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Sudden change from chaos to oscillation death in the Bonhoeffer–van der Pol oscillator
under weak periodic perturbation
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In this paper, we analyze the sudden change from chaos to oscillation death generated by the Bonhoeffer–van
der Pol (BVP) oscillator under weak periodic perturbation. The parameter values of the BVP oscillator are chosen
such that a stable focus and a stable relaxation oscillation coexist if no perturbation is applied. In such a system,
complicated bifurcation structure is expected to emerge when weak periodic perturbation is applied because
the stable focus and the stable relaxation oscillation coexist in close proximity in the phase plane. We draw
a bifurcation diagram of the fundamental harmonic entrainment. The bifurcation structure is complex because
there coexist two bifurcation sets. One is the bifurcation set generated in the vicinity of the stable focus, and the
other is that generated in the vicinity of the stable relaxation oscillation. By analyzing the bifurcation diagram in
detail, we can explain the sudden change from chaos with complicated waveforms to oscillation death. We make
it clear that this phenomenon is caused by a saddle-node bifurcation.
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I. INTRODUCTION

The Bonhoeffer–van der Pol (BVP) oscillator is known as
a simplified Hodgkin-Huxley model that shows qualitatively
similar behavior with “squid giant axons,” and chaos generated
by the driven BVP oscillator has been studied intensively
[1–9]. The autonomous BVP oscillator exhibits an interesting
bifurcation structure compared with the van der Pol oscillator.
The BVP oscillator contains a resistor in series with the
inductor. It is pointed out by Rabinovitch et al. [10,11] that
the BVP oscillator possesses richer dynamics than the van der
Pol oscillator because a subcritical Andronov-Hopf bifurcation
(AHB) can occur in the BVP oscillator due to the presence of
the resistor, whereas only a supercritical AHB is possible in
the van der Pol oscillator. A stable focus and a stable relaxation
oscillation coexist in close proximity in the phase plane near
a subcritical AHB point.

How is the circuit dynamics influenced by weak periodic
perturbation in such a system, where a stable focus and a
stable relaxation oscillation coexist in close proximity when
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no perturbation is applied? Complicated bifurcation structure
can be expected to emerge in this dynamical system since
the solution can alternate between the stable focus and the
stable relaxation oscillation. So far, a system without a forcing
term [10], or only a periodic response in a system with a forcing
term of order 1 [11], has been studied.

To make the influence of weak periodic perturbation clear,
we conducted numerical studies for such a weakly driven BVP
oscillator [12]. As a result, we found complicated mixed-mode
oscillations (MMOs) and chaos in this oscillator. Note that
the noteworthy simplicity of the electric circuit nevertheless
generates such complex dynamics. However, MMOs and chaos
are just examples of possible complex phenomena generated in
this electric circuit model. The dynamical circuit, which was
proposed in Ref. [12], is considered to be a minimal model
that exhibits extremely complicated behavior, where complex
MMOs that consist of various MMO sequences and chaos with
“intermittency MMOs” [12] are observed.

In this paper, we further investigate the BVP oscillator under
weak periodic perturbation in detail. We study the bifurcation
structure near the fundamental harmonic synchronization
region. The MMOs, as Shimizu et al. have observed [12],
correspond to the periodic oscillations in the higher-harmonic

056209-11539-3755/2011/84(5)/056209(8) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.84.056209


MUNEHISA SEKIKAWA et al. PHYSICAL REVIEW E 84, 056209 (2011)

synchronization regions. In the fundamental harmonic syn-
chronization region, we discover a sudden change from
a chaotic oscillation to oscillation death [13,14]. Strictly
speaking, oscillation death here is not a stable equilibrium
but a very weak oscillation because a weak forcing term exists
in the oscillator. We call this phenomenon “oscillation death
in a nonautonomous oscillator” because chaotic oscillation
suddenly vanishes by this bifurcation and drastically arrives
at an extremely weak oscillation. We confirm numerically
that the stable relaxation oscillation vanishes with very weak
perturbation. Weak external periodic perturbation can both
delete the coexisting stable limit cycle and maintain the
coexisting stable focus point; it can also delete the coexisting
stable focus point and maintain the coexisting stable limit
cycle. This phenomenon can be considered as a control of the
coexisting stable state using weak periodic perturbation.

We draw a two-parameter bifurcation diagram especially in
order to make clear the mechanism of the sudden change from
chaos to oscillation death. The bifurcation diagram is complex
because there are two attractive regions, that is, one of the
stable relaxation oscillation and the other of the stable focus.
The former bifurcation structure is rather simple because the
synchronization region is a well-known Arnold tongue. On the
other hand, the latter is complicated and consists of saddle-
node bifurcation curves, period-doubling bifurcation curves,
and Neimark-Sacker bifurcation curves. When we superpose
the bifurcation set of the stable relaxation oscillation and that
of the stable focus, we can find the mechanism of the sudden
change from the chaotic oscillation to oscillation death in a
nonautonomous oscillator. This phenomenon is caused by the
saddle-node bifurcation of the latter bifurcation set.

II. PRELIMINARY STUDY OF THE BVP OSCILLATOR

In this section, we study the BVP oscillator when no
perturbation is applied. Figure 1 shows the circuit diagram of
the BVP oscillator. The electric circuit consists of one capacitor
C, one inductor L, one linear resistor R, one voltage source
E0, and only one nonlinear negative conductance G. The v-i
characteristics of the nonlinear conductance is assumed to be
expressed by the third-order polynomial function as follows:

g(v) = −g1v + g3v
3 (g1 > 0, g3 > 0). (1)

FIG. 1. Circuit diagram of the Bonhoeffer–van der Pol oscillator.

It should be noted that Rabinovitch et al. point out that
subcritical AHB can take place in the presence of the linear
resistor R in the BVP oscillator [10,11].

From Kirchhoff’s law, the governing equations of the
electric circuit are represented as follows:

C
dv

dt
= i − g(v),

(2)

L
di

dt
= −v − iR + E0,

where the capacitance C is assumed to be small. In this case,
the circuit dynamics is described as a slow-fast system. By
changing variables and constants as follows:

ε = C

g2
1L

, k1 = g1R, B0 =
√

g3

g1
E0,

(3)

t = g1Lτ,
d

dτ
= ·, x =

√
g3

g1
v, y =

√
g3

g3
1

i,

the normalized version of Eqs. (2) is derived as follows:

εẋ = y − (−x + x3),
(4)

ẏ = −x − k1y + B0.

ε is a small parameter that corresponds to C. Throughout this
study, we set ε = 0.1.

Figure 2 shows the one-parameter bifurcation diagram,
where the abscissa denotes the parameter B0 and the ordinate
denotes the state variable x. In this figure, we set k1 = 0.2. The
thin (red) solid line and dashed (blue) line denote a stable focus
and an unstable focus, respectively. The filled circles denote
the minimum and maximum values of x in a limit cycle. By
varying B0, an AHB takes place at B0 = Bc

0 � 0.494 56. The
AHB is clearly supercritical. A sudden change of the size in
the limit cycle is well known as the “canard explosion” in the
slow-fast systems. To summarize, (a) only one stable focus
exists for B0 > Bc

0 , and (b) an unstable focus and a stable limit
cycle coexist for B0 < Bc

0 . The attractor is only the limit cycle
in the region.

According to numerical study, it has been clarified that
the subcritical AHB can take place when k1 becomes large.
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FIG. 2. (Color online) One-parameter bifurcation diagram near a
supercritical AHB point (k1 = 0.2).
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FIG. 3. (Color online) One-parameter bifurcation diagram near a
subcritical AHB point (k1 = 0.9).

Figure 3 shows the one-parameter bifurcation diagram for
k1 = 0.9, where the open circles denote the maximum and
minimum values of x in an unstable limit cycle and the filled
circles represent those in a stable limit cycle. To summarize
in this case, (a′) only one stable focus exists for B0 >∼ 0.211
(≡B

f

0 ); (b′) a stable focus, a stable relaxation oscillation, and
an unstable limit cycle coexist for Bc

0 < B0 < B
f

0 (note that
two attractors coexist in this region); and (c′) an unstable focus
and a stable relaxation oscillation coexist for B0 < Bc

0 . The
attractor is the stable relaxation oscillation only.

We are interested in the case of (b′). Figure 4 shows the
attractors and the unstable limit cycle in the phase plane
when the parameters are set at k1 = 0.9 and B0 = 0.21. A
stable focus is plotted with a filled circle, a stable relaxation
oscillation is drawn with a solid (red) line, and an unstable
limit cycle is illustrated with a dashed (blue) line. Also the
nullclines are drawn by solid (black) lines in Fig. 4. From
the figure, we can find that the stable focus and the stable
relaxation oscillation coexist in close proximity.
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FIG. 4. (Color online) Coexisting stable focus (filled circle),
unstable limit cycle (dashed line), and stable relaxation oscillation
(solid line) (k1 = 0.9,B0 = 0.21).

FIG. 5. The BVP oscillator under weak periodic perturbation.

III. PHENOMENA OBSERVED IN THE BVP OSCILLATOR
UNDER WEAK PERIODIC PERTURBATION

In the previous section, we pointed out that a bistability
exists near the subcritical AHB point, where a stable focus
and a stable relaxation oscillation coexist in close proximity
in the phase plane.

How does the influence of weak periodic perturbation effect
the dynamics? In such a case, the solution may alternate
between the stable focus and the stable relaxation oscillation
due to perturbation, and it is expected that complicated
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FIG. 6. (Color online) One-parameter bifurcation diagram of TB1

and the corresponding largest Lyapunov exponent.
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behavior is generated. The dynamical model is presented in
Fig. 5. Shimizu et al. analyzed this dynamics and found various
types of MMOs, including extremely complicated MMOs
previously unreported [12].

We further analyze this model near the fundamental
harmonic synchronization region for the stable relaxation
oscillation. The governing equations of the electric circuit are
represented as follows:

εẋ = y − (−x + x3),
(5)

ẏ = −x − k1y + B0 + B1 sin ωτ,

where

B1 =
√

g3

g1
E1, ω = Lg1ω1, (6)

and B1 is assumed to be small.
We set k1 = 0.9 and B0 = 0.21 in the following analysis.

In this case, a stable focus and a stable relaxation oscillation
coexist when B1 = 0, as shown in Fig. 4. We integrated the
equations numerically using the fourth-order Runge-Kutta
method with a step size of 2π/ω/1024 throughout this study.

Let us set ω = 1.35 and investigate the dynamics by varying
the parameter B1. Since the perturbation is assumed to be
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FIG. 7. (Color online) Quasiperiodic attractor (B1 = 0.0008).
(a) The attractor in the phase plane. (b) Time series.

periodic, the Poincaré mapping TB1 of Eqs. (5) can be defined
as follows:

TB1 : R2 → R2

(7)
(x,y)� �→ TB1 (x,y)� ≡ ϕ(2π/ω; (x,y)�, B1),

where the superscript � denotes the transpose of the vector,
ϕ(t) is the solution, and B1 is the bifurcation parameter.

Figure 6 shows a one-parameter bifurcation diagram of the
Poincaré mapping TB1 and the corresponding largest Lyapunov
exponent. The abscissa denotes the parameter B1, and the
ordinates of Figs. 6(a) and 6(b) denote x of the Poincaré
mapping and the corresponding largest Lyapunov exponent,
respectively. The exponent is calculated by an algorithm
produced by Shimada and Nagashima [15].

According to the numerical results, a quasiperiodic attractor
is generated as a result of extremely small B1. This situation
is reasonable from the results of other periodically driven
oscillators [16]. An example of the attractor at B1 = 0.0008
is presented in Fig. 7. We check the quasiperiodicity of this
attractor by calculating the largest Lyapunov exponent. Also,
we find that chaos is generated when B1 is still very small.
The chaotic attractor with B1 = 0.002 is presented in Fig. 8.
Sekikawa et al. pointed out that chaos appears even if the
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FIG. 8. (Color online) Chaotic attractor for small B1 (B1 =
0.002). (a) The attractor in the phase plane. (b) Time series.
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FIG. 9. (Color online) Oscillation death (B1 = 0.01). (a) The
attractor in the phase plane. (b) Time series.

amplitude of the forcing term is very small in slow-fast
systems [17,18].

In Fig. 6, periodic attractors exist in wide ranges of the
parameter value of B1. One is generated in the region around
“a” in the figure, and another is generated in the region around
“e.” Sandwiched between these two periodic regions, chaotic
oscillations are observed, most notably near “c” in Fig. 6.

A remarkable difference can be found, however, for these
two periodic regions. Figure 9(a) shows the solution in the
phase plane observed at “a” in Fig. 6. The solution stays
near a stable focus. Strictly speaking, since the system is
weakly driven, an extremely small oscillation exists. We
call this phenomenon “oscillation death in a nonautonomous
oscillator” because chaotic oscillation suddenly vanishes due
to a bifurcation and drastically arrives at an extremely weak
oscillation. The time series is shown in Fig. 9(b). We set the
initial condition at various points, especially at outer points
of the stable relaxation oscillation. These numerical results
show that the stable relaxation oscillation disappears due to
weak periodic perturbation. In contrast to oscillation death,
a stable relaxation oscillation is observed at the parameter
value marked with “e” in Fig. 6 as shown in Fig. 10, where
the attractor near the stable focus disappears. Also, a chaotic
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FIG. 10. (Color online) Stable relaxation oscillation (B1 = 0.07).
(a) The attractor in the phase plane. (b) Time series.

oscillation observed at “c” in Fig. 6 is presented in Fig. 11. The
time series of this chaotic attractor is very complex, as shown
in Fig. 11(b). The solution crosses over the unstable periodic
orbit frequently and alternates between the stable focus and
the stable relaxation oscillation.

A remarkable phenomenon is observed at “b” in Fig. 6. At
this point, a sudden change from chaos to oscillation death
is observed. It is noteworthy that such a simple second-order
oscillator under weak periodic perturbation exhibits extremely
complicated behavior.

IV. BIFURCATION ANALYSIS FOR THE FUNDAMENTAL
HARMONIC ENTRAINMENT

To analyze the mechanism of the observed phenomena in
detail, we draw a two-parameter bifurcation diagram near the
fundamental harmonic entrainment for the stable relaxation
oscillation that exists when no perturbation is applied. The
bifurcation structure is complex because two bifurcation sets
and a different attractor coexist when perturbation is weak. One
is a bifurcation set that originates from the stable relaxation
oscillation, and the other is one that originates from the stable
focus.
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FIG. 11. (Color online) Chaotic oscillation (B1 = 0.0415).
(a) The attractor in the phase plane. (b) Time series.

Figure 12 shows these bifurcation sets. These bifurcation
sets are calculated by the shooting algorithm proposed by
Kawakami [19]. The bifurcation structure of Fig. 12(a) is
rather simple because it consists of a synchronization region
that is well known as the Arnold tongue. From simulation,
the angular frequency of the stable relaxation oscillation when
B1 = 0 is estimated to be ω � 1.4571 (≡ ω0). In this diagram,
the fundamental harmonic synchronization region, which is
surrounded by two saddle-node bifurcation curves denoted by
GL and a period-doubling bifurcation curve IL, exist. The
bifurcation structure of Fig. 12(b) is more complex. It consists
of a saddle-node bifurcation curve GS , a period-doubling
bifurcation curve IS , and Neimark-Sacker bifurcation curves
NSS .

By superimposing Figs. 12(a) and 12(b), the mechanism of
sudden change from chaos to oscillation death becomes clear.
Figure 13 shows the superimposed bifurcation diagram. The
regions where the largest Lyapunov exponent is positive are
shaded in the figure. Note that the initial point is chosen as
(x0,y0) = (0.555,2), which is located at the outer side of the
stable relaxation oscillation that exists when no perturbation
is applied.
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FIG. 12. (Color online) Two-parameter bifurcation diagrams.
(a) Bifurcation sets related to the stable relaxation oscillation.
(b) Bifurcation sets related to the stable focus.

The phenomena of Fig. 6 are observed along the long and
short dashed line in Fig. 13. Moving down this line from above,
a stable relaxation oscillation (Fig. 10) is observed at a point
“e,” and the period-doubling bifurcation accumulation begins
at the point “d.” Then, chaos in Fig. 11 is observed at “c.” A
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FIG. 13. (Color online) The superimposed bifurcation diagram.
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FIG. 14. (Color online) Chaotic oscillation (ω = 1.424, B1 =
0.018). (a) The attractor in the phase plane. (b) Time series.

sudden change from chaos to oscillation death takes place at
the point “b.” Therefore, the oscillation death is caused by the
saddle-node bifurcation GS .

On the other hand, an interesting chaotic oscillation is
observed at a point “f.” The attractor in the phase plane and the
time series are shown in Figs. 14(c) and 14(b), respectively.
This phenomenon is caused after the accumulation of period-
doubling bifurcations of the stable relaxation oscillation.
Therefore, this attractor should be chaotic. From the time
series and the behavior in the phase plane, at first glance,
this phenomenon seems to be a stable relaxation oscillation or
a quasiperiodic one. It is confirmed, however, that this attractor
is chaotic due to the largest Lyapunov exponent.

V. CONCLUSION

In this paper, we analyzed a simple electric circuit that
exhibits extremely complicated behavior. A sudden change
from chaos to oscillation death in a nonautonomous oscillator
was observed. We drew a two-parameter bifurcation diagram
near the fundamental harmonic synchronization region and
clarified the mechanism of this complicated phenomenon.
Since the dynamical circuit we have proposed was remarkably

simple, the phenomena we have observed in this dynamical
system could be widely observed in other slow-fast dynamical
systems.
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APPENDIX A: BRIEF EXPLANATION ON CALCULATION
OF THE BIFURCATION PARAMETER VALUES

In this Appendix, Kawakami’s shooting algorithm to obtain
bifurcation boundaries [19] is briefly explained. Let Eqs. (5)
be expressed by

ẋ = f (x,τ ), (A1)

where x = (x,y)�. The Poincaré mapping is expressed by Tλ,
where λ is a parameter. Let u = (u,v)� be an m-periodic point
of Tλ. Then u satisfies

Tm
λ (u) − u = 0, (A2)

where Tm
λ is the m-times composite map of Tλ. The character-

istic equation of u is given by the following equation:∣∣∣∣ ∂

∂u
Tm

λ (u) − μI

∣∣∣∣ = 0, (A3)

where I is the unit matrix and μ is an eigenvalue. The bifurca-
tion parameter of a saddle-node bifurcation, a period-doubling
bifurcation, and a Neimark Sacker bifurcation is obtained
by setting the eigenvalue parameter μ at 1, −1, and ejθ ,
respectively, and solving Eqs. (A2) and (A3) simultaneously
for u and λ. In actual calculation, these simultaneous equations
can be solved by Newton Raphson method.

The derivatives of Poincaré mapping Tλ with respect to the
periodic point u and the parameter λ can be obtained partly
from the following variational equations with respect to the
initial values of u and λ:

∂

∂u
Tm

λ (u) = ∂

∂u
ϕ (2mπ/ω,u,λ),

∂

∂λ
Tm

λ (u) = ∂

∂λ
ϕ (2mπ/ω,u,λ),

(A4)
∂2

∂u2
Tm

λ (u) = ∂2

∂u2
ϕ (2mπ/ω,u,λ),

∂2

∂u∂λ
Tm

λ (u) = ∂2

∂u∂λ
ϕ (2mπ/ω,u,λ) ,

where ϕ(0,u,λ) = u is assumed. The right-hand side of
Eqs. (A4) can be obtained by integrating the equations as
follows:

d

dτ

∂ϕ

∂u
= ∂ f

∂x
∂ϕ

∂u
, where

∂ϕ

∂u

∣∣∣∣
τ=0

= I,

d

dτ

∂ϕ

∂λ
= ∂ f

∂x
∂ϕ

∂λ
+ ∂ f

∂λ
, where

∂ϕ

∂λ

∣∣∣∣
τ=0

= 0,
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d

dτ

∂2ϕ

∂u2
= ∂ f

∂x
∂2ϕ

∂u2
+ ∂

∂u

(
∂ f
∂x

)
∂ϕ

∂u
, (A5)

d

dτ

∂2ϕ

∂u∂λ
= ∂ f

∂x
∂2ϕ

∂u∂λ
+ ∂

∂u

(
∂ f
∂x

)
∂ϕ

∂λ
+ ∂

∂u

(
∂ f
∂λ

)
,

where

∂2ϕ

∂u2

∣∣∣∣τ=0=0,

∂2ϕ

∂u∂λ

∣∣∣∣τ=0=0,

∂

∂u

(
∂ f
∂x

)
=

(
∂2 f
∂x2

∂2 f
∂x∂y

)
∂ϕ

∂u
, (A6)

∂

∂u

(
∂ f
∂y

)
=

(
∂2 f
∂x∂y

∂2 f
∂y2

)
∂ϕ

∂u
,

∂

∂u

(
∂ f
∂λ

)
=

(
∂2 f
∂x∂λ

∂2 f
∂y∂λ

)
∂ϕ

∂u
.

These variational equations can be obtained by differentiating
Eq. (A7) with u or λ as many times as needed:

d

dτ
ϕ(τ,u,λ) = f (ϕ(τ,u,λ),τ ), where ϕ(0,u,λ) = u.

(A7)

APPENDIX B: STRUCTURE OF THE
FIXED-POINT MANIFOLD

In this appendix, we show how the fixed-point manifold
[20] is formed in the two-parameter bifurcation diagram

ω
 1.3  1.4  1.5  1.6  1.7  1.8  1.9  2

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 D0

 D2

 D1

 I1

 D0  D0  D0  D0  D0  D0  D0

 D2  D2  D2  D2  D2  D2  D2

 I1  I1  I1  I1
 I1

 D2

 D1 D2

 D0
 I1

 B
1

FIG. 15. (Color online) Structure of the fixed-point manifold of
Fig. 12(b).

of Fig. 12(b). The fixed-point manifold is a set (x,y,B1)
that satisfies TB1 (x,y)� − (x,y)� = (0,0)�. Referring to the
notation of Ref. [21], hyperbolic fixed points are expressed
by kD(k = 0,1,2) and kI (k = 1), where D and I denote the
type of fixed points and the subscript integer indicates the
dimension of unstable subspace.

Figure 15 shows the structure of the fixed-point manifold
of Fig. 12(b). From the calculated two-parameter bifurcation
diagram and its fixed-point manifold, we can theoretically
explain the disappearance of “small-amplitude oscillation” for
larger parameter values B1. It is clear from the structure of the
fixed-point manifold that a small-amplitude oscillation (0D),
namely oscillation death, is stable for a small parameter value
B1, but this state does not exist for a large parameter value B1.
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