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State and parameter estimation using unconstrained optimization
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We present an efficient method for estimating variables and parameters of a given system of ordinary differential
equations by adapting the model output to an observed time series from the (physical) process described by the
model. The proposed method is based on (unconstrained) nonlinear optimization exploiting the particular structure
of the relevant cost function. To illustrate the features and performance of the method, simulations are presented
using chaotic time series generated by the Colpitts oscillator, the three-dimensional Hindmarsh-Rose neuron
model, and a nine-dimensional extended Rössler system.
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I. INTRODUCTION

Quantitative models describing the temporal evolution of
dynamical processes are essential for physics and many other
scientific disciplines. Often, such models can be derived from
first principles, but they contain parameters whose values are
not known at all or are only partially known and depend on the
physical context. To identify these parameters, experimental
data are required that consist of observed time series of finite
length. To adapt the model to the data, not only do (unknown)
parameters have to be adjusted, but also model variables
that have not been measured but represent state variables
that determine the temporal evolution of the model. This
data-driven estimation task for model parameters and state
variables has been addressed by many authors who suggested
various methods to fit the model to the observed data. The
challenge of this task depends on the complexity of the model
(e.g., dimensionality, type of functional relations), the kind of
underlying dynamics (periodic, chaotic, etc.), and (last but not
least) on the quality and quantity of available data. Among the
more difficult cases are chaotic dynamical systems given by
nonlinear ordinary differential equations (ODE’s) in which a
sensitive dependence on variables and parameters may lead to a
nontrivial estimation problem. To cope with this identification
task, several methods have been proposed in the past, including
synchronization-based methods [1–9], adaptive observers and
control system [10–15], optimization-based methods [16–20],
probabilistic and geometric approaches [21,22], path-integral
methods [23,24], and a reformulation of the problem as a
boundary-value problem [25,26].

II. ESTIMATION METHOD

In the following, the proposed state and parameter es-
timation method will be described. We start with a given
(experimental) R-dimensional (i.e., multivariate) time series
{η(tn)} consisting of N samples η(tn) measured at times tn
(n = 1, . . . ,N ). Furthermore, we assume that the model we
want to adapt to the data is known (except for some unknown
parameters) [27]. This model can be a discrete (iterated map)
or continuous dynamical system. Here we shall focus on the

latter case and consider D-dimensional models consisting of
coupled ODE’s,

d y(t)

dt
= F( y(t), p,t). (1)

The state vector(s) y(t) = (y1, . . . ,yD)T and U model parame-
ters p = (p1, . . . ,pU )T are unknown and have to be estimated
from the time series {η(tn)}. To do this, a measurement function

z(t) = h( y(t),q,t) (2)

is required describing the relation between model states y(t)
and resulting time-series values z(t) corresponding to the
observations η(t). This measurement function may contain
V additional unknown parameters q = (q1, . . . ,qV )T that also
have to be estimated using information from the given time
series {η(tn)}.

A. The cost function

The goal of the estimation process is to find a set of
values for all unknown variables and parameters such that
the model ODE’s (when integrated with these values) provide
via measurement function (2) a model time series {z(tn)} that
fits to the experimentally obtained time series {η(tn)}. In other
words, the average difference between η(tn) and z(tn) should be
as small as possible. This goal can be achieved by minimizing
the cost function (also called tracking error [25]),

C({ y(tn)}, p,q)

=
∑
tn∈TM

[η(tn) − z(tn)] T A [η(tn) − z(tn)] , (3)

where TM is the set of instants of time where measurement
values are available and A is a weighting matrix whose
exact form will be discussed in Sec. II B. To make sure that
the solution of this minimization problem also fulfills the
model equations (1), one can consider the system’s ODE’s as
constraints [16,18] and use a suitable method for constrained
optimization [28,29]. Here we follow a different approach in
which the (average) deviation from the model equations (1) is
added to the cost functions. Technically, this can be done by
approximating the first (temporal) derivative d y(t)/dt by finite
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differences evaluated at equidistant times tm = (m − 1)�t

(m = 1, . . . ,M) constituting the set TS of points in time where
approximations of the solution of the system’s equations are
available. Note that TM and TS are not necessarily identical.
For example, experimental sampling times may be larger than
the time steps used for numerical integration of the ODE’s. To
avoid additional interpolations, we shall assume from now on
that TM is a subset of TS [30].

Using a finite-difference approximation of the derivatives,
the model equations read

� y
�t

∣∣∣∣
tm

≈ F( y(tm), p,tm), (4)

where the symbol � y
�t

|tm stands for a finite-difference approxi-

mation of d y(t)
dt

at time tm. The exact form of the approximation
used in our simulations is given in Appendix.

The difference between both sides of Eq. (4) can be
expressed as a residue u(tm) given by

u(tm) = � y
�t

∣∣∣∣
tm

− F( y(tm), p,tm) (5)

and the goal of the adaption process is to minimize (on average)
the residues and the differences between η(tn) and z(tn).
Therefore, the cost function is extended by a term accounting
for the modeling error [25],

C({ y(tm)}, p,q) =
∑
tn∈TM

[η(tn) − z(tn)] T A [η(tn) − z(tn)]

+
M∑

m=1

u(tm)T Bu(tm), (6)

where B is another weighting matrix whose form will be
discussed in Sec. II B.

When using the cost function (6), we observed suboptimal
solutions ŷ(tm) oscillating close to the true solution, as shown
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FIG. 1. (Color online) Example of a nonsmooth solution y(tm)
(solid curve) oscillating close to the true solution x(tm) (dashed curve)
due to an instability that leads to an alternating sequence of integration
values.

in Fig. 1. Such oscillating solutions can be avoided by adding
a penalty term to the cost function punishing nonsmooth
ŷ(tm). Technically, this is implemented as the deviation of
the solution ŷ(tm) from an interpolation at time tm using
neighboring points. Since derivatives F( y(tm), p,tm) are also
known, Hermite interpolation turns out to be a suitable scheme
providing the approximation

yapr(tm) = 11

54
[ y(tm−2) + y(tm+2)] + 8

27
[ y(tm−1) + y(tm+1)]

+�t

18
[F( y(tm−2), p,tm−2) − F( y(tm+2), p,tm+2)]

+4�t

9
[F( y(tm−1), p,tm−1) − F( y(tm+1), p,tm+1)]

(7)

of ŷ(tm). The averaged deviation of yapr(tm) from y(tm),

M−2∑
m=3

[ yapr(tm) − y(tm)]T E[ yapr(tm) − y(tm)], (8)

is then used to add to the cost function (6) a term enforcing
smoothness,

C({ y(tm)}, p,q)

=
∑

tn∈TM

[η(tn)−z(tn)]T A[η(tn)−z(tn)] +
M∑

m=1

u(tm)T Bu(tm)

+
M−2∑
m=3

[ yapr(tm) − y(tm)]T E[ yapr(tm) − y(tm)], (9)

where E is a weighting matrix to be specified in Sec. II B.
When minimizing the cost function, it is useful to incorpo-

rate preknowledge in terms of relevant ranges of parameters
and variables (i.e., bound constraints). Here, however, we shall
employ a minimization method that is not able to handle bound
constraints directly. Therefore, we shall force parameters and
variables to stay close to predefined bounds by adding a
penalty function to the cost function, which is zero within
the bounds and increases quadratically outside the specified
ranges. Let w = ({ y(tm)}, p,q) = (w1, . . . ,wL) be a vector
of length L = MD + U + V containing all quantities to be
estimated. To force w to stay between the lower and upper
bounds wl and wu, respectively, a penalty function

Q(w,wl,wu) = q(w,wl,wu)T · G · q(w,wl,wu) (10)

is introduced, whereas q(w,wl,wu) = (q1, . . . ,qL)T and

qi(wi,wl,i ,wu,i) =

⎧⎪⎨
⎪⎩

wu,i − wi for wi � wu,i ,

0 for wl,i < wi < wu,i ,

wl,i − wi for wi � wl,i .

(11)

qi is zero if the value of wi lies in its bounds. The weighting
matrix G sets the strength of the penalty if some wi are outside
their bounds (see Sec. II B). To punish values outside their
bounds, the penalty function Q(w,wl,wu) has to be added to

056214-2



STATE AND PARAMETER ESTIMATION USING . . . PHYSICAL REVIEW E 84, 056214 (2011)

the cost function (9). This leads to the final form of the cost
function,

C(w) =
∑

tn∈TM

[η(tn) − z(tn)] T A [η(tn) − z(tn)]

+
M∑

m=1

u(tm)T Bu(tm)

+
M−2∑
m=3

[ yapr(tm) − y(tm)]T E[ yapr(tm) − y(tm)]

+ q(w,wl,wu)T · G · q(w,wl,wu), (12)

which can be summarized as a single sum,

C(w) =
J∑

j=1

Hj (w)2 = ‖H(w)‖2
2 , (13)

whereas H = (H1, . . . ,HJ )T are the summands of Eq. (12)
and J = NR + MD + (M − 4)D + L. The task is to find the
minimum of this cost function with L unknown quantities
to be estimated. The values of the variables and parameters
where the cost function is minimal provide the solutions of the
estimation problem, and they will be marked in the following
with a hat [i.e., the cost function is minimal at C({ ŷ(tm)}, p̂,q̂)].
The smaller the minimum is, the better the time series η(tn)
can be described by the given model.

The cost function (12) is minimized by a numerical
optimization routine that exploits the specific structure of
Eq. (13). In general, an effective and well-explored algorithm
to minimize such least-squares problems was developed by
Levenberg and Marquardt [31,32], and there exist many imple-
mentations of this algorithm for general nonlinear optimization
problems. Here we shall use an algorithm called sparseLM [33]
that makes use of the fact that our cost function Eq. (13) is given
as a sum of squared terms Hj (w) and requires the vector H(w)
and the sparse Jacobian [34] of the function H(w) as input.

B. Weighting in the cost function

All weighting matrices A, B, E, and G have to be
chosen so that the optimization problem is well conditioned
and can be properly solved by the optimization algorithm.
To control their relative weights [i.e., the influence of the
corresponding terms of the cost function (12)], a homotopy
parameter α is introduced to switch from an emphasis on
agreement with observations (α = 1) to an emphasis on correct
model dynamics (α = 0). Another parameter β determines
the penalties for leaving the prescribed parameter ranges. In
general, diagonal matrices are sufficient, and therefore we used
the following matrices:

A = α

N
diag(a), B = 1 − α

M
diag(b),

(14)

E = 1 − α

M
diag(e), G = β

L
1(L),

where 1(d) denotes the d-dimensional unity matrix and
diag(v) denotes a diagonal matrix with the elements of v as
diagonal elements. a, b, and e are R-, D-, and D-dimensional
vectors, respectively, and can set the individual weighting

for certain time series or model variable dimensions. In
general, all weighting matrices may also depend on time (for
example, to give more recent samples a higher impact), but
we shall consider here constant values only. If α = 1 [i.e.,
A = 1

N
diag(a) and B = E = 0], the minimization of the cost

function results in a solution ẑ(tn) that coincides with the
observed time series η(tn) but does not necessarily fulfill
the model equations. If α = 0, the opposite is true and the
solution fulfills the model equations exactly but the output of
the measurement function z(tn) may not fit to the observed
data η(tn). Practically, a good choice is to start with α close to
1 because this yields (for suitable measurement functions h)
a cost function with a single minimum and leads to a solution
close to the observed time series. This solution is then used as
an initial value for another run of the optimization procedure
with a slightly decreased α. In general, the smaller α is,
the more complex becomes the cost function landscape with
an increasing number of additional local minima. However,
using optimal values from previous runs of the optimization
procedure (with slightly larger α), we can “track” the relevant
global minimum. The reduction step is repeated until a suitable
value for α is reached. The technique of changing a certain
parameter, rerun the algorithm with the result of the previous
run as an initial guess and repeat this procedure until the
parameter reaches a desired value, is also called continuation
and turned out to be crucial for solving the estimation problem.
As a criterion for stopping the variation of α, we suggest to
monitor the standard deviation of parameter estimations based
on different segments of the given time series. This approach
will be discussed in detail in Sec. IV B.

In all cases considered in this work, β was set to a
large number, β = 1000L. Note that the choice of β should
only affect the search trajectory in the cost function during
optimization but not the final values of the estimated quantities.
The values of the estimated quantities should be in their
predefined bounds, and with that the part of the cost function
punishing quantities outside their bounds should be zero.
Another question is how to choose the weighting vectors b
and e in Eq. (14). Remember that e affects the weighting of
the Hermite interpolation of each variable to estimate. A high
weight only leads to a smooth trajectory of y(tm), but the main
dynamics will not be influenced by the Hermite interpolation
because (8) will only increase (decrease) if y(tm) becomes less
smooth (smoother). A change in the dynamics will not change
the costs (8) if y(tm) stays smooth. Hence we set all elements
on e to a large number, say 1000. Later for b we will only
present an idea of how to choose it.

III. APPLICATIONS AND EXAMPLES

In the following, the algorithm presented in the previous
section will be used to adapt a model to a (noisy) time series
in order to obtain unobserved states and model as well as
measurement function parameters.

A. Measurement noise

In all examples considered here, the time series η(tn) is not
observed from a “real” experiment, but created numerically.
To show that our method works with noisy time series, a noise
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signal ηn(tn) will be added to the “clean” time series ηts(tn). A
common type of noise in experimentally observed time series
is white noise, which is given by normally distributed random
numbers with a variance σ 2 and a mean that is zero in all
examples. Adding the noise to the clean time series, we obtain
a noisy time series,

η(tn) = ηts(tn) + ηn(tn), ηn(tn) = Nn(0,σ 2), (15)

which is typical for experiments with measurement noise. To
quantify the power of the clean signal and the noise, one can
define the signal-to-noise ratio (SNR in dB) as

SNR = 10 log10

(∑
tn∈TM

[ηts(tn)−ηts]
2

∑
tn∈TM

ηn(tn)2

)

= 10 log10

(∑
tn∈TM

[ηts(tn)−ηts]
2

∑
tn∈TM

Nn(0,σ 2)2

)
, (16)

which gives a logarithmic relation between the power of ηts(tn)
and the power of the noise Nn(0,σ 2) (the overbar denotes the
mean). The smaller the SNR, the more measurement noise is
present.

B. The Colpitts oscillator

Our first example for state and parameter estimation is
based on the Colpitts oscillator [35]. The Colpitts oscillator
is an electronic circuit, and its (normalized) model ODE’s
(describing voltages and currents of the circuit) are given by

dy1(t)

dt
= p1y2(t),

dy2(t)

dt
= −p2[y1(t) + y3(t)] − p3y2(t), (17)

dy3(t)

dt
= p4[y2(t) + 1 + e−y1(t)].

To generate the time series, the following ODE’s (18) were
integrated:

dx1(t)

dt
= 5x2(t),

dx2(t)

dt
= −0.08[x1(t) + x3(t)] − 0.7x2(t), (18)

dx3(t)

dt
= 6.3[x2(t) + 1 + e−x1(t)].

As an integration method, the Euler method with time step
0.02 was chosen because the inaccuracy of this method for
large time steps leads to an integration error that results in
some dynamical noise in the time series. Furthermore, white
noise [Nn(0,σ 2)] was added to show that the model can be
adapted to noisy time series. Observations η(tn),

η(tn) = x1(tn) + x3(tn) + 1.3 + Nn(0,1), (19)

were sampled at tn ∈ TM = {0,0.02,0.04, . . . ,150} including
an offset of 1.3 and measurement noise with SNR = 10.9 dB.

The model consists of Eq. (17), and the measurement
function for the estimation procedure is given by

h( y(t),q) = y1(t) + y3(t) + q . (20)
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FIG. 2. (Color online) Adaption of the Colpitts oscillator model
(17) to the time series η(tn) [Eq. (19)]. (a) The model output given by
the measurement function h [Eq. (20); dark blue dots] was adapted
to the time series η(tn) (bright green circles). (b), (d), and (f) The
estimated variables y1, y2, and y3 (blue dots) and original (“true”)
variables x1, x2, and x3 (orange dashed line; not directly observed)
used to generate η. (c), (e), and (g) Residues [see Eq. (5)] ui ,
i = 1,2,3 representing deviations from the model ODE’s. In addition
to the model variables, the model parameters are estimated at p =
(5.23,0.0777,0.677,6.28) whereas the parameters used to integrate
(18) and to generate the time series η(tn) are (5,0.08,0.7,6.3). The
parameter of the measurement function is estimated at q = 1.29
[while 1.3 was used in Eq. (19) to generate η(tn)]. For better visibility,
the results are only shown from t = 0 to 30 while the model time series
(20) was adapted to the given data (19) from t = 0 to 150.
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Note that the parameter q of the measurement function
will be estimated in addition to the four model parameters
p1, . . . ,p4. For this example, state variables y = y(tm) will
be estimated at tm = tn ∈ TS = TM , i.e., at the same times
that observations were done. The homotopy parameter α

was decreased in steps from 0.9 to 0.5 and finally to 0.1.
The weighting vector for the ODE approximation was set
to b = (1,1000,1). That means that the final approximation
of the second ODE of the model will be more accurate
than for the first and third model ODE. This b was cho-
sen because the measurement function (20) is independent
of y2(t), and it turned out that giving a high weight to
the ODE approximation of variables that are not part of
the measurement function provides better results. Figure 2
shows the estimated variables and parameters. Despite the
integration errors in x1(t),x2(t),x3(t), the estimated variables
and the parameters of the model and the measurement
function parameters coincide very well with the ones used to
generate η(tn).

C. The Hindmarsh-Rose model

Our second example is based on the Hindmarsh-Rose
neuron model [36], which generates typical neuronal activity
such as spiking and bursting governed by dynamics on clearly
separated time scales. The model equations read

dy1(t)

dt
= −y1(t)3 + p1y1(t)2 + y2(t) − y3(t),

dy2(t)

dt
= 1 − p2y1(t)2 − y2(t), (21)

dy3(t)

dt
= p3{y1(t) + 0.25[p4 − y3(t)]},

where y1(t) denotes the membrane potential whereas y2(t) and
y3(t) describe slow and fast ion current rates, respectively. To
generate the time series η(tn), the system

dx1(t)

dt
= −x1(t)3 + 3x1(t)2 + x2(t) − x3(t),

dx2(t)

dt
= 1 − 5x1(t)2 − x2(t), (22)

dx3(t)

dt
= 0.004{x1(t) + 0.25[3.19 − x3(t)]}

was integrated (Runge-Kutta method, time step of 0.1). For this
parameter set, one observes chaotic bursting where a sequence
of spikes is interrupted by periods of time with a slow and
smooth variation of the membrane potential [37]. A noisy
time series η(tn) was generated by

η(tn) = x1(tn) + 1.8 + Nn(0,0.13) (23)

with SNR = 14.03 dB, tn ∈ TM = {0,0.5,1, . . . ,800}, and an
offset of 1.8. The measurement function used for estimation is

h( y(t),q) = y1(t) + q, (24)

whereas y1(t) is the first variable of the Hindmarsch-Rose
model (21). In addition to the four model parameters
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FIG. 3. (Color online) Adaption of the Hindmarsh Rose model
(21) to the time series η(tn) [Eq. (23)]. (a) The model output
given by the measurement function h [Eq. (24); dark blue dots]
was adapted to the time series η(tn) (bright green circles). (b),
(d), and (f) The estimated variables y1, y2, and y3 (blue dots) and
original (“true”) variables x1, x2, and x3 (orange dashed line; not
directly observed) used to generate η. (c), (e), and (g) Residues
[see Eq. (5)] ui , i = 1,2,3 representing deviations from the model
ODE’s. In addition to the model variables, the model parameters are
estimated at p = (2.99,4.98,0.003 97,3.19) whereas the parameters
used to integrate (22) and to generate the time series η(tn) are
(3,5,0.004,3.19). The parameter of the measurement function is
estimated at q = 1.791 [while 1.8 was used in Eq. (23) to generate
η(tn)].
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p1, . . . ,p4, the parameter q of the measurement function will
be estimated, too. The model variables y(tm) will be estimated
at tm ∈ TS = {0,0.1,0.2, . . . ,800}. This means that for this
example, the state variables y(tm) will also be estimated at
times where no observations are available. The parameter
α was decreased in steps from 0.9 to 0.5 to 0.1. The
weighting of the model ODE’s was set to b = (1,1000,1000),
because the observations (24) depend on y1(t) only. The
results of the estimation procedure are shown in Fig. 3.
The estimated parameters and variables coincide very well
with the corresponding values used to generate the time
series η(tn).

D. A hyperchaotic extension of the Rössler system

The previous examples exhibited low-dimensional chaos.
Now we shall consider a dynamical system with a hyperchaotic
attractor. This system belongs to a family of extensions of the
well-known Rössler system [38], which was introduced by
Baier and Sahle in 1995 [39]. This D-dimensional model is

given by the following set of ODE’s:

dy1(t)

dt
= p1x1(t) − x2(t),

dyi(t)

dt
= xi−1(t) − xi+1(t), (25)

dyD(t)

dt
= p2 + p3xD(t)(xD−1 − p4),

where i = 2, . . . ,D − 1. For our simulations, we employed the
nine-dimensional case, so D = 9 ⇒ i = 2, . . . ,8. To obtain a
time series η(tn), the model

dx1(t)

dt
= 0.3x1(t) − x2(t),

dxi(t)

dt
= xi−1(t) − xi+1(t), (26)

dxD(t)

dt
= 0.1 + 4xD(t)(xD−1 − 2)
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FIG. 4. (Color online) Adaption of the extended Rössler system (25) to the time series η(tn) given by Eq. (27). (a) The model output given
by the measurement function h [Eq. (28); dark blue dots] was adapted to the time series η(tn) (bright green circles). (b), (d), (f), (h), and (j) The
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observed) used to generate η (variables y3, y4, y6, and y7 not shown here exhibit a similar dynamics and coincide with the corresponding x

variables as well. (c), (e), (g), (i), and (k) Residues [see Eq. (5)] ui , i = 1,2,5,8,9 representing deviations from the model ODE’s. In addition
to the model variables, the model parameters are estimated to be p = (0.293,0.0801,4.08,1.96) whereas the parameters used to integrate (26)
and to generate the time series η(tn) are (0.3,0.1,4,2). The parameter of the measurement function is estimated at q = 1.69 [while 1.7 was used
in Eq. (27) to generate η(tn)]. For better visibility, the results are only shown from t = 0 to 30 while the model time series (28) was adapted to
the given data (27) from t = 0 to 100.
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was integrated with the Euler method (time step 10−3).
According to Ref. [39], this system has Lyapunov
exponents (0.078,0.066,0.057,0.043,0.027,0.010,0,−0.024,

−9.63). Note that six of them are positive. The time series was
generated by

η(tn) = x1(tn) + 1.7 + Nn(0,0.4) (27)

with SNR = 13.9 dB. Observations were sampled at tn ∈
TM = {0,0.1, . . . ,100}. For system identification, the mea-
surement function

h( y(t),q) = y1(t) + q (28)

is used to adapt the generated time series h( y(t),q) to
the “observed” time series generated with Eq. (27). The
model variables y1(tm), . . . ,y9(tm) will be estimated at tm ∈
TS = {0,0.02, . . . ,100} and hence also at times where no
observations are available. As with the previous examples, not
only the model variables and the model parameters p1, . . . ,p4

will be estimated but also the parameter q of the measurement
function. As shown in Fig. 4, the estimated parameters and
variables coincide with the corresponding values used to
generate η(tn). This is also true for the other variables not
shown here.

IV. PARAMETER ESTIMATION

In the previous subsections, we presented examples in
which the estimated parameters are close to the ones used to
generate the time series η(tn). The question is, “Is this always
the case?” or more precisely, “When does the observed time
series η(tn) contain enough information so that all parameters
can be estimated with the necessary accuracy?” Furthermore,
“How do we determine proper values of the continuation
parameter?” and last but not least, “Is there some evidence
that the model (architecture) is (not) suitable for describing
the given data?” These important questions will be discussed
in the following subsections.

A. Observability of parameters and the shape
of the cost function

Consider the common situation in which the state vector
x(t) is not directly available. In a “real” experiment in which
just the time series η(tn) is observed, we usually do not know
x(t) and the true parameters of the model describing the
experiment. Therefore, comparing the estimated parameters
and variables with the true values is not a feasible way to
evaluate the accuracy of the estimated quantities.

The value of the cost function at the optimum C( ŷ(tm), p̂,q̂)
has only limited significance for the accuracy of the estimated
quantities. To illustrate this fact, we shall consider now
two examples based on noise-free time series from the
Colpitts oscillator. Equation (18) was integrated (Runge-Kutta
integration scheme, time step 0.1), which gave x(tn) with
tn ∈ TM = {0,0.1, . . . ,100}. The (observed) time series that
is used as input for state and parameter estimation is given by
the first state variable,

η(tn) = x1(tn) . (29)
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FIG. 5. (Color online) The Colpitts oscillator model (17) is
adapted to the time series (29). p2 and p3 are fixed to p2 = 0.08 and
p3 = 0.7, p1 and p4 are estimated in addition to y(tm) to p̂1 = 6.33
and p̂4 = 4.97 [p1 = 5 and p3 = 6.3 are used to integrate (18)]. The
meaning of the line styles and colors is the same as in Fig. 2.

The model ODE’s are again given by Eqs. (17), but in contrast
to Sec. III B the measurement function is now a function of y1

only,

h[ y(t)] = y1(t) . (30)

y(tm) will be estimated at tm ∈ TS = TM and hence at the same
times at which observations are available. Due to the absence
of any noise in η(tn), there must exist a solution { ŷ(tm)}, p̂,
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and q̂, where C({ ŷ(tm)}, p̂,q̂) is zero. Such a solution is given,
for example, by p = (5,0.08,0.7,6.3), where the model (17)
is identical with Eqs. (18), which were used to generate η(tn).

We shall now consider two cases. In the first example, the
parameters p2 and p3 are fixed to p2 = 0.08 and p3 = 0.7,
i.e., the same values as used in Eq. (18) to generate x1(t).
The other two parameters, p1 and p4, are estimated. Figure 5
shows the results of the estimation procedure. The estimated
parameters p̂1 = 6.33 and p̂4 = 4.97 are not identical with the
values p1 = 5 and p4 = 6.3 used to generate the time series
η(tn) = x1(tn), although x1(tn) and y1(tn) coincide very well
and u(tm) is almost zero (i.e., the model ODE’s are fulfilled
very well). Furthermore, x2(tn) and x3(tn) are not identical with
y2(tn) and y3(tn), respectively.

In the second example, we repeat the estimation with fixed
p1 = 5 and p4 = 6.3 and estimate p2 and p3. In this case,
the estimated parameters p̂2 = 0.0799 and p̂3 = 0.699 are
(almost) identical with the values p2 = 0.08 and p3 = 0.7
used to generate the time series (29), and x(tn) and y(tn) are
also identical (not shown here). These examples show that in
general, it is possible that the measured time series does not
contain enough information to estimate all desired parameters
adequately.

Whether parameters (and variables) are observable [40]
depends on the shape of the cost function [41]. To illustrate
this aspect for the current examples, we shall now consider
simulations in which all four parameters are fixed to certain
values and only the state variables are estimated with α = 0.5
In the first example, p1 and p4 take values on a grid within
ranges 2 � p1 � 10 and 2 � p4 � 10 for fixed values p2 =
0.08 and p3 = 0.7. For each (p1,p4) on the grid, the cost
function was minimized, and the minimal vales is denoted
as C( ŷ(tm),(p1,p4)). More precisely, for each pair (p1,p4) of
parameter values, the optimal values ŷ(tm) of the variables are
determined providing C( ŷ(tm),(p1,p4)).

Figure 6(a) shows the dependence of the cost function
C( ŷ(tm),(p1,p4)) on (p1,p4) in terms of contour lines. One can
see that in the middle there exists a long, thin expanded area
where the cost function is (almost) zero, C( ŷ(tm),p1,p4) <

0.003. This area will be denoted as the set

AC = {(p1,p4) | C( ŷ(tm),(p1,p4)) is minimal}. (31)

Here the minimum is not clearly located at a single point, but
there exists a direction where the cost function stays (almost)
constant and does not increase significantly. This means that
for all parameter sets of (p1,p4) ∈ AC , h[ y(tn)] is (almost)
identical with η(tn) and the residue u(tm) is (almost) zero, i.e.,
the model perfectly describes the time series η(tn). So if one
would estimate (p1,p4) (in addition to the model variables),
the optimizer might stop at different (p̂1,p̂4) ∈ AC in different
runs (for example, with different initial conditions). Of course,
for the different (p̂1,p̂4), usually the unobserved variables
x2(tn) and x3(tn) will not be identical to the estimates ŷ2(tn)
and ŷ3(tn). For comparison, the same experiment was done
with fixed p1 and p4 (p1 = 5, p4 = 6.3), and now p2 and
p3 are varied [Fig. 6(b)]. Here we can see a sharp minimum
with a cost function that is (almost) uniformly increasing in
all directions. This means that p2 and p3 can be estimated
simultaneously, or in other words p2 and p3 are observable
using the given time series.

The time series used for the estimates shown in Figs. 6(a)
and 6(b) is sampled after transients decayed and represents the
dynamics on the attractor. Additional information about the
system can in principle be obtained from (transient) trajectories
and resulting time series. Therefore, we have repeated the same
computation with a time series including transient dynamics.
This time series was generated using a trajectory starting
from initial conditions (44.22, 25.59, −69.46) far off the
attractor, and its first 30%;–40%; samples are clearly visibly
(macroscopic) transient. The resulting graphs of the cost
functions are shown in Figs. 6(c) and 6(d) and possess very
similar shapes compared to Figs. 6(a) and 6(b). In particular,
the long valley in the p1-p4 plane still exists. This result
indicates that including transients does not provide a means to
cope with (efficiently) unobservable parameters here.

For the diagrams shown in Fig. 6, we used α = 0.5 and
zero initial values for all variables y(tn) of the trajectory to
be reconstructed. We also repeated the computation of the
cost function landscape for smaller values of the homotopy
parameter α (e.g., α = 0.1). In that case, plateaus at relatively
high values of the cost function occurred in some parts of
the parameter plane due to convergence of the variables
y(tn) toward coexisting local minima. This observation was
confirmed by simulations with different initial conditions that
yielded similar but different plateau structures. Starting with
larger values of α and solving a sequence of optimization
problems with decreasing α values (see Sec. II B) turned out
to be a suitable approach to avoid convergence to local minima
(corresponding to poor estimates).

One way to obtain information about the uniqueness of
the U estimated parameters is to consider the form of the
graph of the function C( ŷ(tm), p̂) at the estimated parameters
p̂. This shape is characterized by the Hessian matrix given by
the second derivatives of the cost function with respect to the
parameters

Hij ( p̂) = ∂C( ŷ(tm), p)
∂pi∂pj

∣∣∣∣
p= p̂

. (32)

The Hessian matrix provides information whether the min-
imum is flat (small second derivative) or unique (large
second derivative). An eigenvalue analysis Hhk = λkhk (k =
1, . . . ,U ) gives the eigenvectors hk with the corresponding
eigenvalues λk . Due to the symmetry Hij = Hji , all eigen-
vectors are orthogonal and the corresponding eigenvalues are
real. The eigenvector with the smallest eigenvalue points in
the direction with the smallest slope. The smaller the smallest
eigenvalue is, the less accurate the parameter estimation
would be. In Fig. 6, the eigenvectors of the Hessian of the
corresponding cost function are shown where eigenvalues have
been ordered with increasing magnitude (λ1 � λ2 � · · · ), i.e.,
eigenvector h1 points in the direction with the smallest second
derivative. For the first example shown in Fig. 6(a), the smallest
eigenvalue is λ1 ≈ 0 and therefore attempts to simultaneously
estimate p1 and p4 may not give results coinciding with
the parameter values used to generate the data because the
minimum is flat at least in one direction. On the other
hand, simultaneously estimating p2 and p3 [second example,
Fig. 6(b)] provides the expected results because the smallest
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FIG. 6. (Color online) Contour lines of the minimized cost function (12) of the Colpitts oscillator model (17) when adapted to an x1 time
series (29) after transients decayed [(a), (b)] and including transient [(c), (d)]. In (a) and (c), the parameters p2 and p3 are fixed to p2 = 0.08
and p3 = 0.7 and the cost function is optimized for different combinations of p1 and p4 values resulting in a function C( ŷ(tm),p1,p4)
(visualized by means of contour lines). The eigenvectors of the Hessian at the optimum p̂ = (p̂1,p̂4) = (6.29,5.00) are h1 = (−0.780,0.63)T

and h2 = (0.63,0.780)T with eigenvalues λ1 = 4.5 × 10−3 and λ2 = 0.547, respectively. In (b) and (d), parameters p1 and p4 are fixed to
p1 = 5 and p4 = 6.3, the cost function is minimized on a grid of p2-p3 values, and the contour plot shows C( ŷ(tm),p2,p3). The minimum is
located at p̂ = (p̂2,p̂3) = (0.080,0.70) and the eigenvectors of the Hessian at p̂ are h1 = (−0.0534,−0.9986)T and h2 = (−0.9986,0.0534)T

with eigenvalues λ1 = 10.4 and λ2 = 2.56 × 103, respectively. Note that h1 and h2 do not appear orthogonal in the plots due to the different
scaling of the axes.

eigenvalue λ1 = 10.4 is relatively large and the minimum of
the cost function is uniquely defined (not a valley).

Although the shapes of the cost functions shown in
Figs. 6(a) and 6(b) are different, both cost functions are smooth
and exhibit no local minima close to the optimum. These
features are very advantageous for the optimization process.

B. Selecting the continuation parameter

Numerical simulations showed that the shape of the cost
function (given by the Hessian matrix) is very robust with
respect to noise in the data and variations of the continuation
parameter α. Therefore, it cannot be employed for selecting
“optimal” values of the (meta) parameter α. In order to

find a suitable criterion for stopping the lowering of α

mentioned in Sec. II B, we propose to split the observed time
series into several segments and to monitor the variance of
the parameter values estimated for the different segments.
Figure 7 illustrates this approach for the Colpitts example
where the given time series was split into 15 segments,
and for each segment parameters and variables have been
estimated.

In Figs. 7(a), 7(c), and 7(e) for 15 segments of the time series
the standard deviations of estimated parameters p1, p2, and
p3 are given as a function of the continuation parameter α for
different noise levels and B = (1,1000,1000). With increasing
noise amplitude, the minimum of the standard deviation moves
toward smaller values of α (i.e., deviations from the given
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FIG. 7. (Color online) Parameter estimation results for the Col-
pitts oscillator (17) based on noisy observed x1 time series (29)
consisting of 15.150 = 2250 samples. Six noise levels ranging from
the noiseless case (∞db) to 5.3 dB are considered as indicated in
the legend in (b) that holds for all subfigures. The given time series
was split into 15 parts, and for each segment parameters have been
individually estimated. (a), (c), (e) Variance of the 15 estimated
parameters logarithmically plotted vs. log10(α/(1 − α)), where α

denotes the continuation parameter. (b), (d), (f) Deviations of the
mean values of the estimated parameters p1, p2, and p3 from the
values used for generating the data.

noisy time series are weighted less compared to deviations
from model ODE’s). For comparison, Figs. 7(b), 7(d), and
7(f) show the absolute value of the difference between the
estimated parameters from the true values (used upon time-
series generation). For parameter p2, minima of the standard
deviations coincide with minima of the parameter estimation
errors. Unfortunately, this is not always the case, as can be seen
in diagrams for p1 and p3. Still, choosing a value of the con-
tinuation parameter α where the standard deviation of multiple
parameter estimations is small seems to be a useful criterion.

C. Evaluating the consistency of the model and the data

To evaluate the suitability of the chosen model for describ-
ing the given data, we follow Abarbanel et al. [18] and define
a relative measure of the deviation of the vector field (or ODE)
components from the (approximated) derivatives [see Eq. (5)],
which is given by

R2
i (tm) = F 2

i (tm)

F 2
i (tm) + [

�yi

�t

∣∣
tm

− Fi(tm)
]2 , (33)

where Fi(tm) is an abbreviation for Fi( y(tm), p,tm). If the
model is consistent with the data, the characteristics Ri

will tend to 1, whereas low values of Ri indicate a poor
agreement of the ith component of the vector field F with the
reconstructed trajectory. The temporal evolution of Ri(t) may
additionally provide information where in state space the data
are (not) well explained by the model. Here, we shall consider
temporal averages only, providing the consistency measures

R̄i = 1

M

M∑
m=1

Ri(tm) (34)

for the individual model ODE’s. Averaging these characteris-
tics yields a consistency measure for the full model,

R̄ = 1

D

D∑
i=1

R̄i . (35)
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FIG. 8. (Color online) Consistency measures vs fixed (detuned)
parameter p1 of the Colpitts oscillator (17). State variables and
parameters p2, p3, and p4 are estimated. A high consistency of model
and data is indicated by R values close to 1. The indicator R̄ given
by Eq. (35) uniquely selects the value p1 = 5 that was also used for
generating the (observed) time series.
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To demonstrate possible applications of this measure, we
applied it to parameter estimations with a Colpitts oscillator
(17) where parameter p1 was “detuned” from the true value
p1 = 5. Figure 8 shows R̄i (i = 1,2,3) and R̄ versus p1 for
α = 0.1 and B = (1,1,1). Only at the true value p1 = 5 are
all three individual measures R̄1, R̄2, and R̄3 close to 1,
and therefore the consistency measure R̄ for the full model
uniquely selects the proper value for p1.

V. CONCLUSION

The task of state and parameter estimation for a given set of
model ODE’s using an observed time series was revisited and
solved using an efficient unconstrained optimization method
exploiting the particular structure of the cost function. This
algorithm was successfully applied to numerical examples,
including a hyperchaotic system and (spiking) dynamics
on different time scales. Although convergence is achieved
typically within a few seconds of CPU time, the estimated
parameter values do not always coincide with those used
to generate the (synthetic) time series serving as input to
the estimation process. Measurement noise may introduce a
bias, although in the examples considered here, the impact of
stochastic components was relatively small. More important
seem to be features of the model and its functional dependence
of parameters. If in a multiparameter estimation problem
several combinations of parameter values provide (almost) the
same dynamical output, then these parameters are redundant
and (individually) not observable. This phenomenon was
discussed and illustrated for the Colpitts oscillator. Typical
indicators are long valleys in the shape of the cost function
without a pronounced minimum. To detect such cases, the
eigenvalues of the Hessian matrix (given by the second deriva-
tives of the cost function with respect to parameters) can be
used, because small eigenvalues correspond to eigendirections
where the cost function is poorly localized. Another important
task is the proper choice of meta parameters of the algorithm,
such as the continuation parameter α controlling the relative
weights of deviations from the observed time series and from
the model ODE’s, respectively. As a useful criterion, we
suggested splitting the available time series into segments
and select an α that minimizes the standard deviation of
parameter values estimated with different segments. Finally, a

characteristic was presented that may be used to evaluate the
consistency of the obtained model with the given data.

Comparison with other estimation methods [18,25] indi-
cates that the algorithm presented here is highly competi-
tive [42].
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APPENDIX: APPROXIMATION OF DERIVATIVES

In the cost function (12), the temporal derivatives of
the variables y(tm) are needed. A numerically efficient way
to approximate the derivatives at times tm = m�t (m =
3, . . . ,M − 2) (for a given time step �t) is given by the central
difference

� y
�t

∣∣∣∣
tm

= − y(tm+2) + 8 y(tm+1) − 8 y(tm−1) + y(tm−2)

12�t

+O(�t4) . (A1)

For m = 2 and m = M − 1, the central difference

� y
�t

∣∣∣∣
tm

= y(tm+1) − y(tm−1)

2�t
+ O(�t2) (A2)

is used, and for m = 1 and m = M the forward and backward
Euler method is employed, respectively, with

� y
�t

∣∣∣∣
t1

= y(t2) − y(t1)

�t
+ O(�t) (A3)

and

� y
�t

∣∣∣∣
tM

= y(tM ) − y(tM−1)

�t
+ O(�t) . (A4)

Note the error of order O(�t4) in the approximation by the
central difference in Eq. (A1). This accuracy is valid at all
times tm except the two first and last.
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[26] J. Bröcker and I. Szendro, doi: 10.1002/qj.940.
[27] In principle, the presented approach could also be used to

estimate parameters of black-box models.
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