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Oscillatory shear response of dilute ferrofluids: Predictions from rotational Brownian dynamics
simulations and ferrohydrodynamics modeling
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Ferrofluids are colloidal suspensions of magnetic nanoparticles that exhibit normal liquid behavior in the
absence of magnetic fields but respond to imposed magnetic fields by changing their viscosity without loss
of fluidity. The response of ferrofluids to constant shear and magnetic fields has received a lot of attention,
but the response of ferrofluids to oscillatory shear remains largely unexplored. In the present work we used
rotational Brownian dynamics to study the dynamic properties of ferrofluids with thermally blocked nanoparticles
under oscillatory shear and constant magnetic fields. Comparisons between simulations and modeling using
the ferrohydrodynamics equations were also made. Simulation results show that, for small rotational Péclet
number, the in-phase and out-of-phase components of the complex viscosity depend on the magnitude of the
magnetic field and frequency of the shear, following a Maxwell-like model with field-dependent viscosity
and characteristic time equal to the field-dependent transverse magnetic relaxation time of the nanoparticles.
Comparison between simulations and the numerical solution of the ferrohydrodynamic equations shows that the
oscillatory rotational magnetoviscosity for an oscillating shear field obtained using the kinetic magnetization
relaxation equation quantitatively agrees with simulations for a wide range of Péclet number and Langevin
parameter but has quantitative deviations from the simulations at high values of the Langevin parameter. These
predictions indicate an apparent elastic character to the rheology of these suspensions, even though we are
considering the infinitely dilute limit in which there are negligible particle-particle interactions and, as such,
chains do not form. Additionally, an asymptotic analytical solution of the ferrohydrodynamics equations, valid
for Pe � 2, was used to demonstrate that the Cox-Merz rule applies for dilute ferrofluids under conditions of
small shear rates. At higher shear rates the Cox-Merz rule ceases to apply.
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I. INTRODUCTION

Ferrofluids are colloidal suspensions of nanosized magnetic
particles in a simple carrier fluid which respond to an external
magnetic field with changes in their rheological properties
[1–4]. The magnetorheology of ferrofluids has been an active
area of experimental [1–6] and theoretical [7–12] research for
decades. The focus of most work has been the steady-state
response of dilute and semidilute ferrofluids to imposed
constant shear and magnetic fields [2,3,13–21]. There has also
been some work on the response of ferrofluids to oscillating
[3,14,22–26] and rotating [14,27–32] magnetic fields; how-
ever, here again a steady flow has been considered. Recently,
the dynamics of the transient magnetoviscous effect has
received attention [33,34], with emphasis on response of
ferrofluids to step changes in the applied magnetic or shear
fields.

Surprisingly, the response of ferrofluids to oscillating shear
fields seems to have received little attention, even though
oscillatory shear experiments are common rheological tools
to study complex fluids [35–37]. In these measurements, both
stress and strain vary cyclically with time, with sinusoidal
variation being the most commonly used. The cycle time,
or frequency of oscillation, defines the time scale of the
test. Thus, by observing material response as a function of
frequency, mechanical properties can be probed at different
time scales. Klingenberg [38,39] used molecular dynamics
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to study the oscillatory shear response of electrorheological
suspensions composed of dielectric spheres in a Newtonian
fluid between parallel-plate electrodes. The response obtained
was described by frequency-dependent moduli determined
by a competition between hydrodynamic and electrostatic
interactions that dominate chain formation, deformation, and
breakage. A similar response was predicted for magnetorheo-
logical (MR) fluids, concentrated suspensions of micron-sized
magnetizable particles, and expressed as a relation between
magnetic and hydrodynamic forces using the so-called Mason
number [40]. Kanai and Amari [41] studied flocculated
suspensions of micron-sized ferric oxide particles in mineral
oil. They found strain-thickening behavior one decade larger
than in the nonmagnetic-based oil, which they attributed
to particle-particle interactions. Li et al. [42] studied the
dynamic behavior of MR fluids under oscillatory shear. Linear
viscoelastic behavior was observed in these fluids only at very
small strain amplitudes, and the response could be captured
using a Pipkin diagram describing the rheological behavior as a
function of strain amplitude and frequency. Claracq et al. [37]
used micron-sized colloidal magnetic particles coated with
latex to study the viscoelastic behavior of MR fluids subjected
to small deformations. They related the magnetic force to
the elastic modulus using a Mason number and compared
their results with those obtained by Klingenberg [38,39] using
simulations. They found that the application of a magnetic field
causes aggregation of the particles into chains in the magnetic
field direction and that these were destroyed when high shear
rates perpendicular to the magnetic field were applied. de Gans
et al. [43] investigated an MR fluid consisting of colloidal
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silica spheres suspended in an organic ferrofluid; a so-called
inverse ferrofluid. They found that the storage modulus G′

was an order of magnitude larger than the loss modulus G′′ at
all magnetic fields studied. In addition, a model considering
a collection of noninteracting spherical particles was derived
for the high-frequency limit of the storage modulus. Ramos
et al. [36] also used a silica-based inverse ferrofluid to study the
magnetorheology behavior under small-amplitude oscillatory
shear in the presence of an external magnetic field. Their results
were compared with those of de Gans et al. [43,44] and chain
models and excellent agreement was obtained.

For many systems the steady-state viscosity is difficult to
measure at high shear rate. Data obtained from oscillatory
experiments are usually more reliable and the Cox-Merz rule
has been used to predict the viscosity at a steady shear rate η(γ̇ )
from oscillatory measurements. Although only partial justi-
fication for the Cox-Merz rule has been provided [45], the
Cox-Merz rule has been found to hold for many polymer melts
and concentrated and semidilute solutions [35]. Recently, Chae
and collaborators [46] demonstrated that the Cox-Merz rule
was inapplicable to concentrated dispersions of asymmetric
magnetic particles. However, they studied a magnetic disper-
sion of particles with average length of 350 nm which tends
to form aggregates and clusters which are difficult to destroy
even at high shear rates. Thus, the applicability of the so-called
Cox-Merz rule to ferrofluids remains an open question.

Asthe reviewed literature indicates, oscillatory shear
experiments have resulted in important insight into the
dynamics of magnetorheological fluids and flocculated
suspensions for which the viscoelastic moduli seem to depend
primarily on the dynamics and mechanics of chain formation,
deformation, and breakage. Surprisingly, oscillatory shear
experiments have received little application in the study
of ferrofluids, even though chain formation, deformation,
and breakage are also important processes that determine
the magnetorheological properties of ferrofluids [47].
Recently, Pinho et al. [48] reported a series of oscillatory
shear measurements with commercial ferrofluids in applied
magnetic fields. They only reported viscous damping of
the force on an oscillating plate in contact with ferrofluid
subjected to a constant magnetic field. The viscous damping
and associated viscosity increased with magnetic field and
monotonically decreased with oscillation frequency, which
was limited to 10–50 Hz. Under the conditions of this study the
ferrofluid apparently did not display an elastic contribution in
the response to the oscillatory shear. Furthermore, the authors
did not provide detailed physical or magnetic characterization
of the fluid, making interpretation of their results difficult,
and did not attempt to model the observed behavior. Still
their contribution is significant as it appears to be the first
application of oscillatory techniques to the study of ferrofluids.

In this contribution we study the dynamic magnetoviscosity
of a ferrofluid, composed of noninteracting spherical perma-
nently magnetized particles subjected to a constant magnetic
field and an oscillatory shear flow described by

γ̇ = dvy

dz
= γ̇0 sin (�t) . (1)

To do so we apply rotational Brownian dynamics simu-
lations in the inertialess limit and compare these to predic-

tions obtained from the ferrohydrodynamic equations using
the kinetic magnetization equation of Martsenyuk, Raikher,
and Shliomis [9]. In Sec. II we introduce the methodol-
ogy for the rotational Brownian dynamics simulations; in
Sec. III we discuss analytical and numerical approaches to
the problem using the ferrohydrodynamics equations and
the kinetic magnetization relaxation equation; in Sec. IV we
present and discuss our results; in Sec. V we consider the ap-
plicability of the Cox-Merz rule for ferrofluids in the infinitely
dilute limit; and in Sec. VI we provide our concluding remarks.

II. ROTATIONAL BROWNIAN DYNAMICS

Rotational Brownian dynamics simulations are based on
the integration of the stochastic angular momentum equation
to obtain the evolution in orientation of each particle assuming
that inertia is negligible—a suitable assumption for the particle
sizes in ferrofluids. Here we are concerned with infinitely dilute
ferrofluids wherein there are no magnetic or hydrodynamic
particle-particle interactions. There are three kinds of torque
acting on the particle: Th due to hydrodynamic drag, Tm due to
the effect of magnetic fields, and TB due to Brownian motion.
The torque due to hydrodynamic drag is given by

T ′
h = −η0

[
Kr

(
ω′ − 1

2∇ × v′)], (2)

where η0 is the viscosity of the carrier fluid, Kr = 8πr3 is
the hydrodynamic rotational resistance coefficient, and ω′ and
1
2∇ × v′ are the angular velocity of the particle and the fluid,
respectively. The unperturbed flow velocity v, and the vorticity
of the fluid ωf are given by

v = γ̇ (t) ziy = γ̇0 sin(�t) ziy,
(3)

ωf = − 1
2 γ̇ (t) ix = − 1

2 γ̇0 sin(�t) ix.

The magnetic torque is given by

Tmg = μ0(m′ × H′), (4)

where μ0 is the permeability of free space, m = mμ′ is the
magnetic dipole moment of the particle, and H′ = A · H is
the applied magnetic field, transformed to the body-fixed axis
using the transformation matrix A, written in our case in
terms of the Euler parameters [13,49]. In our simulations the
magnetic dipole moment of the particle bmμ ′ is directed along
the z′ axis, the simple shear flow is along the y axis, and the
magnetic field H is along the z axis. Primes indicate a vector
with respect to particle-locked coordinates.

In order to reduce the number of variables in the angular mo-
mentum equation, time was nondimensionalized with respect
to the rotational diffusion coefficient Dr = kBT (η0Kr )−1, and
the vector variables were nondimensionalized with respect to
their magnitudes [15]. Setting d�̃

′ = ω̃′dt̃ , where d�̃
′

is the
infinitesimal rotation vector, integrating from time t̃ to t̃ + �t̃

using a first-order forward Euler method and applying the
fluctuation-dissipation theorem to the Brownian term [50], we
obtain

��̃
′ = α(μ̃′ × H̃′)�t̃ − Pe sin(�̃�t̃)ω̃′

f �t̃ + w̃′. (5)

In Eq. (5), α = mH/(kBT ) is the Langevin parameter and
Pe = γ̇0/Dr is the rotational Péclet number. The vector w̃′ is
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a random vector which follows a Gaussian distribution with
mean and covariance given by

〈w̃′
i〉 = 0, 〈w̃′

iw̃
′
i〉 = 2I�t̃. (6)

The algorithm proceeds from a starting configuration by
calculating the change in orientation at each time step.
Orientation is represented through the quaternion parameters
e0, e1, e2, and e3. Changes in the quaternion parameters are
related to Eq. (5) through [15]

⎡
⎢⎢⎢⎣

�e0

�e1

�e2

�e3

⎤
⎥⎥⎥⎦ = 1

2

⎡
⎢⎢⎢⎣

e0 −e1 −e2 −e3

e1 e0 −e3 e2

e2 e3 e0 −e1

e3 −e2 e1 e0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

0

�	̃′
x

�	̃′
y

�	̃′
z

⎤
⎥⎥⎥⎦ . (7)

After each time step, the quaternion parameters of each
particle are normalized. All runs were performed starting from
a random configuration, using 105 noninteracting particles.
The system is stabilized at constant magnetic field and zero
shear until it reaches equilibrium, typically after t̃ =10. At
this point the oscillatory shear is turned on. A time step of
t̃ = 0.0005 was used in order to observe the fastest processes
in the system in a frequency range of 0.01 < �̃ < 100.0.
Langevin parameters of α = 0.1, 1.0, and 10.0, and di-
mensionless shear rates of Pe = 1.0, 5.0, and 10.0 were
used.

The apparent viscosity of the suspension due to the
antisymmetric part of the viscous stress tensor is given by
ηm

zy = τ a
zy/γ̇ , which is referred to as the magnetoviscosity of

the suspension. The antisymmetric part of the stress tensor can
be obtained from τ a = − n

2 〈ε · Tm〉, where n is the number of
particles and ε is the alternating unit tensor [15]. For a dilute
suspension, the intrinsic magnetoviscosity [ηm

zy] is defined
as

[
ηm

zy

] = lim
φ→0

ηm
zy

φη0
. (8)

Using the transformation matrix, the magnetoviscosity
equation is expressed in terms of the quaternion parameters.
The resulting equation is [15]

[
ηm

zy

] = −3
α

Pe
〈2(e2e3 − e0e1)H̃z〉zy . (9)

Because an oscillating shear is applied, one would expect a
time-periodic magnetoviscosity. When α and Pe are small (i.e.,
not far from equilibrium) one would expect the response for
a sinusoidal shear such as Eq. (1) to be equally sinusoidal
but with a phase lag. On the other hand, for large values
of α and Pe, one would expect deviations from sinusoidal
response but still time-periodic behavior. To parameterize
the dynamic magnetoviscosity we introduce the nth-order
in-phase η′

n and out-of-phase η′
n viscosities using a Fourier

series representation of the time-dependent pseudo-steady
intrinsic magnetoviscosity

[
ηm

zy

] =
∞∑

n=1

η′
m,n sin (n�t) +

∞∑
n=1

η′′
m,ncos (n�t). (10)

The nth-order in-phase and out-of-phase dynamic viscosi-
ties can be obtained from

η′
m,n = 1

π

∫ π

−π

η̃ (t) sin (n�t) d (�t),

(11)

η′′
m,n = 1

π

∫ π

−π

η̃ (t) cos (n�t) d (�t).

For low values of α and Pe, we expect purely sinusoidal
behavior and, as such, η′

n = 0, η′′
n = 0 for n > 1.0. However,

for large α and Pe, we expect deviations from sinusoidal
behavior, captured by η′

m,n �= 0 and η′′
m,n �= 0 with n > 1.0.

Although Eq. (11) defines η′
m,n and η′′

m,n for any order of n,
we will focus only on n = 1 when analyzing the simulation
results, as these are the quantities typically measured in
oscillatory shear experiments. In that case we write η′

m and
η′′

m for the components of the dynamic magnetoviscosity.

III. CONTINUUM MODELING

For ferrofluids consisting of particles with rigidly locked
magnetic dipoles suspended in an incompressible fluid in
the infinitely dilute limit, the commonly accepted governing
ferrohydrodynamics equations are [51]

∇ · v = 0, (12)

ρ
Dv
Dt

= μ0M · ∇H − ∇p + 2ζ∇×ω + ηe∇2v, (13)

0 = μ0M × H + 2ζ∇ × v − 4ζω. (14)

Here, v is the mass-average velocity, ρ is the fluid density,
M is the suspension magnetization, H is the magnetic field,
p is the fluid pressure, ζ is the so-called vortex viscosity, ω

is the ferrofluid spin velocity, and ηe = η + ζ is an effective
viscosity with η being the shear viscosity of the ferrofluid.
Note that, in Eq. (13), we have left out the term corresponding
to the couple stress and the controversial spin viscosity
[27–29,52–54]. This is justified because we are considering
here the limit of infinite dilution for which there are no particle-
particle magnetic or hydrodynamic interactions and hence no
mechanism for transport of internal angular momentum. We
have also left out the term corresponding to the moment-of-
inertia density of the nanoparticles, which is a good assumption
owing to the small particle size typical of ferrofluids.

Martsenyuk, Raikher, and Shliomis [9] proposed a magneti-
zation relaxation equation, denoted here as the MRS equation,
derived microscopically from the Fokker-Planck equation.
This equation has been found to well describe the magnetic
field and shear-rate dependence of the magnetoviscosity of
dilute ferrofluids [13]. The equation is derived using an
effective-field method which results in closure of the first
moment of magnetization, yielding

dM
dt

= � × M − H[H · (M − Meq)]

τ‖H 2
− H × (M × H)

τ⊥H 2
.

(15)

Here, M stands for the ferrofluid magnetization due to
the magnetic field H and the flow vorticity � = 1

2∇ × v.
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At equilibrium in a stationary field, Meq is described by the
Langevin function L (α):

Meq = nmL (α)
H
H

= Ms(coth α − α−1)iz,
(16)

α = mH

kBT
, L (α) = coth α − α−1,

where m is the magnetic dipole moment of an individual
particle, n is the number density of the particles, and α is
the Langevin parameter.

The parallel τ‖ and transverse τ⊥ relaxation times of
Eq. (15) are given by

τ‖ = d ln L (α)

d ln α
, τ⊥ = 2L (α)

α − L (α)
τ, (17)

with

τ = 3η V

kBT
(18)

being the characteristic Brownian relaxation time of rotational
particle diffusion.

The system under consideration will be assumed to be of
infinite extent; that is, we will ignore the effect of boundaries
and transients associated with momentum diffusion. As such,
all spatial derivatives are zero, except for those of the
translational velocity that satisfies the condition of simple
shear flow in Eq. (3). In the following, we will limit our
attention to the case of a unidirectional applied magnetic field,
H = H0izand the oscillating simple shear flow of Eq. (3).
Maxwell’s equations in the magnetoquasistatic limit are
obeyed; however, these are trivially satisfied by the imposed
magnetic field and flow. In this case the simple shear flow will
result in a magnetization which lies in the yz plane, hence we
have M = My(t)iy + Mz(t)iz. Therefore, in component form,
Eq. (15) becomes

∂My

∂t
= 1

2
γ̇ (t) Mz (t) − My

τ⊥
,

(19)
∂Mz

∂t
= −1

2
γ̇ (t) My (t) − [Mz (t) − MsL (α)]

τ‖
.

In order to facilitate the analysis and comparisons with the
results of Brownian dynamics simulations we introduce the
dimensionless quantities

t̃ = t

2τ
, τ̃⊥ = τ⊥

2τ
, τ̃‖ = τ‖

2τ
,

Pe = 2γ̇0τ, ε = Pe

2
,

(20)

f (t̃) = My

MsL(α)
, g

(
t̃
) = Mz

MsL(α)
,

Mn = ζ γ̇

μ0MsL (α) H0
,

where Mn is a form of the Mason number (i.e., the ratio be-
tween the viscous and magnetic stresses [55,56]). Substituting
(20) in (19) we obtain

∂f

∂t
= ε sin(�̃t̃)g(t̃) − 1

τ̃⊥
f (t̃),

(21)
∂g

∂t
= −ε sin(�̃t̃)f (t̃) − 1

τ̃‖
[g(t̃) − 1],

with the initial conditions f (t = 0) = 0 and g(t = 0) = 1.
In general, Eq. (21) has to be solved numerically. However,
first we obtain an asymptotic analytical solution in order to
gain physical insight.

A. Regular perturbation solution

To solve Eq. (21) analytically we apply a regular pertur-
bation expansion in the small parameter ε = pe

2 < 1, with the
form

f (t) =
∞∑

n=0

εnfn(t), g(t) =
∞∑

n=0

εngn(t). (22)

Equation (22) is introduced into Eq. (21) and each term
is expanded to obtain an equation in power series of ε. The
nth-order problem corresponds to the terms multiplied by εn.
Each of these problems can be solved in turn and the solutions
added to obtain a power-series approximation to the actual
solution.

The zeroth-order problem is given by

∂f0

∂t
= − 1

τ̃⊥
f0(t̃), f0 (0) = 0,

(23)
∂g0

∂t
= − 1

τ̃‖
[g0(t̃) − 1], g0 (0) = 1,

with the solution

f0(t̃) = 0, g0(t̃) = 1, (24)

corresponding to equilibrium. The transient approach to this
pseudosteady equilibrium state could be obtained but is not
relevant because we seek to understand the pseudosteady
response at long times.

The first-order problem is given by

∂f1

∂t̃
= sin(�̃t̃)go(t̃) − 1

τ̃⊥
f1(t̃), f1 (0) = 0,

(25)
∂g1

∂t̃
= − 1

τ̃‖
g1(t̃), g1 (0) = 0.

This system of equations is solved to obtain

f1(t̃) = τ̃⊥
sin(�̃t̃) − �̃τ̃⊥ cos(�̃t̃)

(1 + τ̃ 2
⊥�̃2)

, g1(t̃) = 0. (26)

The second-order problem is given by

∂f2

∂t̃
= − 1

τ̃⊥
f2(t̃),

∂g2

∂t̃
= −sin(�̃t̃)f1(t̃) − 1

τ̃‖
g2(t̃),

(27)
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which results in

f2(t̃) = 0, g2(t̃) = τ̃‖τ̃⊥[−1 − 4τ̃ 2
‖ �̃2 + (1 − 2τ̃‖τ̃⊥�̃2) cos(2�̃t̃) + (2τ̃‖ + τ̃⊥)�̃ sin(2�̃t̃)]

8(1 + 4τ̃ 2
‖ �̃2)(1 + τ̃ 2

⊥�̃2)
. (28)

Similarly for the third-order problem we have

∂f3

∂t̃
= sin(�̃t̃)g2(t̃) − 1

τ̃⊥
f3(t̃),

∂g3

∂t̃
= − 1

τ̃‖
g3(t̃). (29)

This is solved to obtain

f3(t̃) = −C1τ̃
2
⊥ �̃ cos(t̃ �̃) + C2 τ̃⊥ sin(t̃ �̃) − C3 τ̃ 2

⊥ τ̃‖�̃ cos(3t̃ �̃) + C4τ̃
2
⊥ τ̃‖ sin(3t̃ �̃), g3(t̃) = 0. (30)

where

C1 = 2 + τ̃‖τ̃⊥ + 4τ 3
‖ τ̃⊥�̃2 + 2τ̃ 2

⊥�̃2 + τ̃ 2
‖ {1 + �̃2[8 + τ̃ 2

⊥(8�̃2 − 1)]}
2(1 + 4τ̃ 2

‖ �̃2)(1 + τ̃ 2
⊥�̃2)2

, (31)

C2 = 4 + 8τ 3
‖ τ̃⊥�̃2 + 4τ̃ 2

⊥�̃2 + τ̃‖τ̃⊥(3 − τ̃ 2
⊥�̃2) + 4τ̃ 2

‖ �̃2[4 + τ̃ 2
⊥(4�̃2 − 1)]

4(1 + 4τ̃ 2
‖ �̃2)(1 + τ̃ 2

⊥�̃2)2
, (32)

C3 = −2τ̃⊥ + τ̃‖(3τ̃ 2
⊥�̃2 − 1)

2(1 + 4τ̃ 2
‖ �̃2)(1 + τ̃ 2

⊥�̃2)2(1 + 9τ̃ 2
⊥�̃2)

, (33)

C4 = −1 + τ̃⊥�̃2(8τ̃‖ + 3τ̃⊥)

4(1 + 4τ̃ 2
‖ �̃2)(1 + τ̃ 2

⊥�̃2)2(1 + 9τ̃ 2
⊥�̃2)

. (34)

From the solutions to the zeroth- to third-order problems
we may infer that fn = 0 if n is odd and gn = 0 if n is even.
Then, according to (22), we have

f (t̃) = τ̃⊥
cos(�̃t̃) + �̃τ̃⊥ sin(�̃t̃)

2(1 + τ̃ 2
⊥�̃2)

ε

+ [−C1τ̃
2
⊥ �̃ cos(t̃ �̃) + C2 τ̃⊥ sin(t̃ �̃)

−C3 τ̃ 2
⊥ τ̃‖�̃ cos(3t̃ �̃) + C4τ̃

2
⊥ τ̃‖ sin(3t̃ �̃)]ε3 + O(ε5).

(35)

We are interested in evaluating the intrinsic magnetoviscos-
ity, defined as in Ref. [15] and which is given by

η̃m = ηm

η0
= 3

4
Mn−1f (t̃). (36)

Substituting (35) in (36), the intrinsic magnetoviscosity can
be expressed as

η̃m = 3

4
εMn−1

{
cos(�̃t̃) + �̃τ̃⊥ sin(�̃t̃)

2(1 + τ̃ 2
⊥�̃2)

τ̃⊥

+ [−C1τ̃
2
⊥ �̃ cos(t̃ �̃) + C2 τ̃⊥ sin(t̃ �̃)

−C3 τ̃ 2
⊥ τ̃‖�̃ cos(3t̃ �̃) + C4τ̃

2
⊥ τ̃‖ sin(3t̃ �̃)]ε2

+O(ε4)

}
. (37)

Next we recognize that, in the infinitely dilute limit,

Mn−1ε = Mn−1Pe

2
= 2αL (α) . (38)

Substituting Eqs. (16), (18), and (38) into (37) and keeping
only the first term in the regular perturbation solution, we
obtain

η̃m = 3

2

αL2(α)

α − L(α)

sin(�̃t̃) − �̃τ̃⊥ cos(�̃t̃)

(1 + �̃2τ̃ 2
⊥)

+ O(ε2). (39)

Applying Eq. (10), we obtain the following forms for
the nondimensional in-phase η̃′ and out-of-phase η̃′′ dynamic
magnetoviscosity:

η̃′
m =

[
3

2

αL2 (α)

α − L (α)

]
1

1 + �̃2τ̃ 2
⊥

,

(40)

η̃′′
m =

[
3

2

αL2 (α)

α − L (α)

]
�̃2τ̃ 2

⊥
1 + �̃2τ̃ 2

⊥
.

In obtaining Eq. (40) from Eq. (37) we have chosen to
keep, for simplicity, only the leading order term [O(ε)]. In this
case the response is seen to be purely sinusoidal. However, we
note that inspection of Eq. (37) demonstrates that deviations
from purely sinusoidal behavior are predicted as Pe increases.
These deviations are seen as additional harmonic contributions
[terms with cos(3�̃t̃) and sin(3�̃t̃) in Eq. (37)] which would
correspond to higher-order (n > 1) in-phase η̃′

m,n and out-of-
phase η̃′′

m,n magnetoviscosities.
These expressions in Eq. (40) for the in-phase and out-of-

phase components of the magnetoviscosity are similar to the
model for the dynamic viscosity of a Maxwell fluid, but with
a field-dependent relaxation time given by (17) and a field-
dependent viscosity equal to ηm = 3

2
αL2(α)
α−L(α)ηφ. The Maxwell

model describes the viscoelastic behavior of a material using
simple mechanical elements such as a spring and a dashpot.
This model is acceptable as a first approximation to relaxation
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FIG. 1. In-phase and out-of-phase magnetoviscosity for different
Langevin parameters and Pe = 1. Markers correspond to simulation
results. For the in-phase dynamic magnetoviscosity, open circles (◦)
correspond to α = 0.1, open squares (�) to α = 1.0, and open triangles
(�) to α = 10.0. For the out-of-phase dynamic magnetoviscosity,
closed circles (�) correspond to α = 0.1, closed squares (�) to α

= 1.0, and closed triangles (�) to α = 10.0. The straight line (—)
corresponds to Eq. (40).

behavior. If we use the same model to interpret our results, it is
clear that the magnetic torque corresponds to the spring while
the rotational fluid drag corresponds to the dashpot, and the
characteristic time is equal to the field-dependent transverse
relaxation time of the nanoparticles.

B. Numerical Solution

The numerical solution of Eq. (21) was obtained using
the ODE45 function in MATLAB. This function implements a
Runge-Kutta method with a variable time step for efficient
computation. The algorithm solves the equations and yields
the time-dependent magnetoviscosity. The dynamic in-phase
and out-of-phase magnetoviscosities were obtained through
numeric implementation of Eq. (11) using the trapezoidal rule.

FIG. 2. Normalized in-phase, η′
m/ηm, and out-of-phase, η′′

m/ηm,
dynamic magnetoviscosity for Pe = 1, obtained from simula-
tions, reduced to a master curve using the dimensionless effective
frequency, �̃⊥.

FIG. 3. In-phase and out-of-phase magnetoviscosity at Pe = 5 for
different Langevin parameters for simulation (markers) and numerical
results (solid and dotted lines).

This was found to give satisfactory values owing to the small
time step size used for numerical output (�t̃ = 0.001).

IV. COMPARISON OF SIMULATIONS
AND CONTINUUM MODELING

The dynamic magnetoviscosity as a function of shear
oscillation frequency for different Langevin parameters and
for Pe = 1.0 is shown in Fig. 1. First, it is noticeable
that the dynamic magnetoviscosity increases with increasing
magnetic field. Also, as the magnetic field increases, there is
a displacement of the crossover frequency for the in-phase
and out-of-phase dynamic viscosities to higher frequencies,
indicating a decrease of the ferrofluid relaxation time with
increasing magnetic field. At frequencies below the crossover
η′ dominates, indicating viscous behavior, but at higher
frequencies η′′ dominates, indicating an elastic character to the
magnetoviscosity. A comparison with the analytical solution
of MRS is also shown for ε = 0.5. The solution agrees with the
simulation results for all Langevin parameters, but deviations
are seen at higher frequencies for α = 0.1 . For Pe < 1 we
do not see a significant effect of Pe on the simulated dynamic
viscosity, consistent with Eq. (40).

Another approach for the interpretation of the shear
and magnetic field dependence of the dynamic viscosity of
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FIG. 4. In-phase and out-of-phase magnetoviscosity for Pe = 10
at different Langevin parameters for simulation (markers) and
numerical results (solid and dotted line).

ferrofluids is the use of characteristic dimensionless parame-
ters that capture the basic physics of the phenomena. As shown
in Fig. 2, using the transverse relaxation time Eq. (17), it is
possible to define a new scaled frequency �̃⊥ = 2�τ⊥ with
which all the simulation results for Pe < 1 collapse into a
single curve.

The oscillatory rheological behavior of the ferrofluid at high
shear is shown in Fig. 3 for Pe = 5 and Fig. 4 for Pe = 10.
For both Péclet values it is found that the crossover point
shifts to higher frequencies as the magnetic field increases,
indicating a decrease of the characteristic time of the ferrofluid
response to the oscillatory shear. However, if we interpret the
frequency of the peak in η̃′

m as an inverse relaxation time,
we find that the field dependence of this relaxation time is
no longer given by Eq. (17) for τ⊥. For Pe = 10.0 (Fig. 4),
before the η̃′

m and η̃′′
m crossover, there is a clear peak in the η̃′

m

curve and η̃′′
m becomes higher in magnitude than η̃′

m, indicative
of a viscous-elastic transition with respect to frequency. A
comparison with the numerical solution for Eq. (21) is also
shown. It is appreciable that the magnetoviscosity obtained by
numerical solution of the governing equations using the MRS
equation quantitatively agrees with simulations for both Péclet
numbers and different Langevin parameters. It also predicts the
viscous-elastic transition shown for Pe = 10. However, as the

FIG. 5. Magnetoviscosity as a function of time for Pe = 5 and
α = 1.0 and for (a) �̃ = 0.1 and (b) �̃ = 1.5. The results of simulations
and numerical solution are indistinguishable.

Langevin parameter increases, there is a quantitative deviation
of the numerical solution compared with the simulation results
in the η̃′

m curve, indicating that the MRS magnetization
relaxation equation is no longer able to quantitatively predict
dilute ferrofluid behavior in an oscillating shear flow.

Breakdown of agreement between simulations and
predictions using the MRS equation is further evident when
comparing the time dependence of the magnetoviscosity
predicted using the two approaches, as shown in Figs. 5
to 8. Figure 5 illustrates oscillatory but not sinusoidal response
to the sinusoidal shear flow for Pe = 5.0 and α = 1.0. It
also shows that sinusoidal response in the magnetoviscosity
is recovered at higher applied fields (α = 10.0). In Figs. 5
and 6 the agreement between simulations and numerical
solution using the MRS equation is such that the two curves
superimpose. This is also true in Fig. 7 for Pe = 10.0
and α = 1, where again it is seen that the magnetoviscosity
response is not sinusoidal under these conditions. Sinusoidal
response is again recovered for higher applied fields, as shown
in Fig. 8 for Pe = 10 and α = 10; however, this figure also
shows deviation between the predictions of simulations and the
numerical solution. Interestingly, Figs. 5 and 7 correspond to
Mn > 1 whereas Figs. 6 and 8 correspond to Mn < 1. As noted
before, the Mason number represents the ratio of viscous to
magnetic stresses, hence these observations indicate that, when
the viscous stresses dominate the magnetic stresses, deviations
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FIG. 6. Magnetoviscosity as a function of time for Pe = 5 and
α = 10.0 and for (a) �̃ = 10.0 and (b) �̃ = 20.0. The results of
simulations and numerical solution are indistinguishable.

may occur from purely sinusoidal magnetoviscous response
of a dilute ferrofluid to a sinusoidal oscillating shear flow.

V. CONSIDERATION OF THE COX-MERZ RULE
FOR DILUTE FERROFLUIDS

The Cox-Merz rule [57] states that η(γ̇ ) = η∗(�) when
� = γ̇ , where η(γ̇ ) is the viscosity at a steady shear rate,
and η∗(�) is the dynamic viscosity at oscillating frequency �

obtained from small amplitude oscillatory shear experiments.
The dynamic viscosity is obtained from the in-phase and out-
of-phase viscosities using

η∗
m = [(η′

m)2 + (η′′
m)2]

1
2 . (41)

Note that, by using the MRS equation, the steady-state
magnetoviscosity in a constant magnetic field and shear flow
is precisely given by [9]

ηm = 3

2

αL2 (α)

α − L (α)
η0φ. (42)

In our case, using Eq. (40) in Eq. (41) it can be easily shown
that

η∗
m = ηm

[(
1

1 + �2τ 2
⊥

)2

+
(

�τ⊥
1 + �2τ 2

⊥

)2] 1
2

= ηm, (43)

FIG. 7. Magnetoviscosity as a function of time for Pe = 10 and
α = 1.0 and for (a) �̃ = 1.0 and (b) �̃ = 3.0. The results of simulations
and numerical solution are indistinguishable.

demonstrating that the Cox-Merz rule applies for dilute
ferrofluids under conditions for which Pe � 2. However,
under these conditions the magnetoviscosity is independent
of shear rate, making the result rather trivial. Next we consider
the applicability of the Cox-Merz rule for higher shear rates by
comparing the simulation results of the present contribution
to those of our previous work [13] for the steady shear
magnetoviscosity. To do so we consider the case where the
oscillatory shear flow is given by

γ̇ = γ0� sin(�t) . (44)

Note that this is the same as Eq. (1) with γ̇0 = γ0 �,
hence the rotational Péclet number is now Pe = γ0�̃ and
the frequency is nondimensionalized with respect to the
rotational diffusion coefficient Dr . For simplicity, in our
simulations we used γ0 = 1. The frequency varied from
0.1 to 100.0 and the Langevin parameters used were α =
[0.1, 1.0, 3.0, 5.0, 10.0, 15.0, 20.0, 30.0]. Figure 9 shows
the complex viscosity calculated from Eq. (41) as a function
of frequency and the steady-state viscosity (from [13]) as a
function of shear rate. It is shown that, in the limit of low
shear rate and low frequency, the dynamic viscosity and the
steady-state viscosity are similar, indicating that the Cox-Merz
rule applies under these conditions. However, as the frequency
increases the complex viscosity decreases faster than the
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FIG. 8. Magnetoviscosity as function of time for Pe = 10 and
α = 10.0 and for (a) �̃ = 0.4 and (b) �̃ = 20.0.

steady-state magnetoviscosity as a function of Pe. Thus, at
higher shear rates the Cox-Merz rule ceases to apply.

VI. CONCLUSIONS

The dynamic properties of dilute ferrofluids under
oscillatory shear and constant magnetic fields were studied
using Brownian dynamic simulations and continuum modeling
using the ferrohydrodynamics equations. Results show that
the in-phase and out-of-phase components of the complex
magnetoviscosity depend on both magnetic field strength and
the frequency and magnitude of the sinusoidal oscillatory
shear wave. Even though we are considering the infinitely

FIG. 9. Steady shear magnetoviscosity and complex magnetovis-
cosity as a function of shear rate (Pe) and frequency(�̃), respectively.
Open markers are for the steady-state magnetoviscosity while closed
markers are for the complex magnetoviscosity.

dilute limit in which there are negligible particle-particle
interactions (and therefore no particle chaining), the results
indicate an apparent elastic character to the rheology of these
suspensions. At small rotational Péclet number a regular
perturbation solution of the continuum equations shows that
the response of the magnetoviscosity follows a Maxwell-like
model with field-dependent viscosity and characteristic time
equal to the field-dependent transverse relaxation time. A
numerical solution of the ferrohydrodynamics equations was
also obtained. Comparison between the numerical solution
and simulations shows that the magnetoviscosity obtained
using the kinetic magnetization relaxation equation agrees
with simulations for a wide range of Péclet number and
Langevin parameter, but deviates from the simulations at high
values of the Langevin parameter. The Cox-Merz rule for dilute
ferrofluids was evaluated using an asymptotic analytical solu-
tion of the ferrohydrodynamics equations, valid for Pe � 2.
It was demonstrated that the Cox-Merz rule applies for dilute
ferrofluids under conditions of small shear rates but does not
apply at higher shear rates.
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