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Secure steganographic communication algorithm based on self-organizing patterns
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A secure steganographic communication algorithm based on patterns evolving in a Beddington-de Angelis-type
predator-prey model with self- and cross-diffusion is proposed in this paper. Small perturbations of initial states
of the system around the state of equilibrium result in the evolution of self-organizing patterns. Small differences
between initial perturbations result in slight differences also in the evolving patterns. It is shown that the generation
of interpretable target patterns cannot be considered as a secure mean of communication because contours of
the secret image can be retrieved from the cover image using statistical techniques if only it represents small
perturbations of the initial states of the system. An alternative approach when the cover image represents the
self-organizing pattern that has evolved from initial states perturbed using the dot-skeleton representation of the
secret image can be considered as a safe visual communication technique protecting both the secret image and
communicating parties.
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I. INTRODUCTION

The evolution of complex patterns in simple systems has
attracted the attention of researchers for a long time. One
of the classical numerical examples illustrating a surprising
variety of irregular spatiotemporal patterns comprises a simple
reaction-diffusion model with finite amplitude perturbations
[1]. The phenomenology of a wide variety of two- and three-
dimensional physical-chemical systems displaying prevalent
stripe and bubble morphologies of domain patterns in equi-
librium is discussed in Ref. [2]. It is shown that small
perturbations of initial states of the system play a central role
in the initiation of pattern formation process [3].

The physics of pattern formation remains an active research
area. It is shown that the reaction-diffusion model serves as
a framework for understanding biological pattern formation
in [4]. Pattern formation mechanisms of a reaction-diffusion-
advection system, with one diffusivity, differential advection,
and Robin boundary conditions of the Danckwerts type, are
investigated in Ref. [5]. It is shown that time-delay-induced in-
stabilities in reaction-diffusion systems result in stationary pat-
terns and Turing-Hopf transition with the formation of spirals
[6]. Time-periodic forcing of spatially extended patterns near a
Turing-Hopf bifurcation point is studied in Ref. [7]. A method
to characterize and distinguish patterns from inclined water-oil
flow experiments based on the concept of network motifs is
proposed in Ref. [8]. An analytic study of traveling fronts,
localized colonies, extended patterns, the well-known Allee
effect, and spatially nonlocal competition interactions arising
from a reaction-diffusion equation is presented in Ref. [9]. The
pattern transition from target waves to spiral waves upon the
increment of inactive beads in a discrete system model, where
ion-exchange resin loaded with a Belousov-Zhabotinsky
catalyst corresponds to the active beads, is studied in Ref. [10].
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Patterns specifying dynamic behavior of chemoresponsive
gels undergoing the Belousov-Zhabotinsky reaction are
constructed in Ref. [11]. Investigation of disordered plane
waves in the transition between target and antitarget patterns
is introduced in Ref. [12]. The investigation of a model for
cyclically competing species on a continuous space resulted
in switches between spiral and plane-wave patterns [13].
Complex dynamics and spatiotemporal pattern formation in
variant predator-prey models are analyzed in Refs. [14–17].
Study of self-organizing patterns maintained by competing
associations in a six-species predator-prey model is proposed
in Ref. [18].

One of the promising applications of the phenomenon of
pattern formation could be digital image processing when the
evolving pattern would be used to encode the initial image. A
digital fingerprint image is used as the initial condition for the
evolution of a pattern in a model of reaction-diffusion cellular
automata [19], though the possibility of encrypting the initial
fingerprint in the evolved pattern is not discussed in Ref. [19].

The main goal of this paper is to propose a secure
steganographic communication algorithm based on the evo-
lution of self-organizing patterns. In general, cryptography
is a method of storing and transmitting data in a form that
only those it is intended for can read and process [20].
Modern cryptography follows a strongly scientific approach
and designs cryptographic algorithms around computational
hardness assumptions that are assumed hard to break by an
adversary. But cryptography does not always provide safe
communication.

Steganography is a science of concealing data in a commu-
nication in such a way that only the sender and receiver know
of its existence [21]. The advantage of steganography, over
cryptography alone, is that messages do not attract attention
to themselves. Therefore, whereas cryptography protects the
contents of a message, steganography can be said to protect
both messages and communicating parties [22]. As mentioned
previously, we will demonstrate that self-organizing patterns
can be effectively exploited as a secure tool for steganographic
communication.
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II. THE MODEL OF THE SYSTEM

We will exploit a well-known Beddington-DeAngelis-type
predator-prey model with self- and cross-diffusion [14].
Governing equations of this model read:

∂N

∂t
= r

(
1 − N

K

)
N − βN

B + N + wP
P

+D11∇2N + D12∇2P, (1)
∂P

∂t
= εβN

B + N + wP
P − ηP + D21∇2N + D22∇2P,

where t denotes time; N and P are densities of preys and
predators, respectively; β is a maximum consumption rate, B

is a saturation constant; w is a predator interference parameter
(w < 0 represents the case where predators benefit from
cofeeding); η represents a per capita predator death rate;
and ε is the conversion efficiency of food into offspring. It
can be noted that the term r(1 − N

K
) characterizes the growth

rate of preys; βN

B+N+wP
represents the functional response (the

consumption rate of preys by an average single predator). The
operator ∇2 = ∂2

∂x2 + ∂2

∂y2 is the Laplacian operator in the two-

dimensional space. Self-diffusion terms D11∇2N and D22∇2P

imply the movements of individuals from a higher to lower
concentration region. Self-diffusion coefficients are denoted
by D11 and D22, respectively. D12∇2P and D21∇2N are cross-
diffusion terms that biologically imply the countertransport.
The cross-diffusion coefficient D12 represents the tendency
of preys to keep away from predators. D21 represents the
tendency of a predator to chase its prey. The cross-diffusion
coefficients may be positive (which then denotes the tendency
of one species to move in the direction of a lower concentration
of another species) and negative (which then expresses the
population fluxes of one species in the direction of higher
concentration of another species) [14].

Nonzero initial conditions

N (x,y,0) > 0; P (x,y,0) > 0 (2)

are set in a rectangular domain (x,y) ∈ � = [0,Lx] × [0,Ly],
where Lx and Ly are the size of the system in the directions
of x and y axis. Neumann, or zero-flux, conditions are set on
the boundary:

∂N

∂n
= ∂P

∂n
= 0; (x,y) ∈ ∂�, (3)

where n is the outward unit normal vector of the smooth
boundary ∂�. Zero-flux boundary conditions imply that no
external input is imposed from outside.

A. Equilibrium points

In the absence of diffusion, the model has three equilibria
in the positive quadrant [14]:

(1) (0,0) (total extinct) is a saddle point.
(2) (K,0) (extinct of predators or preys-only) is a stable node

if εβ < η or εβ > η and K < − ηB

−εβ+η
; a saddle if εβ < η and

K > − ηB

−εβ+η
; a saddle node if εβ < η and K = − ηB

−εβ+η
.

(3) A nontrivial stationary state (N∗,P ∗) (coexistence of
preys and predators), where

N∗ = 1

2rwε
K(rwε − εβ + η)

+ 1

2rwε

√
K2(rwε − εβ + η)2 + 4rKwεηB, (4)

P ∗ = (βε − η)

wη
N∗ − B

w
.

B. The Turing instability

Governing equations (1) can be linearized assuming small
perturbations around the stationary state (N∗,P ∗): N = N∗ +
Ñ and P = P ∗ + P̃ , where |Ñ |,|P̃ | � 1. The linearized form
of the model reads

∂Ñ

∂t
= J11Ñ + J12P̃ + D11∇2Ñ + D12∇2P̃ ,

(5)
∂P̃

∂t
= J21Ñ + J22P̃ + D21∇2Ñ + D22∇2P̃ ,

where coefficients Jkl , (k,l = 1,2) are explicitly derived in Ref.
[14]. Application of Routh-Hurwitz criteria for the solution to
the linear model (5) helps to derive the necessary condition
for the equilibrium point being locally asymptotically stable,
the condition of the diffusion instability, and the criterion of
Turing instability, which reads [14]

D11J22 − D12J21 − D21J12 + D22J11> 2
√

det(D) det(J ),

where D = [ D11 D12
D21 D22

]; J = [ J11 J12
J21 J22

].

C. The numerical model and types of self-organizing patterns

A standard five-point approximation for a two-dimensional
Laplacian with the zero-flux boundary conditions is used. The
concentrations (Nn+1

ij ,P n+1
ij ) at the moment (n + 1)τ at mesh

position (xi,yj ) are calculated as [14]

Nn+1
ij = Nn

ij + τD11�hN
n
ij + τD12�hN

n
ij + τf

(
Nn

ij ,P
n
ij

)
,

P n+1
ij = P n

ij + τD21�hN
n
ij + τD22�hP

n
ij + τg

(
Nn

ij ,P
n
ij

)
,

(6)

where the Laplacian is

�hN
n
ij = Nn

i+1,j + Nn
i−1,j + Nn

i,j+1 + Nn
i,j−1 − 4Nn

i,j

h2
.

Initially, the entire system is placed in the stationary state
(N∗,P ∗) with a random perturbation. The system evolves
either into a steady or time-dependent state after a certain
number of iterations. Different sets of the model parameters
correspond to the special types of final patterns: the distinct
stripelike patterns, a regular spotted pattern (hot or cold spots),
the mixture of spotted and stripelike patterns, or the spiral wave
patterns [14].

III. A SECURE COMMUNICATION SYSTEM BASED
ON SELF-ORGANIZING PATTERNS

We consider a Beddington-DeAngelis-type predator-prey
model with self- and cross-diffusion with the following pa-
rameter set: D11 = 0.01, D12 = 0.0115, D21 = 0.01, D22 = 1,
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FIG. 1. Dynamics of the time evolution of preys: (a) the initial
distribution (ε = 10−3); (b) after 10 000 iterations; (c) after 50 000
iterations; (d) after 200 000 iterations.

r = 0.5, ε = 1, β = 0.6, K = 2.6, η = 0.25, ω = 0.4, B =
0.3154. Numerical integration of differential equations (1)
is performed with time step τ = 0.01 and space step
h = 0.25; the system size is 200 × 200 grayscale pixels
(Lx = Ly = 50). Figure 1 demonstrates the dynamics of the
time evolution of preys N . The stable equilibrium point
(N∗ = 0.430 58; P ∗ = 0.718 555) with small random pertur-
bations is presented in Fig. 1(a). The logistic map

xi+1 = 4xi(1 − xi) (7)

is used for the computation of a set of 200 × 200 pseudoran-
dom numbers distributed in the interval [0; 1]. This random
set is linearly transformed into an ε-length interval with zero
mean before it is added to the initial concentration of preys:

[N ]|t=0 = N∗[1] + [Ñ], [P ]|t=0 = P ∗[1], (8)

where [1] is a 200 × 200 matrix of ones; [Ñ] is a 200 × 200
matrix of pseudo-random numbers distributed uniformly in the
interval [−ε/2; ε/2]. It is clear that the parameter ε must be
significantly lower than the maximum concentrations in the
final N and P patterns; we use ε = 10−3 in computational
experiments illustrated in Fig. 1.

Figures 1(b) and 1(c) show the evolution of the spatial
pattern of preys after 10 000 and 50 000 iterations. A time-
independent self-organizing pattern of stripes and spots is
obtained after 200 000 iterations [Fig. 1(d)]. It is important
to note that the pattern shown in Fig. 1(d) is sensitive to initial
conditions. Figure 3(a) shows the initial distribution of preys,
and Fig. 3(b) represents the pattern after 200 000 iterations
(all parameters of the system are kept the same). Different
initial perturbations in Eq. (8) (a different set of pseudorandom
numbers) evolve into a pattern of the same type as shown in
Fig. 3(d) but with a different writing.

A. The generation of target patterns

The fact that the evolution of self-organizing patterns
is sensitive to initial perturbations allows construction and

FIG. 2. The modification of the initial random density of preys.
The thick solid line represents numerical values of pixels in a one-
dimensional segment of the initial perturbation matrix [Ñ ]. Thin solid
lines represent concentrations of preys at pixels j , k, and l.

manipulation of target patterns by small modifications in the
initial distribution of preys.

The sensitivity of the pattern evolution to initial conditions
is supported in the creation of different defects (disloca-
tions, dislinations, etc.), which are responsible for creating
metastable equilibrium states [23]. These effects are illustrated
in Figs. 1(d) and 3(b) and were two different realizations of
initial concentrations of a preys result into apparently similar
but locally different patterns of stripes.

Let us assume that the matrix of random perturbations [Ñ ]
is modified by adding a positive constant δ to numerical values
of some pixels in the initial distribution of preys. In general, the
initial density of preys then can be described by the following
equation:

[N ]|t=0 = N∗[1] + [Ñ ] + δ[M], (9)

where δ is a fixed constant; [M] is a binary mask matrix
holding ones at those pixels where the initial random density
of the preys is increased by δ and zeros where the random
density of preys is kept unchanged. Figure 2 illustrates a one-
dimensional representation of the modification procedure of
the initial random density of preys.

It is clear that different levels of δ would lead to the different
patterns when the system evolves in time. The question if such
a modification of the initial distribution of preys would evolve
into an interpretable target pattern remains open.

Let us assume that the initial random density of preys
[Fig. 3(a)] is changed by adding a T-shaped mask. Numerical
values of pixels in the zone occupied by the letter T
are incremented by δ; all other pixels remain unchanged.
Figures 3(c), 3(e), and 3(g) represent modifications of the
initial distribution of preys for different values of δ. It appears
that the striped-spotted pattern of preys mimics the shape of
the mask after 200 000 iterations if only δ was sufficiently
high. It can be noted that a larger ratio δ/ε corresponds to a
clearer target image in final patterns [Figs. 3(d), 3(f), and 3(h)].
Unfortunately, the ratio δ/ε = 0.1 [Fig. 3(c)] does not yield an
interpretable pattern [Fig. 3(d)]. But even such relatively small
modifications in the initial distribution of preys are statistically
detectable (the shape of the mask can be seen by a naked eye
in Fig. 3(c). Therefore, such an approach cannot be considered
as a safe technique for encoding secret information.
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FIG. 3. Time evolution of preys: (a) the initial density of preys
(ε = 10−3; δ = 0); (b) the pattern of preys after 200 000 iterations.
Panels (c), (e), and (g) represent initial densities of preys distorted by
the T-shaped mask at δ/ε = 0.1, δ/ε = 1, and δ/ε = 10, respectively
(the same matrix [Ñ] is used in all experiments). Panels (d), (f), and
(h) illustrate patterns of preys after 200 000 iterations.

B. A steganographic communication scheme based
on the difference between evolving patterns

Previous computational experiments show that modifi-
cations of the initial random density of preys cannot be
considered as a safe encoding of secret visual information:
The target pattern becomes interpretable only when the initial
distribution of preys reveals the secret to a naked eye.
Therefore, we propose an encoding scheme based not on
a target pattern but on the difference between two evolving
patterns.

The first step of the procedure remains unchanged: We
construct the initial random distribution of preys Eq. (8)
and compute the density of preys after the system evolves
m iterations in time [Figs. 1(a) and 1(b)]. The initial random
distribution of preys must be perturbed in the next step. We use
Eq. (9) for the perturbation, but the mask [M] now holds not
a target pattern but skeleton dots of the secret image instead

FIG. 4. A steganographic communication scheme based on the
difference between evolving patterns. (a) The dot-skeleton repre-
sentation of the secret image; (b) the perturbed initial distribution
of preys; δ/ε = 0.3; [the initial distribution of preys is shown in
Fig. 1(a)]; (c) time evolution of (b) after 10 000 iterations; (d) the
difference between panel (c) and Fig. 1(b).

[Fig. 4(a)]. It can be noted that the matrix [Ñ] must be kept
the same in both computational experiments and that δ is low
enough to prevent statistical identification of the perturbation
[we use δ/ε = 0.3 in Fig. 4(b)]. Now, the density of preys
is computed after the system evolves m iterations in time
[Fig. 4(c)]. In fact, one could hardly see any differences
between Fig. 1(b) and Fig. 4(c). Anyway, we compute the
difference between these two patterns; the resulting image
is shown in Fig. 4(d). It can be noted that the color bar
in Fig. 4(d) shows the difference in pixel levels (grayscale
levels are measured in the interval [0; 255]), while color bars
in Figs. 4(b) and 4(c) show actual concentration of preys.

The secure communication system based on the formation
of self-organizing patterns can be described by the following
steps.
(1) The encoding process:
(a) Define the initial condition 0 < x0 < 1 (x0 �= 3/4); the

number of time steps m; values of parameters ε and δ.
(b) Use the logistic map Eq. (7) to generate the set of

pseudorandom numbers distributed in the interval [0; 1].
(c) Use Eq. (8) to generate initial densities of predators and

preys.
(d) Generate the dot-skeleton representation of the secret

image and construct the mask matrix [M].
(e) Use Eq. (9) to perturb initial densities of preys.
(f) Use the numerical scheme Eq. (6) for m time steps and

save the digital image of the evolved pattern.
(2) Send the encoded information to the receiver:
(a) Send the saved image of the pattern.
(b) Send the key x0 (m, ε, and δ are fixed beforehand).
(3) Decoding the secret:
(a) Set the initial condition x0 and use Eq. (7) to generate the

set of pseudorandom numbers.
(b) Use Eq. (8) to generate initial distributions of predators

and preys.
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(c) Use the numerical scheme Eq. (6) for m time steps and
save the digital image of the self-organizing pattern.

(d) The difference between the computed pattern and the
received pattern reveals the secret image.

In principle, the necessity to send the key x0 to the
receiver (he or she needs x0 to generate the unmodified initial
conditions) could be avoided. The grayscale level (a whole
number from the interval [0,255]) of a preselected pixel in
the pattern evolved from the modified initial distribution of
preys could be used to conceal the value of x0. The sender
could select x0 freely from the set {0; 1/255; 2/255; . . . ; 1}
and place x0 at the top left corner of the unmodified initial
conditions. The dot-skeleton representation should be placed
as far as possible from the top left corner then. The number of
time steps m should be kept in a range that does not allow the
evolving perturbation to reach the top left corner (the evolution
of patterns in the area around the top left corner should be
identical in the perturbed and the unperturbed images). The
receiver then can divide the grayscale level of the top left pixel
in the perturbed pattern by 255 and generate the unmodified
initial conditions.

Of course, more sophisticated schemes for concealing the
value of x0 in the perturbed pattern could be exploited, but that
is left as a definite subject for future research. This is somewhat
similar to the normal Rivest, Shamir and Adleman (RSA)
scheme [24], where the problem of distributing the keys has
been suppressed. Nevertheless, the proposed communication
algorithm possesses a definite advantage over the RSA scheme
as it allows the possibility to conceal the fact that some secret
information is buried in the exchanged pattern.

IV. ADVANTAGES AND LIMITATIONS OF THE
PROPOSED COMMUNICATION SCHEME

As mentioned previously, steganography includes the con-
cealment of information within computer files. Steganographic
coding may be present inside of a transport layer, such as a
document file, image file, program, or protocol. Our approach
could be classified as a variant of text steganography inside
a cover image. Various algorithms have been proposed to
implement steganography in digital images. They can be
categorized into three major clusters: algorithms using the
spatial domain such as S-Tools [25], algorithms using the
transform domain such as F5 [26] and algorithms taking
an adaptive approach combined with one of the former two
methods, e.g., ABCDE (A Block-based Complexity Data
Embedding) [27]. Most of the existing steganographic methods
rely on two factors: the secret key and the robustness of the
algorithm.

A number of different methods exist to utilize the concept
of steganography. Least significant bit (LSB) insertion is a
common and simple approach to embed secret text information
in a cover object. Three bits in each pixel can be stored
by modifying the LSBs of the R, G, and B array in a
24-bit image as cover. To the human eye, the resulting stego
image will look identical to the cover image [28,29]. The
LSB modification concept can be used to hide data in an
image. Each pixel is modified sequentially in the scan lines
across the image; the portion where the secret message is
hidden is degraded while the rest remain untouched [29,30].

A random LSB insertion method is developed in Ref. [31],
where the secret data are spread out among the cover image
in a seemingly random diffused manner. The key is used
to generate pseudorandom numbers, which identify where,
and in what order, the hidden message is laid out. An LSB
insertion steganographic method coupled with high-security
digital layers is proposed in Ref. [32]. Such encryption strategy
makes it difficult to break through the encryption of the
secret data and confuse steganalysis. A heuristic approach to
hide data using LSB steganography technique is proposed in
Ref. [33]. The secret data are encoded and afterwards hidden
behind a cover image by modifying the least significant bits of
each pixel of the cover image.

A definitive advantage of the proposed secret communi-
cation scheme is determined by the complexity of physical
processes exploited in the encoding and decoding of secret
visual information. The security of communicating parties
is preserved since the transmittance of visual patterns does
not attract the attention of eavesdroppers. In that respect
our technique outperforms classical steganographic algorithms
where some pixels of the cover image are modified in order
to conceal a secret message in the cover image [21]. We
transmit a smooth pattern that has evolved from perturbed
initial conditions. It would be impossible to trace a perturbed
pixel in the digital image of the evolved pattern.

On the other hand, the detection of perturbed pixels in the
initial random distribution of preys (if the perturbed random
initial distribution of preys would be transmitted instead of the
evolved pattern) would be hardly possible. Skeleton points
of the secret image are embedded into the random initial
distribution of preys [Ñ ]. The numerical value of δ used to
encode the secret image into [Ñ] is lower than the noise level
[δ = 0.3ε in Fig. 4(b)]. Thus a straightforward identification of
those secret skeleton dots is hardly possible from the statistical
point of view.

A. The storage capacity of secret information

A characteristic feature of any secret communication
scheme is the storage capacity of secret information. The
quantity of information (the cover image) required to encrypt
the secret using our technique is quite high compared to other
digital encryption techniques [21]. Conventional stegano-
graphic techniques enable a straightforward embedding of a
secret digital image and/or text into the cover image [21]. A
number of special manipulations with pixels of the cover image
are necessary to conceal the secret.

A definitive limitation of our technique is the fact that the
encoded secret must be represented in a form of stripes. In
general, the storage capacity of secret information for our
technique is limited by the average width of stripes in the
dynamically evolving pattern. The proposed technique cannot
be used to encode symbols smaller than the average width of a
stripe. This limitation is illustrated in Figs. 5 and 6. We use the
same parameters of the system but modify the matrix [M]; it
holds only two skeleton dots now. The distance between those
two skeleton dots is gradually decreased until two separate
highlighted zones merge into one region in the difference
image. The clearance between two skeleton dots is 20 pixels
in Fig. 5(a), 15 pixels in Fig. 5(b), 10 pixels in Fig. 5(c), and 7
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FIG. 5. The development of a stripe between two dots in the
difference image: (a) the clearance between two skeleton dots is
20 pixels; (b) 15 pixels; (c) 10 pixels; (d) 7 pixels.

pixels in Fig. 5(d) (color bars show the difference in grayscale
levels). Thus, a clearance of 7 pixels between two adjacent
pixels ensures the development of a well-interpretable stripe in
the difference image. Another important feature determining
the storage capacity of secret information is the minimum
distance between two stripes. Two separate stripes can be
clearly interpreted in the difference image when the distance
between the center lines of the stripes is 20 pixels [Fig. 6(a)].
It can be noted that every stripe is composed from 7 skeleton
dots; the distance between adjacent skeleton dots is 7 pixels.
Two separate stripes can be still interpreted in Figs. 6(b)
and 6(c), but both stripes almost merge together when the
distance between the center lines becomes equal to 7 pixels

FIG. 6. The mingling of two separate stripes in the difference
image: (a) the clearance between two parallel stripes is 20 pixels;
(b) 15 pixels; (c) 10 pixels; (d) 7 pixels.

FIG. 7. The ratio δ/ε does not have a noticeable influence
to the shape of the developing stripe: (a) δ/ε = 0.1; (b) δ/ε =
0.2; (c) δ/ε = 0.5; (d) δ/ε = 1 (ε = 10−3 in all computational
experiments).

[Fig. 6(d)]. Finally, it can be noticed that the ratio δ/ε does
not have a noticeable influence to the shape of the developing
stripe in the difference image, though the clarity of the image,
of course, depends on this ratio (Fig. 7).

The functionality of the proposed technique is demonstrated
using a computational example illustrated in Fig. 8. The secret
image is shown in Fig. 8(a); its dot-skeleton representation in
Fig. 8(b) (the distance between dots in the direction of the x and
y axis is 7 pixels). The encrypted image is shown in Fig. 8(c);
the evolved pattern from the encrypted image (after 10 000
iterations) is shown in Fig. 8(d). The evolved pattern from
the random perturbation (without the embedded dot-skeleton
representation of the secret image) is shown in Fig. 8(e).
The difference between Fig. 8(d) and Fig. 8(e) is shown in
Fig. 8(f).

A naked eye cannot see any differences between Figs. 8(d)
and 8(e). But it is important to note that the actual difference
between Figs. 8(d) and 8(e) is a smooth image; the secret
information is not hidden at some isolated pixels. Steganalysis
procedures [34] would not be able to detect the fact that some
secret information is being transmitted by means of Fig. 8(d).

B. The propagation of the initial perturbation
through iterations

As mentioned previously, the main idea of the proposed
method exploits the fact that slight modifications of the initial
conditions result in slight modifications in the evolved pattern.
The subtraction of the unmodified pattern from the modified
one enables to recover the secret modification. The propagation
of modifications through iterations is an important factor
determining the effective range of m where the proposed
communication algorithm is applicable.

We use Eq. (8) to generate initial densities of predators
and preys, let the system evolve for m time steps, and save
the digital image of the evolved pattern. Next, we repeat the
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FIG. 8. The illustration of steganographic visual communication system based on self-organizing patterns: (a) the secret image; (b) the
dot-skeleton representation of the secret image; (c) the random initial distribution of preys with the embedded dot-skeleton representation of
the secret image; (d) time evolution of (c) after 10 000 iterations; (e) time evolution of the random initial distribution of preys without the
embedded dot-skeleton representation of the secret image; (f) the difference between panels (d) and (e) reveals the secret image.

computational experiment but use Eq. (9) to perturb initial
densities of preys (the mask matrix [M] is the same as in
Fig. 4) and let the system evolve for m time steps again (m is
the same as before). Now, the difference between two digital
images is assessed by computing the root-mean-square error
E of the difference:

E(m) = 1

2002

√√√√ 200∑
k=1

200∑
l=1

(Nkl|t=mτ − Mkl|t=mτ )2, (10)

where Nkl is the concentration of preys in the evolved pattern
at the k row and l column; Mkl is the concentration of preys in
the initially perturbed pattern at the k row and l column. We
repeat computational experiments for different m; the results
are presented in Fig. 9.

It is clear that E(0) is quite low: The initial density of
preys is perturbed only at several pixels. It is interesting to
observe that E becomes smaller when the system starts to
evolve. It can be explained by the fact that initial perturbations
diffuse among the nearest pixels surrounding the dot-skeleton
representation of the secret image at small m. But complex
pattern formation processes start to dominate as the number
of time steps increases. E of the difference between two
digital images reaches the initial level at around 4500 time
steps (at δ/ε = 0.3) and then continues increasing almost at

an exponential law. It can be noted that E(m) is measured
not in grayscale levels but in concentrations of preys at
appropriate nodes. In general, differences between two evolved
patterns are very small in average even after 10 000 time
steps. Nevertheless, majority of changes in the self-organizing
pattern are grouped around the dot-skeleton representation of
the secret image then. This fact enables visual interpretation

FIG. 9. E of the difference between patterns evolved from the
initial and the perturbed densities of preys at different m (note that E

is computed in actual concentrations of preys, not in grayscale levels
at corresponding pixels). The dotted line stands for δ/ε = 0.5; the
thick solid line – δ/ε = 0.3; the thin solid line – δ/ε = 0.1.
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FIG. 10. The evolution of the difference pattern at δ/ε = 0.3:
(a) m = 1000 iterations; (b) 5000 iterations; (c) 15 000 iterations;
(d) 20 000 iterations; (e) 25 000 iterations; (f) 40 000 iterations.

of the secret information in the difference image [Fig. 4(d)].
Further increase of the number of time steps enlarges the E but
differences get diffused throughout the image and it becomes
difficult to interpret the secret already at m = 25 000.

The evolution of the difference pattern is illustrated in
Fig. 10. Initially (until m is small) differences are visible only
around the dot-skeleton points [Fig. 10(a)]. But perturbations
quickly diffuse around the dot-skeleton representation of the
secret image [Figs. 10(b)–10(d)]. Complex pattern formation
processes deform the perturbed pattern so much at high m

(in the global domain) that visual interpretation of the secret
image becomes impossible [Figs. 10(e) and 10(f)]. Note that
all differences are measured in grayscale levels.

It is clear that the iteration number m becomes an important
system parameter due to complex pattern formation processes.
Another important question is about the sensitivity of the
decoding procedure of the proposed scheme to the iteration
number m. The recipient of the perturbed pattern must generate
the unperturbed pattern before the secret can be revealed by
subtracting these too patterns. It is important to assess the
robustness of the proposed scheme if the recipient is able to
generate the correct initial distribution of preys but uses wrong
number of time steps n �= m to evolve the unperturbed pattern.

In general, this is a nontrivial digital pattern recognition
problem [35]. The interpretation of the secret image becomes
a complex problem when iteration numbers used to generate
the perturbed and the unperturbed patterns are different. We
propose a straightforward method for the assessment of the
quality of the secret text in the difference image: every

FIG. 11. The standard deviation of grayscale levels at the back-
ground around the dot-skeleton representation of the secret image; n

stands for the number of time steps used to evolve the unperturbed
pattern. The dotted line stands for m = 5000; the thick solid line for
m = 10 000; the thin solid line for m = 15 000. Note that the standard
deviation is calculated in the difference image.

pixel of the dot-skeleton representation of the secret image
is surrounded by a circle whose radius is 25 pixels. This is a
much larger distance than the optimal distance ensuring the
development of a stripe between two dots in the difference
image (Fig. 5). All pixels outside these zones are considered
as the background. Now, we compute the standard deviation
of grayscale levels of all pixels in the background and plot its
variation in respect to n at fixed m (Fig. 11).

It can be seen that the standard deviation of grayscale
levels of pixels in the background vanishes to 0 when n = m

(Fig. 11), which ensures the best interpretation of the secret text
in the difference image. Sharp minimums in the surrounding
of m denote high sensitivity of the proposed scheme to the
selection of the correct number of time steps. It can be noted
that visual interpretation of the secret information becomes
impossible when the standard deviation in the background
reaches 15 grayscale levels. The unsmooth variation of
the standard deviation in Fig. 11 can be explained by the
pixelization procedure, which rounds actual concentrations of
preys to grayscale levels.

Now, let (N∗,P ∗) is a stationary of the system described
by Eq. (1). The Turing stability of this state is analyzed by
linearizing small perturbations N (t,x,y)|t=0 = N∗ + Ñ (x,y)
and P (t,x,y)|t=0 = P ∗ + P̃ (x,y) around the stationary state;
the resulting linear system for the determination of the
evolution of Ñ and P̃ is described by Eq. (5). The hiding
of the secret in the initial perturbation can be described as
N (t,x,y)|t=0 = N∗ + Ñ (x,y) + ˜̃N (x,y) and P (t,x,y)|t=0 =
P ∗ + P̃ (x,y) + ˜̃P (x,y), where ˜̃N (x,y) = ˜̃P (x,y) = 0 almost
everywhere except several points corresponding to the dot-
skeleton representation of the secret image. Let (xd,yd ) be a
point in the dot-skeleton representation; d = 1,2, . . . ,k; where
k is the number of points in the dot-skeleton representation.
Note that |˜̃N(xd,yd )| < |Ñ(xd,yd )|; |˜̃P (xd,yd )| < |P̃ (xd,yd )|;
d = 1,2, . . . ,k.

The evolution of ˜̃N and ˜̃P can be investigated using the
linearized system described by Eq. (5) where Ñ is replaced by˜̃N and P̃ is replaced by ˜̃P . This is possible due to the principle
of superposition, which holds for linear systems. Note that

056213-8



SECURE STEGANOGRAPHIC COMMUNICATION ALGORITHM . . . PHYSICAL REVIEW E 84, 056213 (2011)

FIG. 12. The evolution of a single-dot type perturbation can be

approximated by a linear model. The evolution of ˜̃N at (a) m =
1000 iterations; (b) 5000 iterations; (c) 10 000 iterations; (d) 15 000
iterations; (e) 20 000 iterations; (f) 25 000 iterations (δ/ε = 0.3).

˜̃N (t,x,y)|t=0 = ˜̃P (t,x,y)|t=0 = 0 almost everywhere except
the points (xd,yd ); d = 1,2, . . . ,k.

Proposition 1. Let (N∗,P ∗) be the Turing unstable sta-
tionary point for a Beddington-DeAngelis-type predator-prey
model with self- and cross-diffusion. Then the evolution
of the dot-skeleton representation of the secret [˜̃N (t,x,y);˜̃P (t,x,y)] through iterations cannot be described by a linear
model.

We will prove Proposition 1 by contradiction using com-
putational tools. Let us consider the situation when k = 1.
The evolution of ˜̃N is shown in Fig. 12. It can be seen
that linear diffusion processes dominate the evolution un-
til m = 20 000 where the clarity of the image is lost.
Nevertheless, a linear model can be considered as a per-
fect approximation of transient processes in the interval
0 � m � 20 000.

Now we will consider a dot-skeleton representation con-
sisting of 5 points grouped in a column. Let as assume
that the linear model approximates the evolution of ˜̃N and˜̃P in the interval 0 � m � 20 000. Then, according to the
principle of superposition, five propagating rings of diffusion
should be simply superposed at increasing m. Results of
the computational experiments are illustrated in Fig. 13. The
development of a stripe interconnecting the dot-skeleton points
can be clearly seen in already at m = 5000 (note that the region
surrounding the stripe is not altered much). This contradicts
to the assumption that a linear model governs the evolution of
the initial perturbation.

Complex pattern formation processes based on the Turing
instability govern the formation of stripes interconnecting
dot-skeleton points. On the other hand, the pattern of stripes
modulated on top of the pattern evolved from the perturbed
initial state can be detected by subtracting it from the pattern
evolved from the unperturbed initial state. This effect can be
considered as a simple linear superposition. Nevertheless, the
formation of stripes representing the secret information is gov-
erned by complex nonlinear processes, and the interpretation

FIG. 13. The evolution of a multidot-type perturbation cannot
be approximated by a linear model. The evolution of a stripe
interconnecting five dot-skeleton points is illustrated at (a) m =
1000 iterations; (b) 5000 iterations; (c) 10 000 iterations;
(d) 15 000 iterations; (e) 20 000 iterations; (f) 25 000 iterations
(δ/ε = 0.3).

of this secret pattern in the difference image is possible only
due to the fact that the initial perturbation ˜̃N and ˜̃P is equal to
zero almost everywhere.

C. Considerations about the type of the noise used to generate
the initial concentration of preys

So far we have exploited the logistic map to generate the set
of pseudorandom numbers for the perturbation of the initial
distribution of preys around the stationary state N∗. One of
the main reasons for the selection of the logistic map is the
simplicity of the map and the fact that the properties of this
map are well and thoroughly explored. But the most important
reason in favor of the logistic map is the ability to minimize the
length of the key. We do not transmit the initial unperturbed
distribution of preys to the receiver: We do transmit only the
initial condition x0 (the receiver generates the distribution
himself).

Nevertheless, it is important to investigate how other
types of noise could affect the encryption of information.
For example, dichotomous noise appears in a wide variety
of physical and mathematical models where the symmetric
dichotomous Markov process takes on the values ±1 [36].
The implementation of such a dichotomous process fits
well into the proposed scheme of communication. The only
modification is performed in the generation of the matrix [Ñ ]
[Eq. (8)]; every element of this matrix ñkl is now computed
using the relationship:

ñkl = ε

2
sign(xi − 0.5), (11)

where indexes k and l run consecutively in accordance to
the iteration number i. Note that it is still sufficient to
transmit the initial condition x0. We repeat computational
experiments with the dot-skeleton representation of the secret
image used in Fig. 4 and keep other parameters unchanged. The
perturbed symmetric dichotomous Markov process is shown
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FIG. 14. Different types of noise affect the encryption of infor-
mation: (a) and (b) the permuted initial distribution of preys and
the secret image, respectively, in case of dichotomous noise; (c) and
(d) normal noise; (e) and (f) colored noise.

in Fig. 14(a); δ/ε = 0.3. It can be noted that it is possible
to identify pixels of the dot-skeleton representation of the
secret image in Fig. 14(a) (electronically or by a naked eye)
due to the dichotomous distribution of pixels in the initial
unperturbed stochastic distribution of preys. Nevertheless, this
cannot be considered as a drawback of the system: The initial
perturbed distribution of preys is not transmitted to the receiver,
and it is impossible to trace the dot-skeleton representation
of the secret in the evolved pattern. The difference between
the patterns evolved from the perturbed and the unperturbed
distributions of preys reveals the secret [Fig. 14(b)]. The secret
image can be easily interpreted by a naked eye, but one
can note a rather coarse graining at the background. It can
be explained by the structure of the initial concentration of
preys.

Analogous experiments are repeated with the Gaussian
noise (the mean μ equal to 0 and the standard deviation σ equal
to ε/6. We select σ = ε/6 because 99.73% of all generated
points will fall into interval [−ε/2; ε/2] according to the 3σ

rule. The permuted initial distribution of preys (δ/ε = 0.3)
is shown in Fig. 14(c); the difference between the patterns
evolved from the perturbed and the unperturbed distributions
is shown in Fig. 14(d).

Finally, computational experiments are repeated with the
colored noise, which can be generated by passing the white
noise through a shaping filter [37]. We continue with the
Gaussian noise [the mean equal to 0 and the standard

equal to ε/6 and filter it by a low-pass filter by placing
a pole near 1 at the unit circle and a zero at the origin;
the syntax of the filtering operator in Matlab reads: y =
filter(1,[1−0.9],randn(200*200,1)]. The permuted initial dis-
tribution of preys (δ/ε = 0.3) is shown in Fig. 14(e); the
difference between the patterns evolved from the perturbed
and the unperturbed distributions is shown in Fig. 14(f).

Comparisons between Fig. 4(d) and Figs. 14(b), 14(d), and
14(f) allow us to conclude that the secret is best interpretable
when the initial distribution of preys is uniform in the interval
[−ε/2; ε/2]. Worst results are produced by the dichotomous
noise (it can be explained by the fact that initial perturbations
are maximal in the whole domain then). In any case the
receiver must be able to generate an identical copy of
the initial distribution of preys; thus the optimal selection is
the uniform noise generated by the logistic map.

V. CONCLUDING REMARKS

A new steganographic communication scheme based on
evolving patterns is proposed in this paper. So far, we have
used the perturbed pattern of preys to hide the skeleton of the
secret image. Such an encoding scheme would work equally
well if the pattern of predators would be used instead.

We have exploited the well-known Beddington-DeAngelis-
type predator-prey model with self and cross-diffusion for the
generation of evolving patterns. The ability to encrypt images
in a self-organizing pattern is based on the sensitivity to initial
conditions in the evolution of this pattern. In principle any
nonlinear physical model of evolving patterns in isotropic
systems, that have as equilibrium stripe-like patterns (the
reaction-diffusion model, the two-phase flow model, the model
of competing species, the disordered plane wave model, etc.)
could be used as the algorithm for the computation of evolving
Turing’s patterns. Thus the applicability of the proposed com-
munication scheme is not limited by a specific physical model
and is based on the sensitivity to initial conditions of Turing’s
patterns, which form by the combination of diffusion and other
processes such as reaction or convection. We admit that simpler
models than the Beddington-DeAngelis-type predator-prey
model with self- and cross-diffusion could be used for the
same purpose. The Swift-Hohenberg equation [38] could be an
example of a physical model where self-organizing patterns of
stripes develop in a model described by a single scalar function
defined on the plane (at appropriately tuned parameters of
the model). But a Beddington-DeAngelis-type predator-prey
model with self- and cross-diffusion has an advantage from
the point of view of the security of the encryption: The
dot-skeleton representation can be encrypted into one of the
two scalar functions defined on the plane. Moreover, some part
of the secret image can be encrypted in the initial distribution
of preys; another, in the initial distribution of predators. The
pattern of preys would become the inverse of the pattern of
predators in the long run, but interesting transient processes
could be successfully exploited for secret communication
(all these addition security measures are left for the future
research).

The storage capacity of secret information is relatively
small and is predetermined by the average width of stripes
in the evolving pattern. Nevertheless, the ability of the
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proposed scheme to hide information and to avoid sus-
picion outperforms traditional steganographic techniques if
the security of communication is considered as a primary
objective.
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