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Dynamical solutions for migration of chiral DNA-type objects in shear flows
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We present a dynamical analysis of chiral object motions to explain physical mechanisms and give quantitative
predictions on the shear-induced drift motions of chiral objects and the chiral separation of enantiomers using
shear flows. For objects well represented by the uniaxial approximation, such as DNA and chiral disk hexamers,
dynamical motions in low-Reynolds-number shear flows are solved analytically, in terms of steady-state object-
flow interacting parameters, which can be calculated numerically by well-established methods. The shear-induced
drifting speed of long helices are evaluated. Good agreements are found between our results and those obtained
from dynamical simulations [Makino and Doi, Phys. Fluids 17, 103605 (2005)]. We also compare our results
with those obtained experimentally [Marcos, Fu, Powers, and Stocker, Phys. Rev. Lett. 102, 158103 (2009)].
The analysis may also be extended to study other important chiral-flow interactions in nature environments and
microfluidic devices, such as the particle-wall and interparticle interactions.
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I. INTRODUCTION

With increasing interests on the interplay between fluid
flows and microscopic-scale objects (e.g., bacteria and macro-
molecules) and widespread usage of microfluidic devices,
understanding complex motions of chiral objects in shear flows
becomes a very important issue [1–5]. Chiral biological macro-
molecules (e.g., DNA) are mostly in the liquid environment
and their artificial controls/manipulations are almost always
in fluids, signifying the importance of chiral-flow interaction.
Chirality is also abundant at larger scales, for example the
swimming of E. coli through rotations of helical flagella [6].
There are also possible thermomechanical couplings for chiral
particles [7].

One actively pursued topic is the use of shear flows to
separate chiral objects and their mirror-reflected but distinct
counterparts (enantiomers) [4,5,8]. This method could im-
prove on the currently established ones of using specific
chiral crystal channels which are often molecular specific and
have low efficiency [9]. Experimentally shear-induced drifting
was indeed demonstrated using helical-shaped bacteria in a
microfluidic flow cell [5], and forces for fixed screws in shear
flows were also directly measured [8].

However, theoretical advance is hampered by the lack of
concrete analytical results. We mostly have direct dynamical
numerical simulations of the low-Reynolds-number (Stokes)
flow equations of motion, such as the simulations of twisted
ribbonlike particles under shear [4]. However, besides numer-
ical data, simulations provide few insights into the underlining
physical mechanisms. On the other hand, chirality is always
somewhat puzzling and there are strong interests in better
theoretical understanding of the degree of chirality [10–12], a
difficult goal for numerical calculations. It is indeed recognized
that there are no universal chiral order parameters, and different
physical properties will depend on different ones.

In this paper we consider chiral objects under shear and
solve for their rigid body motion. We are most interested
in the rotational dynamics and the average drifting motion
in the vorticity direction. The drifting has been previously
recognized [4] from simple symmetry arguments to depend
on one single chiral parameter for uniaxial chiral objects,

although the chiral parameter can only be calculated with direct
dynamical simulations. Our analysis derives how the chiral
parameter depends on various steady-state object-flow inter-
acting parameters. Thus the mechanism of chiral separation by
shear flow can be fully understood and quantitative predictions
are provided. The key to the analysis is the separation of the
flow field into two components to fully utilize the symmetries
of the uniaxial chiral objects and shear flows. Comparisons
with simulation and experimental results are also presented.
Further modification and extension of our analysis could likely
be used to study other important chiral-flow interactions, such
as how the chiral objects could interact with a fixed wall or
with each other dynamically.

Consideration of uniaxial chiral objects actually is not
as restrictive as it seems. Similar to nematic liquid crystals,
straight helices such as DNA should be well approximated, due
mainly to the expected fast rotations around the central axis.
Chiral disk objects are also good candidates, with examples
like the chiral benzene-centered, phthalocyanine hexamers
[13], which basically look like six-bladed propellers, and
curious molecular Möbius strips [14]. There are also near
spherical-shaped chiral molecules [15].

II. EQUATIONS OF MOTION AND SYMMETRIES

Consider a rigid body which is moving in a viscous fluid
with a velocity v and rotation ω under an external shear. In the
limit of a low Reynolds number the fluids follow the Stokes
flow equation of motion:

∇P = η∇2u, (1)

with P being the pressure, η being the viscosity, and u being
the flow velocity which follows the no-slip boundary condition
on the object surface.

Because Eq. (1) is linear, we can consider the flow field
under shear to consist of two parts, both of which follow
Eq. (1) but have different boundary conditions. The first part,
ua(r), matches the velocity on the surface of the rigid object,
and ua(r → ∞) = 0. The second, ub(r), is zero on the object
surface and matches the simple shear flow at infinity. The sum

056309-11539-3755/2011/84(5)/056309(5) ©2011 American Physical Society

http://dx.doi.org/10.1063/1.2107867
http://dx.doi.org/10.1103/PhysRevLett.102.158103
http://dx.doi.org/10.1103/PhysRevE.84.056309


PEILONG CHEN AND QIYI ZHANG PHYSICAL REVIEW E 84, 056309 (2011)

ua(r) + ub(r) matches both the no-slip boundary conditions at
the moving object surface and the external simple shear. Then
v and ω are determined by the conditions of zero total force
and torque on the object, due to the negligible momentum in
the Stokes flow dynamics. The advantage of separating the
flow field into two parts is that the shear-induced ub(r) is
analyzed with the object fixed in both position and orientation.
Additional symmetries of the object then make the calculation
of the force f b and torque τ b due to ub much easier.

The force f a and torque τ a due to ua are just the resistance
force and torque as the object moves in an otherwise stationary
fluid. Because the Stokes flow is linear, f a and τ a are in the
linear matrix form:

f a = a · v + b · ω,

τ a = b · v + c · ω.

Here a, b, and c are the second-rank resistance tensors
depending on the object shape. The cross terms, b, are the same
due to the Lorentz reciprocal theorem [16]. On the other hand,
f b and τ b couple to the second-rank velocity gradient tensor
e = ∇us (with us being the applied simple shear flow) through
third-rank tensors: f b = g : e and τ b = h : e. The tensors g
and h are determined by the object shape and follow tensor
rotating rules when the object rotates in space. Any symmetry
of the object shape will reflect on g and h. Now the force and
torque free requirements,

f a + f b = a · v + b · ω + g : e = 0, (2)

τ a + τ b = b · v + c · ω + h : e = 0, (3)

provide the equations to determine the velocity v and
rotation ω.

Generally, if (m̂1, m̂2, m̂3) is a set of orthogonal unit vectors
inscribed in the object, the third-rank tensors g and h can be
expressed as

g = ψijkm̂i m̂j m̂k, (4)

h = φijkm̂i m̂j m̂k. (5)

The Einstein notation of summing one to three over repeated
indices is used and, hereafter, we define (g : e)k = gijkeji .
The parameters ψijk and φijk characterize the object-shear
flow interaction.

Symmetry of the object could simplify g and h. Specifi-
cally, if m̂1 is a two-fold symmetry axis, a π rotation about
the m̂1 axis leaves the object (hence g and h) unchanged.
Nevertheless both m̂2 and m̂3 change signs under such a
rotation. So total numbers of m̂2 and m̂3 in each term of Eqs. (4)
and (5) need to be even, thus excluding the terms m̂2m̂2m̂2 and
m̂3m̂3m̂3. Also m̂1 can only appear an odd number of times
in each term. Accordingly, if the object possesses at least two
two-fold symmetry axes and two of the m̂i are chosen in these
axes, then each of g and h only has six terms:

g = ψijkm̂i m̂j m̂k,

h = φijkm̂i m̂j m̂k,
i �= j �= k �= i. (6)

Thus the object will experience force and torque only in the
vorticity direction under a simple shear flow when the velocity
and velocity gradient of the shear are along two of the m̂i .

(a) (c)(b)

FIG. 1. Relation between orientation and ψi , with a double helix
used as an example of a uniaxial object.

III. UNIAXIAL APPROXIMATION

Solving Eqs. (2) and (3) for a general shaped object exactly
will be complicated. We thus consider uniaxial chiral objects
which possess a rotational symmetry axis such that, besides
being chiral, the object’s orientation in the space is defined
completely by a director n̂ (with ±n̂ being equivalent).

Uniaxial objects have the nice properties that the resistance
tensors a, b, and c are all in the form of, due to the rotational
symmetry around n̂,

a = −a‖n̂n̂ − a⊥(I − n̂n̂),

with Iij = δij . Here negative signs are adopted to stress the
resistance force/torque characters. Requirements for Eq. (6)
are also satisfied with three two-fold symmetry axes. Assuming
n̂ = m̂3, there is additional symmetry between m̂1 and m̂2,
leading to ψ213 = −ψ123, ψ132 = −ψ231, and ψ213 = −ψ123

(similarly for φijk). Thus there are only three parameters left
for g and h each:

gijk = ψ1njnlεilk + ψ2ninlεljk + ψ3nknlεij l,

hijk = φ1njnlεilk + φ2ninlεljk + φ3nknlεij l .

As illustrated in Fig. 1, ψ1, ψ2, and ψ3 correspond to the forces
in the vorticity direction experienced by the object under shear
when n̂ is fixed aligning in the velocity, velocity-gradient,
and vorticity directions, respectively. Equivalently we can also
write g : e (with e = ∇us) in the vector form:

g : e = ψ1[∇(n̂ · us)] × n̂ + ψ2n̂ × [(n̂ · ∇)us]

+ψ3[n̂ · (∇ × us)]n̂

A similar formulation also applies between h and φ.
Further symmetry arguments lead to the conclusions that

b and g depend on chirality such that they will change sign
if chirality is reversed and are zero for a chiral object. On
the other hand, a, c, and h do not change with the reverse of
chirality. Figure 2 shows the particular example for c⊥ which

(a)

(b)

(c)

mirror

(d)

FIG. 2. Arguments leading to a nonchiral contribution to c⊥.
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couples the rotation ω ẑ with the torque (τx,τy,τz) experienced
by the object (illustrated as a double helix). Now considering
the π rotation around the z axis from (a) to (b), τz remains the
same, but τx and τy change sign. However, since the rotation ω ẑ
and the object remain the same, τx and τy are necessarily zero
and only τz is possible. Next consider a mirror operation from
(a) to (c) (note that τz changes direction in the mirror image),
followed by a π rotation from (c) to (d). Comparing (a) and (d),
the rotation and τz are the same, but the helix changes from a
right-handed one to a left-handed one. Thus contribution to τz

due to the rotation cannot depend on the chirality, as with c⊥.
All the other cases can be similarly demonstrated with suitable
combinations of mirror and rotation operations.

Now, to solve for v and ω, we apply a−1 to Eq. (2) to get v

and substitute v into Eq. (3) to obtain ω. With n̂n̂ · n̂n̂ = n̂n̂,
n̂n̂ · (I − n̂n̂) = 0, and (I − n̂n̂) · (I − n̂n̂) = (I − n̂n̂), we
quickly have

a−1 = − 1

a‖
n̂n̂ − 1

a⊥
(I − n̂n̂).

Without the loss of generality, we choose the simple shear
as us(r) = −γ̇ y x̂, with γ̇ being the shear rate. After some
straightforward algebra, we obtain the velocity v and rotation
ω of the object as

v = γ̇ (β1n1n̂ × ŷ + β2n2 x̂ × n̂ − β3n3n̂), (7)

ω = γ̇ (α1n1n̂ × ŷ + α2n2 x̂ × n̂ − α3n3n̂) (8)

with n̂ ≡ n1 x̂ + n2 ŷ + n3 ẑ, and

βi ≡ (c⊥ψi − b⊥φi)/q⊥, i = 1 or 2,

β3 ≡ (c‖ψ3 − b‖φ3)/q‖,
(9)

αi ≡ (a⊥φi − b⊥ψi)/q⊥, i = 1 or 2,

α3 ≡ (a‖φ3 − b‖ψ3)/q‖.

Here q‖ ≡ a‖c‖ − b2
‖ and q⊥ ≡ a⊥c⊥ − b2

⊥.
Furthermore b and g are not independent of each other. As

illustrated in Fig. 3(a), since b‖ is the force experienced along
n̂ when the object rotates around n̂, it is also the force with
the object fixed but the fluid counter-rotates. However, this
counter-rotating fluid is exactly the sum of two simple shear
flows, each of which could apply a force ψ3 on the object. Thus
we obtain b‖ = 2ψ3. A similar argument in Fig. 3(b) leads to
b⊥ = ψ1 + ψ2. The same considerations also lead to c‖ = 2φ3

and c⊥ = φ1 + φ2.

(a) (b)

FIG. 3. (a) Illustration for demonstrating b‖ = 2ψ3. (b) For b⊥ =
ψ1 + ψ2.

With these relationships, Eq. (9) is greatly simplified.
Particularly, β3 = 0 and

β1 = −β2 = (φ2ψ1 − φ1ψ2)/q⊥ ≡ β. (10)

The dynamics is thus solved in terms of the parameters a‖,
a⊥, ψi , and φi , with i = 1,2,3. These parameters are most
likely to be obtained by calculating the flow field numerically,
as they depend on exact object shapes. Nevertheless they are
defined from steady-state flows with the object remaining
fixed, thus avoiding the complicated moving boundary prob-
lems. Different numerical methods can be used for different
cases. For example, the slender-body theory [17] is suitable
if the object is composed of thin strings. For more general
shapes, the boundary element method [4], by partitioning the
object surface into small patches, can be used.

IV. ROTATIONAL DYNAMICS AND DRIFTING MOTION

First we consider the dynamics of n̂ (rotation), which is
governed by

d n̂
dt

= ω × n̂

= γ̇ [α1n1(n̂ × ŷ) × n̂ + α2n2(x̂ × n̂) × n̂] . (11)

For nonchiral objects, ψi = 0; then α1 = φ1/(φ1 + φ2) and
α2 = φ2/(φ1 + φ2). We recover the dynamics for a spheroid.
With its orientation represented by a unit vector anchored at
the origin, the tip could move on the surface of the unit sphere
in the so-called closed Jeffery orbits [18]. There is a group of
possible orbits under each ratio ε ≡ φ2/φ1. Jeffery orbits for
ε = 70 (representative of a long object which has φ2 	 φ1)
are shown in Fig. 4(a), with equal-spaced orbits on the y–z

plane.
Equation (11) shows that the chirality modifies the scalar

orbit parameters, α1 and α2, but not the vector form. Thus the
uniaxial chiral objects still rotate following the Jeffery orbits,
with modified orbit parameters ε = α2/α1.

Dynamical simulations [4] of straight twisted ribbons have
found that the rotating motions did mostly follow the Jeffery
orbits. Nevertheless the ribbons are seen to switch between
different Jeffery orbits from time to time. Since the Jeffery
orbits are closed curves, we believe that these switchings are
likely due to thermal motions neglected in the analysis. One

FIG. 4. (a) Jeffery orbits for ε = 70, such as the case of a long
object. (b) Time evolutions of n1 components for the curves shown
in (a). The one with the largest n1 corresponds to the curve lying
completely on the x–y plane in (a).
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geometrical character in Fig. 4(a) is that the orbits cluster close
to each other when n̂ orients close to the flow direction (x) but
spread out from each other when on the velocity gradient-
vorticity plane (y–z). Furthermore, the orientation spends a
significant proportion of time staying near the flow direction,
as shown in Fig. 4(b). Thus, near the flow direction, even small
thermal motions could lead to switching of the Jeffery orbits.

Time evolutions of n1, which is the component in the flow
direction in Fig. 4(a), are shown in Fig. 4(b). The figure shows
that a long object spends most of the time aligning near the flow
direction. Since the drift motion will be shown later to depend
on the time average of the helix orientation, for such cases,
n1 will have the dominant contribution, even with switching
between different Jeffery orbits.

Next the drift/migration motions of the object in the
vorticity (z) direction are obtained from Eq. (7) as

v · ẑ = γ̇
(
β1n

2
1 + β2n

2
2 − β3n

2
3

) = γ̇ β
(
n2

1 − n2
2

)
. (12)

So the average migration speed of the chiral object is
determined by the time average 〈n2

1 − n2
2〉. Reverse of chirality

could change signs of ψi and hence β. Two significant
characters of Eq. (12) are that (1) there are no n3 such that
there will be no migration when n̂ aligns along the vorticity
direction and (2) although migration speed depends on the
orientation, there is only one migration coefficient β which is
the same for all orientations.

If the object is a long helix, we have φ1 � φ2 (a larger
torque when the helix aligns in the velocity-gradient direction,
compared to in the flow direction). It is also expected that q⊥ =
a⊥(φ1 + φ2) − (ψ1 + ψ2)2 ≈ a⊥(φ1 + φ2) since the first term
is the drag force and torque under shear for the overall rod
shape, and the second term comes from the chiral property
on top of the general shape. (This is indeed confirmed in our
numerical calculations presented in the next section.) Then the
migration coefficient β becomes

β ≈ ψ1/a⊥. (13)

The obvious physical interpretation of Eq. (13) is that the
coefficient is the force ψ1 under shear divided by the drag
coefficient. However, this migration coefficient also applies to
all other helix orientations, even though ψ1 is the force when
the object is fixed and aligns in the flow direction. (Similar
arguments also apply to a disk in which φ2 � φ1 and β ≈
−ψ2/a⊥.)

How does the helix still migrate with the coefficient −β =
−ψ1/a⊥ even when it is aligned in the y direction under a
free rotation condition? For a long helix, α1 � α2 ≈ 1, and
at n̂ = ŷ it will rotate with ω = γ̇ ẑ. Thus the force balance
equation (2), in the z direction is

−a⊥vz − b⊥γ̇ + ψ2γ̇ = 0,

with b⊥ = ψ1 + ψ2, and we recover vz = −γ̇ ψ1/a⊥. This
agrees with Eq. (12) at n1 = 0 and n2 = 1. On the other hand,
when n̂ = x̂, the rotation rate is very small, ω ≈ 0, and we
have

−a⊥vz + ψ1γ̇ = 0,

giving vz = γ̇ ψ1/a⊥, again in agreement with Eq. (12).

V. NUMERICAL CALCULATIONS FOR LONG HELICES
AND COMPARISONS WITH SIMULATION

AND EXPERIMENT RESULTS

Thus we have derived the relevant chiral parameters for
rigid body motion under shear, and particularly for the drift
motion of a long helix we need only to evaluate two parameters,
a⊥ and ψ1. Below, we will calculate them numerically using
the boundary element method (see, e.g., Ref. [4]) for two
geometries matching those used in previous simulations [4]
and experiments [5]. Comparison of drifting velocities will be
presented.

In Stokes flow, the flow field v(r) induced by the traction
forces f (r) at a surface is given by the following, using the
well-known Oseen tensor H (r):

v(r) =
∫

S

H (r − r ′) f (r ′)dS(r ′). (14)

We partition the object surface into small patches and assume
the traction forces f i to be constant over each patch i.
Then, with the specification of fluid velocity vi at each patch
(matching the surface velocity due to the non-slip boundary
condition), Eq. (14) leads to a system of linear algebraic
equations determining the forces f i .

For the calculations of a⊥, the helix is considered to move
in the direction perpendicular to the center axis n̂. Thus vi

is a constant vector perpendicular to n̂. It is verified that if
we consider a straight rod, with partition size approximately
0.2 × 0.2 with the rod radius being 1, our calculations give
values of the drag coefficients a⊥ and a‖ within 3% of the
known values.

For ψ1, the situation corresponds to a fixed helix under
external simple shear flow. Assume the simple shear flow
us(r) = −γ̇ y x̂. We set the velocity on the helix surface to
be vi = −us(r i) when solving Eq. (14). Thus the total flow
field us(r) + v(r) will be zero at the object surface and match
the simple shear at infinity.

First we compare our results with those obtained from
dynamical simulations of chiral ribbons [4]. The simulations
also included random motions whose strength is characterized
by the Peclet number P ≡ γ̇ /Dr , with Dr being the rotational
diffusion constant. Our result will correspond to the condition
P 	 1. For the geometry of the chiral ribbon used in Fig. 9 of
Ref. [4], the drifting 〈Vz〉/γ̇ a is 0.10, which agrees well with
the value of 0.091 seen in the simulation results in Fig. 9 of
Ref. [4] at P 	 1. This agreement also confirms the validity
of the uniaxial approximation for the long ribbons. It should
be noted that the filled circles denoted as “our formula” in
the said figure used the value for the chiral parameter g in
Eq. (27) of Ref. [4] obtained from dynamical simulations.
(Thus the comparison in the figure is mainly to show the correct
dependence on P .)

We also consider the 25-turn helix with a geometry as the
bacteria used experimentally in Ref. [5], with a string diameter
of 143 nm, helix diameter 357 nm, and pitch length 643 nm.
Even though uniaxial approximation was argued from a fast
rotating average around the central axis compared to dynamics
of orientation, we also check the variation of β = ψ1/a⊥ with
the helix at a different rotating angle with respect to the central
axis. We find that the variations for both ψ1 and a⊥ are all
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less than 1%. Thus even when the dynamical averaging is not
complete we could still expect the uniaxial approximation to
be valid.

For the discussions leading to the single chiral parameter β,
we argued that the ratio φ1/φ2 � 1 and (ψ1 + ψ2)2 �
|a⊥(φ1 + φ2)| for long helices. Both conditions are indeed
well satisfied with less than 1% errors.

The migration γ̇ β is calculated to be 1.2 μm/s at the
experimental shear rate γ̇ = 103 s−1, with φ2 	 φ1 here and
n̂ spending most of the time near the flow direction (x̂) as
in Fig. 4(b). The measured experimental value is 0.43 μm/s,
which is about one-third of the calculated value. As noted
in Ref. [5], this discrepancy is probably not too unreasonable
considering that the helix still has some components in the vor-
ticity direction (n3) (e.g., due to diffusion) and other possible
factors such as helix flexibility and interhelix hydrodynamic
interaction.

Opposite to the long helix, consider the case of an object
having a roughly spherical base shape with smaller chiral units
grafted on the surface. One example is the chiral molecule
composed of aromatic amide [15]. Choosing a particular axis
through the center of the sphere as n̂, the spherical base shape
yields a‖ ≈ a⊥ (similarly for b and c), and ψ1 ≈ ψ2 ≈ ψ3 (also
for φ). Then we obtain β ≈ 0. Thus we could expect a little
drift motion for these kinds of objects in shear flows. Indeed
it is also noted that, with the symmetry between n1 and n2

for a sphere, Eq. (12) requires a vanishing β for consistence.
Similarly a chiral object with very strong rotational diffusion
yielding a near isotropic distribution [4,5] would also have a
vanishing β and migration.

VI. CONCLUSIONS

In conclusion, we solve the dynamical motions of uniaxial
chiral objects under shear in low-Reynolds-number fluids.
These solutions are parametrized in terms of object-flow
interacting parameters in steady-state flow fields. Rotations are
shown to follow the Jeffery orbits with the orbit parameters
modified by the chirality, and drift/migration motions are
determined by a unique chiral parameter. The physical origin of
the single chiral parameter is explained, and good agreements
with dynamical simulations are obtained. We believe that
this analysis can be further extended to study other complex
motions of chiral objects in nature situations and microfluidic
cells, for example the dynamical interaction between chiral
objects mediated by fluid flows.
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