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Resonance instability of axially symmetric magnetostatic equilibria

Alfio Bonanno1,2 and Vadim Urpin1,3

1INAF, Osservatorio Astrofisico di Catania, Via S. Sofia 78, IT-95123 Catania, Italy
2INFN, Sezione di Catania, Via S. Sofia 72, 95123 Catania, Italy

3A. F. Ioffe Institute of Physics and Technology, RU-194021 Saint Petersburg, Russia
(Received 22 April 2011; revised manuscript received 11 October 2011; published 16 November 2011)

We review the evidence for and against the possibility that a strong enough poloidal field stabilizes
an axisymmetric magnetostatic field configuration. We show that there does exist a class of resonant
magnetohydrodynamic (MHD) waves which produce instability for any value of the ratio of poloidal and
toroidal field strength. We argue that recent investigations of the stability of mixed poloidal and toroidal field
configurations based on three-dimensional numerical simulations can miss this instability because of the very
large azimuthal wave numbers involved and its resonant character.
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I. INTRODUCTION

The stability of hydromagnetic configurations is still a topic
of debate. Even simple magnetic configurations consisting
of a pure azimuthal (toroidal) or vertical (poloidal) field are
generally unstable (see, e.g., Ref. [1]), yet the magnetic fields
observed in several astrophysical contexts are stable on a
secular time scale.

In this context, the energy principle of Bernstein et al. [2]
has extensively been used in the past to study the stability
of simple poloidal or toroidal fields [3–5] and also of mixed
combinations of the two [6]. In cylindrical geometry, it can be
proved that the plasma is stable for all azimuthal and vertical
wave numbers m and k, if it is stable for m = 0 in the k → 0
limit and for m = 1 for all k [7]. On the other hand, to show
that a generic configuration with a combination of vertical
field and nonhomogenous azimuthal field is stable against the
m = 1 mode (for all k) is not an easy task in general and one
has to resort either to a variational approach or to a numerical
investigation of the full eigenvalue problem in the complex
plane [8]. In this respect, the “normal mode” approach can be
more useful in astrophysics, as it is often important to know the
growth rate of the instability and the properties of the spectrum
of the unstable modes [9,10].

In recent years, the use of three-dimensional (3D) numerical
simulations has opened up the possibility of studying the
stability of various field configurations following the evolution
from the linear phase to the nonlinear regime. A strategy often
used is to evolve a generic initial state which eventually relaxes
to a final configuration assumed to be stable [11–15]. The
drawback with this approach is that it is difficult to characterize
the topology of the final configuration from the analysis of
the numerical data and to determine a class of sufficient
conditions for instability which could be of astrophysical
interest. In particular, the conclusions of some recent works
in this direction seem to point out that it is the strength of the
poloidal field which stabilizes the basic state [13,14].

The aim of this paper is to clarify that field configurations
containing generic combinations of axial and azimuthal fields
are subject to a class of resonant magnetohydrodynamic
(MHD) waves which can never be stabilized for any value
of the ratio of poloidal and toroidal fields. The instability of
these waves has a mixed character, being both current and

pressure driven [16]. We argue that in this case the most
dangerous unstable modes are resonant; i.e., the wave vector
�k = (m/s)�eθ + kz�ez is perpendicular to the magnetic field,
�B · �k = 0, where kz is the wave vector in the axial direction,
m is the azimuthal wave number, and s is the cylindrical
radius. The length scale of this instability depends on the
ratio of poloidal and azimuthal field components and it can
be very short, while the width of the resonance turns out to be
extremely narrow. For this reason its excitation in simulations
can be problematic.

The paper is organized as follows. In Sec. II, the main
equations governing the behavior of linear perturbations in
cylindrical plasma configurations are presented. In Sec. III,
we consider a linear stability analysis of such configurations,
using an analytical approach complemented by numerical
investigations. Direct numerical simulations of the nonlinear
evolution of a cylindrical configuration are presented in
Sec. IV. In Sec. V, we compare our results with those
obtained by other authors and discuss possible astrophysical
applications of this instability.

II. BASIC EQUATIONS

Let us consider an axially symmetric basic state with
azimuthal and axial magnetic fields. The azimuthal field is
assumed to be dependent on s alone, Bϕ = Bϕ(s), but the axial
magnetic field Bz is constant. We assume that the sound speed
is significantly greater than the Alfvén velocity in order to
justify the use of incompressible MHD equations:

∂ �v
∂t

+ (�v · �∇)�v = −
�∇P

ρ
+ ( �∇ × �B) × �B

4πρ
,

(1)
∂ �B
∂t

− �∇ × (�v × �B) = 0 , �∇ · �B = 0 , �∇ · �v = 0.

In the basic state, hydrostatic equilibrium in the radial direction
is assumed. We study a linear stability with respect to
small disturbances. Since the basic state is stationary and
axisymmetric, the dependence of disturbances on t , ϕ, and
z can be taken in the form exp (σ t − ikzz − imϕ). Linearizing
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Eq. (1) and eliminating all variables in favor of the radial
velocity disturbance, v1s , we obtain

d

ds

[
1

λ

(
σ 2 + ω2

A

) (
dv1s

ds
+ v1s

s

)]
− k2

z

(
σ 2 + ω2

A

)
v1s

+ 2ωB

[
m(1 + λ)

s2λ2

(
1 − αλ

1 + λ

)
(ωAz + 2mωB)

+mωAz

s2λ2
− k2

zωB(1 − α)

]
v1s + 4k2

zω
2
Aω2

B

λ
(
σ 2 + ω2

A

)v1s = 0, (2)

where ωA = ( �B · �k)/
√

4πρ, ωAz = kzBz/
√

4πρ, ωB =
Bϕ/s

√
4πρ, α = ∂ ln B/∂ ln s, and λ = 1 + m2/s2k2

z .
Equation (2) describes the stability problem as a nonlinear
eigenvalue problem. This equation was derived by
Freidberg [17] in his study of MHD stability of a diffuse
screw pinch (see also Ref. [10]). The author found that, for
a given value of kz, it is possible to obtain multiple values
of the eigenvalue σ , each one corresponding to a different
eigenfunction, and calculated σ for the fastest-growing
fundamental mode. The most general form of Eq. (2), taking
into account the compressibility of plasma, was derived by
Goedbloed [18]. Since we study the stability assuming that
the magnetic energy is smaller than the thermal one, the
incompressible form of Eq. (2) can be a sufficiently accurate
approximation. In fact, Eq. (2) was studied by Bonanno and
Urpin [10] in their analysis of the non-axisymmetric stability
of stellar magnetic fields.

We can represent the azimuthal magnetic field as Bϕ =
Bϕ0ψ(s), where Bϕ0 is its characteristic strength and ψ(s) ∼ 1.
It is convenient to introduce the dimensionless coordinate
x = s/s2 and dimensionless quantities q = kzs2, � = σ/ωB0,
ωB0 = Bϕ0/s2

√
4πρ, and ε = Bz/Bϕ0. Then, Eq. (2) trans-

forms into

d

dx

(
dv1s

dx
+ v1s

x

)
+

(
dv1s

dx
+ v1s

x

)
d ln �

dx
− 2q2ψ(x)

x(�2 + f 2)

×
{[(

1− m2

q2x2

)
ψ(x)

x
− mε

qx2

]
(1 − α)− 2mf

m2 + q2x2

}
v1s

−q2

(
1 + m2

q2x2

)
v1s + 4q2f 2ψ2(x)

x2(�2 + f 2)2
v1s = 0, (3)

where

f = qε + m
ψ(x)

x
, � = q2x2(�2 + f 2)

m2 + q2x2
. (4)

With appropriate boundary conditions, Eq. (3) allows one to
determine the eigenvalue �. If the inner boundary is extended
to include the cylinder axis it is not difficult to show that the
eigenfunction for m = 1 must be nonvanishing there to ensure
regularity. This result follows from the series solution of Eq. (3)
near x = 0, so that v1s ∝ xb with b = −1 ± m, and regularity
at x = 0 implies b = 0 for m = 1, and b > 0 for m > 1. In the
setup discussed in this paper the inner boundary is not located
at the axis, and we can safely assume that v1s = 0 at x = x1

and x = x2. We demonstrate the occurrence of a resonance
instability in magnetic configurations by an analytical and
numerical solution of Eq. (3) and by 3D direct numerical
simulations.

III. LINEAR ANALYSIS OF INSTABILITY

A. Analytical considerations

It is interesting to have a qualitative understanding of
the MHD spectrum, thus solving Eq. (3) in the small gap
approximation. In this case one assumes that the distance
between the boundaries, �x = x2 − x1, is small compared
to x2 = 1 and neglect in Eq. (3) terms of the order v1s/x

compared to dv1s/dx. In this approximation, all coefficients
of Eq. (3) can be considered as constant and Eq. (3) yields

d2v1s

dx2
− 2q2

(�2 + f 2)

[(
1 − mf

q2

)
(1 − α) − 2mf

m2 + q2

]
v1s

− (q2 + m2)v1s + 4q2f 2

(�2 + f 2)2
v1s = 0. (5)

The solution, satisfying the boundary conditions, is v1s ∝
sin[π (x − x1)/�x]. The corresponding dispersion relation is
biquadratic and can be easily solved. The solution is

�2 = −f 2 − μ

[(
1 − mf

q2

)
(1 − α) − 2mf

m2 + q2

]

±
{
μ2

[(
1 − mf

q2

)
(1 − α) − 2mf

m2 + q2

]2

+4μf 2

}1/2

,

(6)

where μ = q2/[q2 + m2 + (π/�x)2]. The parameter f char-
acterizes departures from the magnetic resonance, ωA = 0. To
show the occurrence of instability, we consider solution (6)
at small departures from the magnetic resonance, f ≈ 0. If
α > 1, we have

�2 = 2m2(α − 1)

m2 + (p2 + m2)ε2
, (7)

where p2 = (π/�x)2 and the instability is never suppressed
for any finite value of ε. The growth rate is a rapidly increasing
function of m and �2 ≈ (1 + ε2)−1 in the limit m 	 p2. If
α < 1, then Eq. (6) yields

�2 ≈ f 2 1 + α

1 − α
, (8)

which implies instability if α > −1. The profile with α <

−1 is stable in the small gap limit. Note that modes with
q satisfying the resonance condition ωA = 0 (or f = 0) are
marginally stable because � = 0 for them, but �2 > 0 in the
neighborhood of the resonance. Therefore, the dependence of
� on q should have a two-peak structure for any m. As in the
case α > 1, the instability occurs for any value of ε. If α = 1,
then we have

�2 ≈ μf

[
2m

m2 + q2
±

√
4m2

(m2 + q2)2
+ 4μ

]
. (9)

In this case, the dependence �2(q) also has a two-peak
structure because � = 0 at the resonance but �2 > 0 in its
neighborhood. The instability is always present for any finite
value of ε.

Our explicit solution shows that, if α > −1, the instability
always occur for disturbances with q and m close to the
condition of magnetic resonance, ωA = 0. The axial field
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FIG. 1. The growth rate as a function of q for ε = 0.1 and α = 1.
The panels correspond to m = 1 and m = 100. The horizontal axis
has different scales in the panels.

cannot suppress the instability which occurs even if Bz is
significantly greater than Bϕ0.

B. Numerical results

Despite the various approximations which have been done,
the picture emerging in the previous session gives a qualita-
tively correct account of the MHD spectrum. In order to show
this we solved numerically Eq. (5), assuming α = 1 so that
Bϕ ∝ r . The results for other profiles of Bϕ are qualitatively
similar. Equation (5) together with the boundary conditions is
a two-point boundary value problem which can be solved by
using the “shooting” method [19]. In order to solve Eq. (5),
we used a fifth-order Runge-Kutta integrator embedded in
a globally convergent Newton-Rawson iterator. We have
checked that the eigenvalue was always the fundamental one,
as the corresponding eigenfunction had no zero except that at
the boundaries.

Figure 1 exhibits the growth rate of instability as a function
of q in the case when the toroidal field is stronger than the axial
one (ε = 0.1). We plot � for two values of the azimuthal wave
number, m = 1 and m = 100. Calculations confirm that only
the modes are unstable with the axial wave vectors q close
to the condition of the magnetic resonance. The resonance
values of q = −m/ε are 10 and 1000 for m = 1 and m = 100,
respectively. Also, in complete agreement with the analytic
results [see Eq. (9)], the growth rate goes to 0 at the resonance
but �2 can be positive in its neighborhood. The dependence
in Fig. 1 is very sharp: the ratio δ of the half-thickness of
the peak to q = −m/ε, corresponding to the resonance, is
∼2 for m = 1 but rapidly decreases and reaches ≈0.02 for
m = 100. The maximum growth rate slowly increases with m

and becomes ∼1 for large m, which corresponds to the growth
time of the order of the Alfvén crossing time.

In Fig. 2, we plot the dependence of �2 on q for the same
α and ε = 10. Qualitatively, the behavior of �2 is similar to
that shown in Fig. 1: only modes with q close to the magnetic
resonance can be unstable, the corresponding range of q is
narrow, the instability has a resonance character, there is a two-
peak structure of �2 near the resonance, the maximum growth
rate increases with m, etc. Numerically, however, the results

FIG. 2. Same as in Fig. 1, but for ε = 10. The panels correspond
to m = 10 and m = 200.

differ substantially. The resonance peaks are much sharper for
ε = 10. For example, δ is ∼0.2% and ∼0.1% for m = 200. The
maximum growth rate is approximately 10 times lower than
in the previous figure but still is sufficiently high. Note that,
generally, disturbances with such small wavelengths in the ϕ

and z directions can be influenced by dissipation (viscosity,
resistivity). In astrophysical bodies, however, the ordinary and
magnetic Reynolds numbers are huge and even disturbances
with m ∼ 102–104 can be treated, neglecting dissipation.

IV. DIRECT NUMERICAL SIMULATIONS

It is not difficult to realize this type of instability in
numerical simulations, at least for moderate values of m. In
particular, we solved the ideal MHD simulation by means of
the ZEUSMP code [20] in the limit of the subthermal field.
Our setup consists of an isothermal cylinder with a radial
extent from sin to sout and vertical size h and solves the
time-dependent ideal MHD equations with periodic boundary
conditions in z, reflection in s, and periodic in ϕ and a
resolution ranging from 1203 to 2403 in all the directions.
The azimuthal field in the basic state is taken in the form

Bϕ = b0 (s/s0) exp[−(s − s0)2/d2], (10)

with b0 being a normalization constant; the axial field Bz

is a constant whose value can be varied. In the basic state,
the Lorentz force is balanced with a gradient of pressure,
and we have checked that our setup was numerically stable
if no perturbation was introduced in the system. For actual
calculation we have chosen h = 10, sin = 1.5, sout = 3, s0 = 2,
and d2 = 0.15; the sound speed is assumed to be much larger
than the Alfén speed (≈10 times), in order to compare our
results with the linear analysis of the previous session obtained
for an incompressible plasma. After a few time steps we
perturbed the density with random perturbations in order to
excite the unstable modes and study their evolution. In the
case of ε = 0 the spectrum is dominated by the m = 1 mode
during the linear phase and we obtain � ≈ 11.7 for the growth
rate in units of the Alfvén travel time in the azimuthal direction.
In order to compare this value with the the linear spectrum we
explicitly solved Eq. (3) for our basic state (10) for various
values of m and q, obtaining � ≈ 13.5 for the fastest-growing
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FIG. 3. Radial profile of the eigenfunctions for the fastest-
growing modes excited in the simulations from the linear analysis.
The solid line represents the ε = 0 model with m = 1 and q ≈ 20.
The dashed line and the dot-dashed line represent the ε = 1 case for
m = 4 and m = 6, respectively, at the resonance.

modes for the vertical wave numbers excited in the numerical
simulations according to the spectral analysis. We found
about ∼15% difference with the linear result; we think this
discrepancy is acceptable as 3D simulations are usually rather
diffusive and one expects that the actual growth rate should
be smaller than the one obtained from linear analysis. Similar
considerations apply for the ε > 1 cases. For instance for ε = 1
we find the fastest-growing mode has � ≈ 1.54 with m = 4
and m = 6 both excited, while the growth rate obtained from
the linear analysis predicts � ≈ 1.45. The model with ε = 2
has instead m = 9 as the fastest-growing mode and also in
this case the difference with the linear analysis is about 10–
15%. The eigenfunctions corresponding to the fastest-growing
modes for ε = 0 and ε = 1 are depicted in Fig. 3. In Fig. 4 the
evolution of the mean kinetic energy is plotted as a function
of the Alfvén travel time. The solid line is for ε = 0, the
dashed line is for ε = 1, and the dot-dashed line is for ε = 2.
Note that Eax/Etor ∼ 13 for model ε = 1 and Eax/Etor ∼ 42
for model ε = 2 in our setup. The growth time for model
ε = 0 is of the order of the Alfvén crossing time, while it is
significantly longer for models ε = 1 and ε = 2. Nevertheless,
the key point that should be stressed here is that the strength
of the (turbulent) magnetic energy and the turbulent kinetic
energy at the beginning of the nonlinear phase is essentially
the same for all three models. Moreover, in the presence of
a nonzero axial field the corresponding spectrum along the
vertical direction shows a specific excited mode, so that the
resonance condition q ∼ −m/ε is satisfied. For model ε = 2,
for instance, q ≈ 4–5, for the radial component of the magnetic
field during the linear evolution.

Figure 5 shows the occurrence of high m modes for
the density in the (s,ϕ) plane for ε = 2 for a 240 × 1202

FIG. 4. Evolution of the mean kinetic density as a function of the
Alfvén travel time in the azimuthal directions for all three models,
ε = 0 (solid line), 1 (dashed line), and 2 (dot-dashed line).

simulation. It is difficult to reproduce the instability for much
higher values of ε. As it is clear from Fig. 2, the width of
the resonance is quite narrow in this case, the growth rate is
significantly different from zero only for very large values of

FIG. 5. The density for model ε = 2 during the unstable evolu-
tion, around tA = 7.3, along the plane z = 0 as a function of radial
and azimuthal coordinate. The presence of a higher m mode around
m ∼ 9 is clearly visible. The domain along ϕ is 2π and the resolution
of the simulation along the (z,r,ϕ) box is 240 × 1202.
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m, and the resolution in all three directions needed to reproduce
the instability can be extremely large.

V. ASTROPHYSICAL IMPLICATIONS
AND CONCLUSIONS

In this paper, we revisited the stability properties of the
screw pinch, a problem which has received considerable
attention in the past in the context of MHD plasma stability for
thermonuclear fusion. As it was pointed out by Freidberg [17],
Eq. (2) describes various types of modes which can become
unstable under certain conditions. The basic properties of
the unstable modes are similar to those of quasikinks and
quasi-interchanges obtained in Refs. [21,22] for compressible
plasma. However, astrophysical conditions like those of stellar
interior imply a high β plasma parameter, a regime which
is very far from the typical laboratory conditions. To the
best of our knowledge, an instability of this type has not
yet been extensively studied for a pressure-balanced mixed
poloidal/toroidal field configuration in the incompressible
limit, an approximation which can be applied to various
astrophysical situations. The following properties characterize
the instability in this case: (i) the instability does not occur for
a current-free magnetic configuration; (ii) it can arise on a time
scale comparable to the Alfvén time scale whereas the growth
rate calculated in Ref. [22] is an order of magnitude lower,
at least; (iii) the eigenfunctions for high values of m have a
resonant character being very localized as shown in Fig. 3 for
m = 6; (iv) the dependence of the growth rate on m seems also
to be rather peculiar. In the case of the instability described in
Ref. [22], unfortunately, the growth rate is calculated only
in the so-called tokamak approximation Bϕ/xBz 
 1 (see
Eqs. (30) and (31) in Ref. [22]) and increases approximately
proportional to m or even faster. In our case, the dependence
on m is qualitatively different because the growth rate saturates
with m very rapidly, as noticed in the numerical investigation
and in the approximate expression (7).

Despite these differences, the quasikink and quasi-
interchange instabilities obtained in Refs. [21,22] also have
the typical double-peak structure depicted in Figs. 1 and 2 as
a function of the the axial wave vector.

Note that the basic state in our model is characterized by
the negative pressure gradient in some fraction of the volume,
at least. Indeed, hydrostatic equilibrium with the toroidal field
(10) implies that

dP

ds
= − B2

ϕ

2πs

(
1 − s(s − s0)

d2

)
. (11)

Then, dP/ds < 0 if d2 > s(s−s0). The condition dP/ds < 0
is required for the development of instability (see, e.g.,
Ref. [23]). The sign of the pressure gradient is important
because it determines the destabilizing effect in the so-called
Suydam’s criterion [24]. This criterion represents a necessary
but local condition for stability and in our notations it reads

sB2
z

4π

(
1

h

dh

ds

)2

+ 8
dP

ds
> 0, (12)

where h = sBz/Bϕ is the magnetic shear. In the case of the
basic state with a toroidal field (10), the necessary condition

for stability is not satisfied in some fraction of the volume
(for example, in the neighborhood of s0). This violation of the
stability condition (12) is actually indicating the presence of
at least some unstable mode in the system.

Stability properties of magnetic configurations are of
great importance for various astrophysical applications. For
instance, it is widely believed that magnetic fields play an
important role in the formation and propagation of astro-
physical jets, providing an efficient mechanism of collimation
through magnetic tension forces (e.g., Ref. [25]). Polarization
observations provide information on the orientation and degree
of order of the magnetic field in jets. It appears that many jets
can develop relatively highly organized magnetic structures.
To explain the observational data, various simplified models
of 3D magnetic structures have been proposed. Typically, the
magnetic field can have both a longitudinal component and a
substantial toroidal component in the core region (see, e.g.,
Ref. [26]). The mechanisms responsible for generation of the
magnetic field in jets are still unclear. Since the origin of jets
is probably relevant to MHD processes in magnetized plasma,
their magnetic fields could be generated during the process
of jet formation (see, e.g., Ref. [27]) or, alternatively, they
could be generated by the dynamo mechanism [28] when the
jet propagates in the interstellar medium. In both cases, the
stability is a crucial issue for the properties of the jet. For
instance, the origin of relatively small scale structures within
the jet can be attributed to different instabilities arising in jets,
including the one considered in our study. Magnetic structures
that appear as a result of the development of instabilities
can manifest themselves in polarization observations of the
jets.

The considered instability can play an important role in
magnetic stars where it can affect the magnetic field in
stably stratified regions. Spruit [29] reviewed various types of
instabilities that are likely to intervene in magnetized radiative
regions of stars, and he concluded that the strongest among
them are those which are related to the instability of magnetic
configurations. According to Ref. [29], turbulence generated
by such instability can drive a genuine dynamo in stellar
radiative zones (see, however, Ref. [30]). Understanding the
conditions required for the instability is, therefore, crucial for
dynamo models in stably stratified zones of stars.

This type of magnetic instability can be of interest also for
neutron stars where the magnetic field reaches an extremely
high value, ∼1013–1014 G. Such a strong field can be
generated by the turbulent dynamo action during the very
early stage of evolution (see Ref. [31]) when the neutron
star is convectively unstable. This unstable stage lasts less
than ∼1 min. The further evolution of the magnetic field is
determined mainly by ohmic dissipation but can be affected
by current-driven instabilities as well [32] because a dynamo
in the convective zone generates a magnetic configuration that
is not equilibrium.
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