surface mesh of
32 768 elements and the two capsules rotate around each other
as observed with coarser meshes. While rotating around each
other, the capsules undergo tumbling motion. If we increase
the dimensionless shear rate G up to the point where the
single capsule exhibits swinging motion, the two capsules
will not show the relative rotating motion. Figure 17 shows
the x component of the capsule center O2 for y0/a = 0 with
different values of x0/a and for an increased G = 0.5. At this
higher value of dimensionless shear rate, the capsules undergo
swinging motion and they either oscillate in the spiraling
motion or cross each other. The capsules do not rotate around
each other as observed previously with small dimensionless
shear rate. This implies that the individual motion of each
capsule such as tumbling or swinging affects the interaction
between the two capsules. And whether the capsules exhibit
tumbling or swinging motion depends on the dimensionless
shear rate and the reduced bending modulus of the capsule
membranes.

We now focus on the effect of the initial vertical separation
distance between the two capsules on the type of interaction.
Simulations are performed for biconcave capsules with G =
0.1 at initial location x0/a = 5 and various y0/a. The center
trajectories depend on the initial cross flow separation as
shown in Fig. 18 for y0/a = 0.2, 0.3, 0.4,, and 0.5. At
y0/a � 0.2, the capsules reverse their motion progressively

−6 −4 −2 0 2 4 6 8
−0.8

−0.4

0

0.4

0.8

xc/a

y c
/a

y0/a = 0.2
y0/a = 0.3
y0/a = 0.4
y0/a = 0.5

FIG. 18. (Color online) Trajectories of the capsule center O2 with
G = 0.1 and different initial positions.
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FIG. 19. (Color online) Different types of hydrodynamic inter-
action between two biconcave capsules at various dimensionless
shear rates and initial vertical separation distances. Representative
snapshots of these four types of interactions have been shown
previously, namely, spiraling in Fig. 5, crossing in Fig. 4, rotating
in Fig. 15, and swapping in Fig. 12.

in time while they cross over each other at larger y0/a,
that is, y0/a = 0.4 and 0.5. At moderate initial vertical
separation distance y0/a = 0.3, the capsules wrap around each
other continuously. Finally, the effects of the initial vertical
separation distance and the dimensionless shear rate on the
interaction of two biconcave capsules can be summarized in
a phase diagram as shown in Fig. 19. At small initial vertical
separation distance, that is, y0/a � 0.25, the two capsules only
exhibit spiraling-type interaction where they oscillate around
an equilibrium position. At larger initial vertical separation
distance, the two capsules cross over each other. However,
at low dimensionless shear rates where the capsules undergo
tumbling motion, two other types of motion are observed:
the capsules rotate around each other or they swap their
trajectories. Representative snapshots of these four types of

interactions have been shown previously, namely, crossing in
Fig. 4, spiraling in Fig. 5, swapping in Fig. 12, and rotating
in Fig. 15. We note that we cannot conclusively determine the
exact phase boundaries of the rotating and swapping motions.
There could be two plausible reasons for this. First, the type of
motion observed could depend very sensitively on the initial
separation. Therefore, in the future, we plan to develop better
numerical methods so that our simulations can be repeated at
finer spatial resolutions to probe this sensitive dependence on
initial separation. Second, the type of motion observed could
be transient and our simulations may not have reached steady
state. This can be resolved in future by conducting simulations
for longer run times.

IV. CONCLUSIONS

In the article we have studied numerically the hydrody-
namic interaction between two nonspherical capsules enclosed
by thin shells in shear flow. Several unstressed shapes of
the capsules have been considered such as oblate spheroidal
and biconcave capsules with neo-Hookean and Skalak strain
energy functions. Two types of interaction observed for
spherical capsules are crossing (e.g., Fig. 4) and spiraling (e.g.,
Fig. 5) which depends on the initial separation distances of
the capsules in different directions. As the sphericity or aspect
ratio of the unstressed shape decreases, we observe the two new
interaction types which are swapping motion (e.g., Fig. 12) and
continuous rotation (e.g., Fig. 15), in addition to crossing and
spiraling. The swapping motion and continuous rotation only
occur when the individual capsule undergo tumbling motion
at small dimensionless shear rate. In this study we show the
effect of the unstressed shape, the dimensionless shear rate,
and the initial location of the capsules on the hydrodynamic
interaction. We do not investigate the effects of viscosity ratio
and bending stiffness, but it would be interesting to carry
out parametric study on these parameters since they affect
significantly the dynamics of individual capsules and thus the
hydrodynamic interaction between the two capsules.
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