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Role of geomechanically grown fractures on dispersive transport in heterogeneous
geological formations
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A second order in space accurate implicit scheme for time-dependent advection-dispersion equations and a
discrete fracture propagation model are employed to model solute transport in porous media. We study the impact
of the fractures on mass transport and dispersion. To model flow and transport, pressure and transport equations are
integrated using a finite-element, node-centered finite-volume approach. Fracture geometries are incrementally
developed from a random distributions of material flaws using an adoptive geomechanical finite-element model
that also produces fracture aperture distributions. This quasistatic propagation assumes a linear elastic rock
matrix, and crack propagation is governed by a subcritical crack growth failure criterion. Fracture propagation,
intersection, and closure are handled geometrically. The flow and transport simulations are separately conducted
for a range of fracture densities that are generated by the geomechanical finite-element model. These computations
show that the most influential parameters for solute transport in fractured porous media are as follows: fracture
density and fracture-matrix flux ratio that is influenced by matrix permeability. Using an equivalent fracture
aperture size, computed on the basis of equivalent permeability of the system, we also obtain an acceptable
prediction of the macrodispersion of poorly interconnected fracture networks. The results hold for fractures at
relatively low density.
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I. INTRODUCTION

Understanding the effect of rock fractures on solute
transport is a challenging problem for engineers: petroleum
engineers characterize and predict the effect of such systems on
oil recovery (see, e.g., [1]); hydrogeologists investigate these
effects in remediation of contaminated groundwater (see, e.g.,
[2]), and there is an additional interest in this problem in the
context of underground waste disposal, as fractures may facil-
itate leakage of radionucleids by providing fast flow pathways
[3]. Such studies require knowledge of the spatial distribution
of rock fractures and their aperture sizes (see, e.g., [4]).

Recent numerical studies show that fracture patterns in
layered rocks can be realistically recreated by approximating
mechanical behavior in two-dimensional simulations [5–9].
Interest in simulating fracture growth extends across a variety
of application fields, including hydraulic fracturing (see,
e.g., [10]), structural analysis for civil engineering (see, e.g.,
[11]), composite material design for aeronautics (see, e.g.,
[12]), nuclear waste disposal risk assessment (see, e.g., [13]),
and analysis of flow and mechanical properties of fractured
reservoirs (cf. [14]).

Geomechanical discrete fracture simulation is an alternative
to stochastic fracture pattern generation, which provides a
means to creating datasets of interacting fractures at different
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growth stages (see, e.g., [15]). In most stochastic models,
density is controlled by the amount, length, and spacing
of randomly distributed flaws [16], while in geomechanical
models it is a by-product of growth and coalescence. Addition-
ally, randomly generated fractures do not reflect the complex
mechanical interactions between fractures that occur during
growth, giving rise to their spatial self-organization [9]. Fur-
thermore, stochastic models do not allow for fracture curving.
Thus, a fracture is always planar and its orientation predefines
its connectivity. In mechanically informed simulations, this is
not the case: fractures can grow in many shapes and patterns,
and curving and coalescence can greatly enhance connectivity
without significantly increasing density [17]. Therefore, while
the stochastic method may reproduce the statistics of fracture
data measured in the field, it does not capture the more
subtle aspects of natural fracture distributions that depend
on the rock deformation history and its material properties.
In contrast, a geomechanics growth simulator can generate
datasets of differing densities corresponding to advancing
stages of growth, without changing the underlying spacing
and topology of the fracture pattern. Thus, it allows us to
study density changes on the same mutating fracture dataset.

Related work on fracture pattern generation relies on
a subgrid representation of fractures and on the extension
of the finite-element method (FEM) to capture them as
discontinuities in the displacement field [5]. The advantage
of the finite-element-based modeling of deformation is the
simplicity of the numerical discretization of the solved equa-
tions. The idea is that by retaining an accurate representation
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of topology and material interfaces, the numerical method
is relieved of a submesh representation of the geometry and
there is more room to capture complex behavior, such as
compaction, damage, and inelastic deformation. An example
that couples flow and deformation is the hydraulically driven
fracture propagation simulated by Boone and Ingraffea [10]
and Secchi et al. [18]. Using an approach where fracture and
matrix domains are discretely represented allows for its swift
integration into compatible flow codes to measure multiphase
flow and other transport properties.

Describing solute transport in terms of average equations
is a challenge. Flow velocity variations are responsible
for the dispersive movement of contaminants and tracers
in heterogeneous porous media (see, e.g., [19]). Berkowitz
and Scher [20,21], for example, found anomalous or non-
Fickian transport by using particle tracking simulations on
a set of randomly generated fractures. Many laboratory and
field measurements of solute transport in fractured rocks
have shown the same behavior [22–25]. Unlike the classical
S-shaped solute breakthrough curves of homogeneous porous
media in fractured porous media [26,27], these curves are
characterized by early breakthrough, long tails, and multiple
peaks. Thus, they cannot be captured by the standard advection
diffusion equation (ADE). Consequently, there has been
significant research on flow and transport in dense and well-
interconnected fracture networks, but little attention has been
given to understanding the effect of sparse fracture sets on
solute transport.

In this paper, we demonstrate how geomechanically re-
alistic fractures impact solute transport. We achieve this by
combining a geomechanic model with a single-phase flow
and transport model [28]. The first provides geomechanically
grown fracture sets including fracture aperture distributions.
The second simulates flow and transport for different stages
of fracture growth and densities. We also compute the
equivalent aperture size of the analyzed fracture patterns and
the equivalent permeability of the system, and aim to forecast
solute transport.

This paper is organized as follows. Section II describes
the mechanical, flow, and transport simulation, including the
setup of the numerical model. Section III presents the results,
including the following: (1) a discussion of computational
errors in terms of discretization error and convergence of the
averaging procedure, (2) a study of the effect of different
fracture growth stages on the dispersive behavior, (3) a study
of the effect of rock matrix permeability on transport, and
(4) a comparison of results obtained from networks with
variable and constant aperture.

II. METHODOLOGY

This section first presents a brief review of the finite-
element-based deformation kernel, and includes a description
of the failure and propagation criteria and a summary of the
assumptions of the method. Then we give an overview of
the equations for flow and transport in porous media. This
is followed by a description of the numerical schemes for
flow and transport as well as the setup of the numerical
model.

A. Mechanical model

In linear elastic deformation, stress is related to strain
by [29]

σ = De (ε − ε0) + σ0, (1)

where ε = {εxx,εyy,εxy}T [-] is the strain vector, σ =
{σxx,σyy,σxy}T [ML−1T−2] is the stress vector, and σ0 and ε0
are the initial stress and strain vectors, respectively. The tensor
De is the material stiffness matrix. Assuming plane strain, De

is

De = E

(1 + ν)(1 − 2ν)

⎡
⎢⎣

1 − ν ν 0

ν 1 − ν 0

0 0 1 − 2ν

⎤
⎥⎦ , (2)

where E [ML−1T−2] is Young’s modulus and ν [-] is Poisson’s
ratio. At force equilibrium, ∂σ + F = 0, where F is forces and
∂ is the kinematic operator as

∂ =

⎡
⎢⎣

∂
∂x

0

0 ∂
∂y

∂
∂y

∂
∂x

⎤
⎥⎦ . (3)

We have implemented a quadratic finite-element solution
for the deformation of arbitrarily shaped objects with proper-
ties described by Eq. (1).

Modeling multiple crack growth relies on three locally
defined criteria: failure, propagation magnitude, and angle
[17]. A failure criterion determines if the fracture tip will
advance. A subcritical crack growth failure criterion, used
herein, prescribes that tips will propagate due to inherent
fatigue and corrosive processes that progressively weaken the
rock tips [30]. Propagation speed is related to fracture length.
Within a group of quasistatically propagating cracks, it is
described by a Paris-like power law [31–33]. We measure the
elastic strain energy release rate, G, at each tip and plain strain
as G = (1 − ν2)/KI

2E and for plane stress as G = KI
2/E,

where KI [ML−3T−2] is the fraction of the stress intensity
factor corresponding to mode I. Additionally, we monitor the
tip with the maximum energy concentration Gmax = ‖G‖∞,
the L-infinity norm of G, assuming that it is the fastest
propagating tip.

To compute the distance a crack tip will advance at
any propagation step we use the well-established Paris-type
propagation criterion originally defined by Charles [34] and
extended by Renshaw and Pollard [9]. This criterion relates the
energy accumulated around a specific tip with the maximum
energy of all tips and weight growth with an empirical velocity
index, α. Thus, tips with the highest G advance faster than the
rest. It follows that [9]

ladv = lmax

(
G

Gmax

)α=0.35

, (4)

where ladv is the propagation length and lmax is the maximum
length increase at any propagation step. We use a fixed velocity
exponent of 0.35 identified by exhaustive experimentation to
yield realistic fracture patterns in rock analogs [9]. Finally,
the fracture propagation angle is computed for each individual
fracture from the local maximum circumferential stress at the
tip [35].
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Initially, any model is populated with a set of randomly
distributed and oriented flaws. Flaws grow into fractures
represented by two-dimensional closed polygons when the
model is deformed. At each loading step the mesh is adapted to
capture the emerging fracture geometry. This is accomplished
by a high-level Picard iteration allowing fractures to advance
until there is insufficient strain to induce further propagation.
Further details of the method, including its validation, can be
found in Paluszny and Matthäi [15,17].

The assumptions of this mechanical model are as follows:
(1) the original material is brittle, homogeneous, isotropic,
and linearly elastic; (2) only tensile failure is considered;
(3) fracture tips are initially pointy, and linearly approximated
by an elliptical shape; (4) propagation is quasistatic and
strain rate independent; (5) there is no cohesion or traction
between fracture walls; and, (6) deformation is simulated in
two dimensions in plane strain conditions.

B. Flow and transport modeling

The specific discharge u [LT−1], in Darcy’s law,

u = − k
μ

∇P, (5)

is a function of k the intrinsic permeability tensor [L2], μ the
dynamic viscosity [ML−1T−1], and ∇P the pressure gradient
[ML−1T−2]. Conservation of mass is given by the continuity
equation

∇ ·
(

k
μ

∇P

)
= 0. (6)

The mass balance for a nonreactive and nonadsorbing solute
in a nondeformable porous medium is given by

φ
∂c

∂t
+ ∇ · (uc − Deff∇c) = 0, (7)

where c denotes the concentration [ML−3], t represents time
[T ], Deff is the effective molecular diffusion [L−2T−1], and φ

is porosity.

1. Second-order implicit scheme

We solve Eqs. (6) and (7) implicitly using the operator
splitting method [28]. First we obtain the pressure field
by solving the pressure equation on a linear finite-element
discretization. Then the transport equation is solved using a
conservative finite-volume method (FVM) discretized on a
virtual finite-volume mesh constructed around the nodes of the
finite-element mesh (Fig. 7 of Ref. [36]). This method provides
a mass conservative transport scheme. The fluid pressure is
solved for steady state by solving the integration of Eq. (6)
over the domain � ⊂ Rd (d = 2,3) for x ∈ �:∫

�

∇NT k
μ

∇Ndx = 0. (8)

The superscript T refers to the transpose of the element
interpolation function vector or matrix of spatial derivatives
and N and ∇N represent its interpolation function vector
and matrix of spatial derivatives obtained from each element,
respectively. The transport equation is solved using a fractional
step method in which the diffusion term of the ADE is

discretized using an implicit FEM and the advection term
of Eq. (7) is discretized using an implicit FVM. By analogy
with the pressure equation, finite-element integration of the
diffusion term in Eq. (7) over the domain � yields(∫

�

NT φNdx − 	t

∫
�

∇NT Deff∇Ndx
)

ct+	t

=
(∫

�

NT φNdx
)

ct . (9)

For the advection term in Eq. (7), using piecewise constant
FV interpolation functions, Mj for each finite-volume j and a
first-order upwind scheme, volume integration V , gives

φ

∫
V

Mct+	tdV + 	t

∮
V

(n · u)ct+	tdS = φ

∫
V

MctdV,

(10)

where n represents the normal vector to the outward-facing
surface element. To make the transport scheme second-order
accurate in space, we calculate estimates of the gradient of
the transported variable for each control volume facet. Then
we apply the minmod slope limiter to suppress spurious
oscillations that occur when the gradient of the transported
variable is overestimated. This guarantees that the transport
scheme becomes total variation diminishing (TVD) [28].

The hybrid finite element–finite volume method is
implemented in Complex Systems Platform (CSMP++)
[36–38] and is capable of considering fractures represented
by lower-dimensional elements. This approach, however, is
only applicable when the fractures have a higher permeability
than the rock matrix. We use the system algebraic multigrid
method (SAMG) to solve the ensuing FEM linear algebraic
equations [39].

C. Fracture aperture

For the flow simulation, the rock matrix is discretized by
triangular elements while fractures are represented by line
elements, corresponding to their centerlines. To retain the
fracture aperture we store a scalar value at each node in the
variable af along each fracture:

af = 〈af o| · · · |af i | · · · |af n〉, (11)

where fracture f has n nodes along its centerline. Due to the
lower dimensional representation of the fracture, we weight
properties defined at the lines, such as permeability and
porosity, with the local aperture to capture the actual thickness
of the reduced element [40]. Figure 1 illustrates the piecewise
mapping of the apertures along the fracture onto its centerline.

One could also use constant aperture values for all fractures.
Two constant values for fracture aperture in an entire model
appear meaningful: the weighted segment length average (aavg)
and equivalent (aequiv). The weighted average aperture is
calculated

aavg =
∑n

i af i li∑n
i li

, (12)

where li is the length of fracture element i ∈ [1,n]. To calculate
the equivalent aperture size, we calculate the equivalent
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centerline

fn

fn-1

fn+1

ni

ni+1

fracture line element

centerline nodes
aperture at 
centerline node

ai+1ai

afi

channel for cubic law

FIG. 1. Fracture centerline and aperture measurement. Black dots
are nodes on the fracture wall (i.e., fn, fn+1, and fn−1). White dots
are the corresponding centerline nodes, ni and ni+1. fn is a fracture
tip. ai is the aperture of the fracture at ni . The thick line represents a
fracture line element on the centerline. The aperture assigned to the
local line element, af i , is the average between ai and ai+1.

permeability of the model [41] using the mechanical simu-
lation results, i.e., considering fractures with variable aperture
sizes. Then, by using an iterative method we determine a
single valued equivalent aperture (aequiv) that yields the same
equivalent permeability.

D. Analysis strategy

We use the output of the mechanical simulations as input
for the transport simulations. For selected iteration levels and
fracture densities we output the geometry and aperture sizes
to run the transport simulations. These are conducted with the
second-order implicit TVD method.

In the mechanical simulations we have employed a 4 ×
1 m model with 100 initial flaws. Their position is random
following a uniform probability distribution, and their size
obeys a Gaussian distribution with a mean of 0.004 m and
standard deviation 0.045 m. All flaws are initially horizontal
and have a minimum spacing of 1.2 cm. We assume rock prop-
erties that could typically be a limestone: Young’s modulus of
20 GPa, Poisson’s ratio of 0.25, and subcritical toughness KIC

of 1.5 MPa m1/2. We fix the lower position of model boundary
and apply an extensional boundary normal displacement of
10−3 m at the top.

Flow and transport simulation are performed on a subregion
of the mechanical model, with a size of 2 ×1 m. For this
purpose, a tracer is uniformly distributed, c = 1 kg/m3, in
a 1-cm-thick vertical slit along the left side of the model.
Elsewhere, concentration is set to zero. Tracer-free fluid
is then injected through the left boundary inducing a 1
MPa/m pressure gradient that is held constant throughout
the simulation. Note that there is no density or viscosity
variation in this study. These conditions apply to all of our
numerical experiments. Matrix permeability for most cases
is set to 10 mD while matrix porosity is 30%. We assume
that all fractures are open and calculate fracture permeability
from local aperture using the parallel plate law (kf = a2

f /12).
This assumes that the flow is laminar and the fracture has
smooth walls with a local separation of af [42,43]. Fracture
permeability, kf , is defined as piecewise constant along the
line elements.

Initial flaw distribution

Model area

Propagation area

4 m

2 m

1 
m

FIG. 2. An initial flaw distribution and a developed fracture set of
a growth simulation. Flaws are grown within the propagation area; for
flow simulations a model area is extracted from the original dataset.

III. RESULTS AND DISCUSSION

A. Fracture patterns

In all mechanical models, initially, flaws grow following
straight paths. Once they become larger, they start to mechani-
cally interact with proximal fractures by influencing the stress
field around their tips (Fig. 2). Thus, connectivity does not
increase smoothly as a function of density; instead, it increases
in a steep stepwise manner. The fracture geometry and aperture
distribution of a model realization at three stages of growth are
shown in Fig. 3.

The initial distribution of the flaws plays an important role
in determining the final pattern, because it determines where
fractures start to propagate. However, their orientation exhibits
little effect on the final network. In contrast, spacing has a
quantitative impact on the final pattern. Areas without flaws
act as “stronger” areas of the model, and in turn exhibit less
fracturing. A thorough discussion of the generated fracture
pattern is presented in Paluszny and Matthäi [15].

B. Discretization error

The mechanical model uses dynamic adoptive mesh re-
finement; see Paluszny and Matthäi [15]. In order to select
an adequate mesh size for the flow and transport simulations,
we conduct calculations on five triangular element meshes
(Meshes 1–5), where Mesh 1 is the coarsest and Mesh 5
is the finest (Table I). Using a finer element size either
uniformly or in a spatially adoptive fashion are possible ways
to increase the quality of the solution. The numerical solution
of these simulations on one realization shows convergence by
increasing the level of refinement. The L2 error norms, ‖cj −
cr‖ =

√∑i=Ni

i=1 (ci
j − ci

r )2, for different mesh refinements, j ,
are calculated by taking the solution of Mesh 5 as the reference
solution, cr . Here, ci

j denotes the output concentration at
different time, and Ni is the number of time steps. These
errors and the error reduction, ‖cj − cj+1‖, are presented in
Table I. Considering computational time and reduced errors
measured for Mesh 4, we choose a mesh size of 1 cm for the
rock matrix and 0.25 cm for the fractures. The results show
that regions requiring more refinement are regions with the
highest velocity gradients.
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aperture size (m)

Fracture Density = 0.230 m-1

Fracture Density = 0.102 m-1

Fracture Density = 0.015m-1

FIG. 3. (Color online) Mechanically grown fracture networks
at different growth stages (after 20, 50, and 80 iterations) with a
maximum aperture size of 0.001 m. Colors are indicative of fracture
aperture.

C. Ensemble breakthrough curves

We take the ensemble average of the breakthrough curves,
at the right boundary, over n realizations. We use the criterion

Ei =‖ 〈c〉i − 〈c〉i−1 ‖ (13)

to determine the number of realizations needed for averag-
ing. Ei shows the convergence of the ensemble breakthrough
curves (Fig. 4). Here 〈 〉i denotes the breakthrough average

TABLE I. Discretization errors as a function of mesh refinement:
em are matrix element sizes, ef are fracture element sizes. Meshes 1,
3, and 5 are uniformly refined everywhere, whereas Meshes 2 and 4
are more refined at the fractures. Mesh 1 is the coarsest while Mesh
5 is the finest.

Mesh em(cm) ef (cm) Nodes ‖ cj − cj+1 ‖ ‖ cj − cr ‖
Mesh 1 1 1 18 470 1.9 ×10−2 1.5 ×10−2

Mesh 2 1 0.5 29 679 9.3 ×10−3 1.0 ×10−2

Mesh 3 0.5 0.5 73 881 9.9 ×10−3 9.6 ×10−3

Mesh 4 1 0.25 52 917 6.6 ×10−3 6.6 ×10−3

Mesh 5 0.25 0.25 291 242 – –

1 2 3 4 5 6 7 8

Number of realizations, i

E
i

FIG. 4. (Color online) Average convergence error for different
growth stages. Ei is ‖ 〈c〉i − 〈c〉i−1 ‖ and 〈 〉i denotes the break-
through average of i realizations.
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FIG. 5. (Color online) Breakthrough curves for the model with
different realizations at different fracture network growth stages. Bold
lines indicate the average, and faint lines indicate the breakthrough
curves for each realization.
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FIG. 6. (Color online) Concentration profiles for a single fracture
geometry realization and different matrix permeabilities at two
different times. Bold lines are the profiles after 1 hour and the dashed
lines are the concentration profiles after 5 hours.

of i realizations. The variation of the breakthrough curves
for each realization around a mean value is higher for more
developed fracture sets. The averaged breakthrough curves are
presented in Fig. 5. We also calculate the fracture-matrix flux
ratio, qf /qm, as stressed by Matthäi and Belayneh [44] the
importance of this ratio on flow pattern in fractured rock.

D. Effect of rock matrix permeability

Fracture patterns in this study are not well interconnected,
even in later stages of growth (see Fig. 3). Therefore, flow
through the matrix has a major effect on total flow and
transport. Matthäi and Belayneh [44], who employed field
fracture set to address flow partitioning between fractures and
a permeable rock matrix, found that the rock matrix flow
is negligible and the fracture flow becomes dominant if the
fracture matrix permeability ratio is greater than 106. We
conduct simulations for seven realizations with permeabilities
ranging from 0.01 to 10 mD. Model properties, including
fracture density and fracture spacing, are fixed, allowing
the fracture-matrix flux ratio to vary. Figure 6 compares
concentration profiles of one realization with different rock
permeabilities after 1 hour and 5 hours. The plume transverses
slower in the model with lower matrix permeability. This slow
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K
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D

FIG. 7. Breakthrough curves for the model with different matrix
permeabilities. Four different matrix permeabilities are compared:
km = 10,8,6,4 mD.

FIG. 8. Breakthrough curves for seven realizations and a wider
range of matrix permeability: km = 0.01,0.1,1,10 mD. The bold lines
are the average breakthrough curves, and the faint lines indicate the
breakthrough curves for each realization.

movement in the matrix and corresponding higher fracture-
matrix flux ratio leads to more anomalous behavior. For each
matrix permeability value the average breakthrough curves of
seven realizations are averaged (Fig. 7). It is clear that smaller
matrix permeability values cause a stronger localization of
flow in fractures. This can also be seen in Figs. 8 and 9 for a
wider range of matrix permeability with continuous injection
of the tracer through the left boundary. The dispersive behavior
of such systems is, however, controlled by matrix permeability
as fractures are not well connected. The average flow velocity
decreases by increasing the matrix permeability, as the far-field
pressure gradient is constant. This suggests that increasing
the average velocity reduces the dispersive behavior of the
system. The observation of Odling et al. [45] on dispersion in
a microfractured granite confirms this, as they concluded that
the fluid velocity is considerably influential on the dispersive
properties of a fractured rock. They attributed the long tail
of breakthrough curves to hydrodynamic retardation, which is
significantly altered by flow velocity.

FIG. 9. Time derivative of breakthrough curves for the model
with four different matrix permeabilities: km = 0.01,0.1,1,10 mD.
The bold lines are the ensemble averages of the seven realizations, and
the faint lines indicate breakthrough curves of individual realizations.
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FIG. 10. (Color online) Comparison of the breakthrough curves
of three realizations between models with geomechanical aperture
distribution (solid lines), and ones with equivalent aperture sizes
(dotted lines). Flow simulations for each realization are conducted
for two different rock matrix permeabilities: km = 4,10 mD.

FIG. 11. Aperture size histogram resulting from two different
displacements of 0.001 m (white) and 0.0001 m (gray), at the model
boundaries.

TABLE II. Average and equivalent aperture sizes for different
displacements and different rock matrix permeabilities. D is the
displacement, km is the matrix permeability, aavg is the average
aperture, and aequiv is the equivalent permeability.

D (m) 0.001 0.001 0.0001 0.0001
Km (mD) 10 4 10 4
aavg (×10−5m) 27.8 27.8 7.96 7.96
aequiv (×10−5m) 8.66 7.88 3.98 3.90

E. Constant fracture aperture size

We define equivalent aperture as the single aperture that,
when assigned to all fractures of the pattern, yields the same
equivalent permeability as using geomechanical apertures. The
equivalent aperture has also been used to calculate transport.
Here, we compare the transport simulations with the full
geomechanical aperture distribution with constant equivalent
aperture size on the same fracture dataset. This procedure
is repeated for different realizations with two different rock
matrix permeabilities (Fig. 10).

Two concentration peaks result from the existence of
two main separate pathways [Fig. 10(a)] also appear in the
breakthrough curve result of the simplified model. The main
difference is the time to breakthrough. It is earlier for the
variable aperture model. The slopes of the breakthrough curves
are similar.

This result suggests that using equivalent aperture size,
computed based on the equivalent permeability of the system,
yields acceptable predictions of dispersion in fractured media.
Note that further study is required to examine this behavior in
well-connected fracture networks and three-dimensional frac-
tured porous media. However, this provides some assurance
that the equivalent aperture size does represent adequately flow
and transport, particularly, for poorly interconnected fracture
networks. The variation in breakthrough curves of different
realizations suggests that fracture geometry is more influential
on solute transport behavior than aperture size variation. This
is in accordance with the findings of Cey et al. [46] for
a single fracture. They showed that in a partially saturated
medium, aperture variability within individual fractures has
a minor effect on the predictability of the flow simulations.
Nevertheless, finding the equivalent aperture size in the field
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FIG. 12. Breakthrough curves for different displacements of
(a) 0.001 m and (b) 0.0001 m, and different matrix permeabilities:
km = 4 and 10 mD.
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FIG. 13. Breakthrough curves calculated for different aperture
distributions: varying aperture (solid lines), equivalent aperture
(dashed lines), and weighted average aperture (dotted lines), for
a model with two matrix permeabilities, km = 4,10 mD, and a
displacement of 1 mm.

is quite challenging; using a constant value for the aperture
sizes reduces the complexity of the simulations.

F. Displacement

We apply two different displacements at the top and bottom
of the existing model to examine the effect of the boundary
conditions on solute transport. Two different displacements
(1 mm and 0.1 mm) are set at the model boundaries. The former
yields larger aperture sizes and higher heterogeneity. The
fracture aperture size histogram for both simulations is plotted
in Fig. 11 on logarithmic bins. Transport simulations are
presented for two different matrix permeabilities. We calculate
equivalent aperture sizes and geometric average aperture sizes.
Table II illustrates these value for different scenarios.

Figure 12 illustrates the effect of displacement on the
breakthrough curves for two different matrix permeabilities.
Larger dilatation, for the boundary condition, results in earlier
breakthrough and higher concentration peaks because the

equivalent permeability of the model is higher. Figure 13
compares the breakthrough curves predicted by different
aperture sizes for the larger displacement of 1 mm. The results
for equivalent apertures are in reasonable agreement with those
with obtained for varying fracture sizes. The L2 error norm is
equal to 0.6% for the model with the matrix permeability of
10 mD and 0.1% for the matrix permeability of 4 mD; whereas
using geometric average aperture yields a higher error of 1.8%
and 0.8%, respectively. Paluszny and Matthäi [15] also found
that the geometric average aperture does not yield the same
equivalent permeability as variable aperture sizes. However,
breakthrough curves based on equivalent aperture reveal less
a dispersive behavior in comparison with breakthrough curves
predicted by using variable aperture.

IV. CONCLUSIONS

In this work we combine a geomechanical model that
produces realistic fracture datasets, including detail aperture
distributions, with a flow and transport model. The key findings
of this study are as follows:

(i) Our results corroborate earlier findings that naturally
fractured media exhibit anomalous transport provided that
fractures are developed. The results demonstrate highly dis-
persed plumes and long tails in the breakthrough curves for
fractured media.

(ii) Matrix permeability, fracture density, and the qf /qm

ratio show an explicit impact on the dispersive behavior of
solute transport in fractured media.

(iii) Using the equivalent aperture size, instead of the
actual aperture distribution, reduces detail in breakthrough
curves while resembling transport trends for all cases. Our
observations suggest that applying the equivalent aperture size
calculated based on the equivalent permeability of the system
for flow and transport modeling provides a satisfactory result
for many applications.
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[15] A. Paluszny and S. K. Matthäi, J. Geophys. Res. 115, B02203

(2010).
[16] W. S. Dershowitz and H. H. Einstein, Rock Mech. Rock Eng.

21, 21 (1988).
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