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Pattern formation of coupled spiral waves in bilayer systems:
Rich dynamics and high-frequency dominance
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The interaction of two spiral waves with independent frequencies in a bilayer oscillatory medium (one spiral in
each layer) and with a symmetric coupling e is studied. If the spirals have different frequencies, the faster spiral is
unaffected by the slower one, and the slower can show a variety of behaviors, which depend on e and include, in
order of increasing e, phase drifting, amplitude modulation, amplitude domination, and phase synchronization.
This high-frequency dominance, the asymmetric driving-response effect under the condition of a symmetric
coupling, is generic and independent of whether the coupled spiral waves are outwardly rotating or inwardly
rotating spirals. If the spirals have identical frequencies, they may even show complete synchronization, parallel
drift, or circular drift, depending on the relative rotation direction of the two spirals and their initial separation
distance. Comparisons with coupled spirals in monolayer media, previous works on coupled spirals in bilayer
systems, and coupled phase oscillators are made.
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I. INTRODUCTION

Spiral waves in both excitable and oscillatory media have
been widely observed in diverse systems [1–5]. The interaction
of several spiral waves in one spatial domain is one of the
central problems in the study of spiral wave dynamics [6–17].
It has been well accepted that a universal frequency-dependent
dominance exists in the interaction [14–16], namely, the high-
frequency spiral can invade and suppress the domain of the
low-frequency spiral, and finally drive it out of the observable
region. This behavior is for the usual outward-rotating spiral.
Therefore, more specifically, it is high-frequency dominance.
For two inward-rotating spiral waves (i.e., antispirals), the
invading direction is just opposite, and the behavior becomes
low-frequency dominance [14,17]. More complicated patterns
are possible in some other situations, such as in strongly
inhomogeneous media.

The interaction of spiral waves in multilayer systems is
also of great significance, since most of our real systems are
three dimensional (e.g., chemical reaction-diffusion systems
and cardiac tissue); they can be treated as linearly coupled
layers if they are sufficiently thin but meanwhile the third
dimension cannot be completely ignored. Clearly the bilayer
system represents an intermediate state between monolayer
and three-dimensional systems.

The experimental study of the interaction of spiral waves in
two coupled layers was pioneered by Winston et al. [18]. They
investigated chemical waves propagating on the surface of a
ferroin-loaded Nafion membrane suspended in a continuous-
flow stirred-tank reactor pumped with a Belousov-Zhabotinsky
reaction mixture, and found that the coupling can always
lead to complete spatiotemporal entrainment of two spirals,
showing an amplitude-modulated pattern in the transient.
The phenomenon of the high-frequency spiral dominating
over the low-frequency spiral throughout the evolution was
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there reported for the first time, when two spiral waves with
slightly different rotation periods were coupled. Since then,
it has aroused great interest continuously [19–27]. The same
group studied two domains of excitable media with distributed
identical Belousov-Zhabotinsky systems that are locally cou-
pled to each other by means of a video camera–video
projector setup [19], and discovered that different rotations
(i.e., chiralities) or initial separation distances of the two spirals
may also essentially determine the final spiral patterns. [Note
that the chirality, which denotes the handedness in the spatial
structure of spiral waves, is fundamentally different from
the usual spiral (or antispiral) for outward-rotating spiral (or
inward-rotating spiral) property, which indicates the direction
of propagation in time.] In a model study of two spiral
waves in linearly coupled reaction-diffusion systems, the high-
frequency dominance effect was supported by detailed numer-
ical simulations, and two fundamental types of spiral pattern
including phase-drifting and phase-synchronized spirals was
documented [23]. Recently we studied the interaction of spirals
in a bilayer system with negative-feedback couplings, which
can be different, and found that under the condition of strongly
asymmetric coupling, an amplitude-dominated spiral exists,
featuring the appearance of a spiral pattern in the amplitude
and absence of a singularity tip point [26]. A model of three
coupled layers has also been studied recently [28]. Based
on these separate findings, a unified physical picture remains
obscure and some interesting questions naturally arise: What
is the relation between all these reported patterns, such
as phase-synchronized [18,23,26], amplitude-modulated [18],
phase-drifting [23], and amplitude-dominated [26] patterns?
Is the high-frequency dominance generic? Will it change if
two outwardly rotating spirals are replaced by two inwardly
rotating spirals? What will happen for two identical spirals
in bilayer oscillatory media? What is the effect of different
chiralities?

In this work, with the above-mentioned motivations we
will study the interaction of two spiral waves in a bilayer
system described by a model of two linearly coupled complex
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Ginzburg-Landau equations (CGLEs), and we are concerned
with possible generic behaviors in such an interaction. This
choice is based on two facts: (1) the CGLE is the normal form
of a spatiotemporal system at the onset of a Hopf bifurcation,
and it has become a standard model for pattern research in
oscillatory media [4,5], and (2) we can easily obtain the usual
outward- or inward-rotating spiral (antispiral) for different
system parameters in the CGLE model, while it is generally
believed that antispirals cannot be observed in excitable media.
We find that the coupled dynamical behaviors are indeed very
rich, and the high-frequency dominance does reappear but in
a different manner.

II. MODEL

We consider the following model of linearly coupled
CGLEs [29–35]:

∂tA1,2 = μ1,2A1,2 − (1 + iα)|A1,2|2A1,2

+ (1 + iβ)∇2A1,2 + e(A2,1 − A1,2), (1)

where the systems 1 and 2 are denoted by the subscripts 1
and 2, respectively, and ∇2 = ∂2

∂x2 + ∂2

∂y2 . A1,2 are complex
variables [A = Re(A)+ Im(A)i], α and β are the system
parameters, μ1,2 are scale parameters, and e represents the
negative-feedback coupling strength between the two layers.
In the numerical simulations, we used the forward Euler
method for the time integration with the time step �t = 0.005,
and a five-point spatial difference method for the Laplacian
for each layer, having 256 × 256 space units with the space
step �x = �y = 0.5. Nonflux boundary conditions were used
throughout this work. The different scale parameters μ1 and
μ2 were chosen for the two coupled layers to represent the
system’s linear inhomogeneity. The benefit of this setting
is that the initial rotation frequencies (or wavelengths) of
two spiral waves can be easily connected by a scale: ω10 =
μ1ω0, ω20 = μ2ω0, and ω10 = μ1

μ2
ω20, where ω0, ω10, and ω20

denote the spiral wave frequencies for μ0 = 1, μ1, and μ2,
respectively [4,5,14]. Without losing generality, we always
choose a fixed μ2 (μ2 = 3.0) with the value of μ1 finely
tuned. It should be noted that the CGLE has an extremely
rich structure and with it very complicated spatiotemporal
dynamical behaviors are possible. Here we study only the
coupled dynamics of two spiral waves, which have been well
prepared before the coupling.

III. OBSERVATIONS

We start from the interaction of two outwardly rotating
spiral waves. As an example, a parameter set α = −0.4
and β = −1.5 is selected [15,36]. Thus ω0 ≈ 0.421 and
ω20 = μ2ω0 ≈ 1.263. Two spirals with the same chirality and
sufficiently far apart are first considered. The phase diagrams
in the (e,μ1) parameter space for systems 1 and 2 are shown
in Figs. 1(a) and 1(b), respectively. In the figures, the numbers
from 0 to 4 are used to represent five major different types
of pattern: minimal modification, phase-drifting, amplitude-
modulated, amplitude-dominated, and phase-synchronized
patterns, respectively. All reported pattern forms can be found
here. The phase-synchronization region (type 4) has been well

FIG. 1. (a), (b) Phase diagrams of systems 1 and 2, respectively,
in the interaction of a pair of spirals in a bilayer oscillatory medium
(1). The number 0 represents that the faster spiral is only slightly
modified, the numbers 1, 2, and 3 represent phase-drifting, amplitude-
modulated, and amplitude-dominated patterns of the slower spiral,
and the number 4 indicates phase synchronization between two
spiral waves. (c), (d) Detailed phase diagrams of systems 1 and 2
around μ1 = μ2 = 3.0, showing two additional subtypes of patterns:
type 1′ for the double-phase-drifting pattern and type 4′ for the
phase-synchronized-and-multispiral pattern. The critical point at
μ1 = μ2 = 3.0 and ec ≈ 0.04 has been emphasized by a black point.
α = −0.4 and β = −1.5 within the outward-rotating spiral parameter
region.

separated from all other regions, and the parameter boundaries
have been emphasized by several heavy solid lines. The tongue
structure is clear, and it gets wider with the increase of e,
reminiscent of the Arnold tongue, which has been broadly
observed in coupled (or forced) oscillators with frequency
mismatch. Out of the whole phase-synchronization region for
smaller e, surprisingly we find that the fast spiral pattern
is only slightly modified, denoted by the number 0, and
in contrast the slow spiral has to be enslaved for different
system parameters, which are denoted by either type 1, 2,
or 3. This is correct for the parameters μ1 > μ2 = 3.0 and
μ1 < μ2 = 3.0, indicating the establishment of an asymmetric
driving-response relationship between the two symmetrically
coupled spiral waves in the whole parameter space.

Figure 2 shows the detailed patterns for different system
parameters. For the first five columns, from left to right, e =
0.0, 0.08, 0.3, 0.5, and 1.5, which correspond to the initial
patterns and patterns of types 1, 2, 3, and 4 for system 2,
respectively; μ1 = 14.0. For the rows, from top to bottom, the
patterns for Re(A1), Re(A2), |A1|, and |A2| are illustrated. In
addition, the fast Fourier transform (FFT) spectra for systems
1 and 2 of an arbitrarily chosen spatial point, which is far from
the spiral tip and boundaries in the pattern of Re(A), are given
in the last two rows. Clearly the frequency of the highest peak
(ω1c or ω2c) is identical to the rotation frequency of the spiral
wave, and its height (F1c or F2c) represents the periodicity
strength of the spiral wave.

For the two spiral waves in each layer as initial conditions,
as shown in the first column (e = 0.0), their tips have been
chosen to be sufficiently distant. Their different wavelengths

056204-2



PATTERN FORMATION OF COUPLED SPIRAL WAVES IN . . . PHYSICAL REVIEW E 84, 056204 (2011)

0 5 10
0

1

2

3

0 5 10
0

1

2

3
0 5 10

0

1

2

3

0 5 10
0

1

2

3
0 5 10

0

1

2

3

0 5 10
0

1

2

3
0 5 10

0

1

2

3

0 5 10
0

1

2

3
0 5 10

0

1

2

3

0 5 10
0

1

2

3
0 5 10

0

1

2

3

0 5 10
0

1

2

3
0 5 10

0

1

2

3

0 5 10
0

1

2

3

Re(A
1
)

Re(A
2
)

|A
1
|

|A
2
|

FFT
1

FFT
2

initial conditions type 1 2 3 4 1 4 
e=0.0 e=0.08 e=0.3 e=0.5 e=1.5 μ

1
=3.1,e=0.005 μ

1
=3.1,e=0.4

FIG. 2. (Color online) Pattern formation development and frequency spectrum analysis for the interaction of two outwardly rotating spirals
with independent rotation frequencies. From left to right, initial conditions and patterns of types 1 (phase drifting), 2 (amplitude modulated),
3 (amplitude dominated), 4 (phase synchronized), 1′ (double phase drifting), and 4′ (phase synchronized and multispiral) are listed. α = −0.4
and β = −1.5. For the first five columns, μ1 = 14.0.

(frequencies) can be easily recognized by the comparison
between Re(A1) and Re(A2) (FFT1 and FFT2). As e increases,
e.g., e = 0.08 in the second column, the slow spiral wave
2 begins drifting, and after a short transient, it becomes
slaved by the fast spiral wave 1 and periodically rotates
around a very small circle. This phenomenon is obvious in
the pattern of Re(A2) with the tip trajectory superimposed.
As e increases further, e.g., e = 0.3 in the third column, the
slow spiral 2 not only periodically drifts in its phase, but also
is slightly modulated by the amplitude of the fast spiral 1.
This is clear in the patterns of Re(A2) and |A2|, where its
tip (black point) remains. In the fourth column (e = 0.5),
an amplitude-dominated pattern on layer 2 appears, where
it seems that the amplitude of the slow spiral 2 has been totally
imprinted and anchored by that of spiral 1, and meanwhile its
own tip is lost as shown in the pattern of |A2|. This type of
pattern has been observed in two identical spiral waves in a
bilayer system but with an asymmetric coupling [26]. Here

we find that the same type of pattern actually can broadly
occur in two coupled spiral waves with different independent
frequencies and even under a symmetric coupling. In contrast
to the amplitude-modulated spiral wave for type 2, clearly this
is a stronger amplitude effect. Comparing the first four patterns
of Re(A1) for system 1 in the top row, we are surprised that we
cannot find any distinction between them. However, comparing
the first four plots of FFT1 in the fifth row, we do find some
slight changes in both the peak positions and their heights.
Finally, when e is sufficiently large, shown in the fifth column
for e = 1.5, the two spiral waves become phase synchronized
with an identical wavelength and rotation frequency. Their
frequency peak heights can still be different. The tip of spiral
2 is recreated, as shown in the center of the pattern of |A2|.
These patterns indicate that the faster spiral 1 is dominant
in the interaction and the slower spiral 2 is only slaved, and
interestingly this dominance appears for all different types of
pattern. Thus it is an extension of the dominance of faster

056204-3



HAICHUN NIE, JIHUA GAO, AND MENG ZHAN PHYSICAL REVIEW E 84, 056204 (2011)

spirals in monolayer media and also of the dominance for only
certain types of pattern in previous observations [18,23,26].

So far all different types of pattern formation due to
interaction have been well classified and illustrated. A clear
picture based on these phenomenological observations can be
well established: the faster spiral always plays a dominant
role in the interaction and shows a minimal modification,
whereas the slower one has to gradually change with a change
in coupling strength e—in order of increasing e, it shows
phase-drifting (for a pure phase effect), amplitude-modulated
(for a weak amplitude effect), amplitude-dominated (for a
strong amplitude effect), and phase-synchronized (for a united
phase-and-amplitude effect) patterns. In Figs. 1(a) and 1(b),
we also find that some types of pattern may not exist due to
different system parameters.

To quantitatively characterize the transitions from one type
to another, we calculate the frequency peak position ωc and
its height Fc in FFT for both systems. The results for ω1c

(open circles) and ω2c (open and filled triangles) and F1c (open
circles) and F2c (open and filled triangles) as functions of e

are shown in Figs. 3(a) and 3(b), respectively. α = −0.4, β =
−1.5, and μ1 = 14.0, which are the same as the parameters
used in the first five columns in Fig. 2. Three vertical dashed
lines are added to indicate the threshold couplings for the
transitions. In addition, the tip number n vs e is plotted with a
solid line to denote the vanishing of the tip (n = 0) within the
amplitude-dominated spiral region for type 3. Based on these
calculations, all four distinct types of behavior in layer 2 can
be easily divided. In Fig. 3(a), both ω1c and ω2c slightly change
with e, and a jump from two values (two frequency peaks) to
a single value (one frequency peak) of ω2c is clear just prior to

FIG. 3. (a), (b) Plots of the eventual rotation frequencies of spiral
waves ω1c (open circles) and ω2c (open and filled triangles), and
the peak heights in FFT F1c (open circles) and F2c (open and filled
triangles) vs e. μ1 = 14.0 and μ2 = 3.0. In (a), a big jump from two
values to a single value of ω2c prior to the phase synchronization
(type 4) is clear. In (b), the spiral tip number n for system 2 is added
with a solid line. (c) ω1c (solid line) and ω2c (dotted line) vs μ1 for
different e’s. For system 1, from top to bottom, e = 0.2, 0.8, 1.2, 1.6,
10, 20, 40, and 80; for system 2, from left to right, only the first two
ω2c’s for e = 0.2 and 0.8 are discernible.

the phase synchronization (type 4) region. The latter indicates
a clear directionality effect from the fast spiral 1 to the slow
spiral 2. We also calculate ω1c and ω2c for different μ’s and e’s;
the results are shown in Fig. 3(c). The dashed lines denoted
by ω10 and ω20 are for the initial frequencies of systems 1
and 2 without coupling, respectively, and the middle dashed
line is for their average (ω10 + ω20)/2. For system 1, from top
to bottom, the solid lines are for e = 0.2, 0.8, 1.2, 1.6, 10,
20, 40, and 80, whereas for system 2, from left to right, only
the first two dotted lines for e = 0.2 and 0.8 are discernible.
There is a jump from two values to a single value of ω2c before
phase synchronization appears again. From this figure, we
also know that the final synchronized frequency will saturate
to (ω10 + ω20)/2 with increase of e.

In the interaction of two spiral waves in monolayer systems,
it has been found that a slight frequency mismatch will produce
an immediate invasion from the fast (slow) spiral to the slow
(fast) one, if they are outwardly (inwardly) rotating, and coex-
istence occurs only under the condition that their frequencies
are equal to each other or the difference is extremely large
[14–17]. Hence there the frequency-dependent dominance is
absolute. For the current situation, we find the behaviors can
be more varied. In Figs. 1(c) and 1(d), we give more detailed
phase diagrams around μ1 ≈ μ2 = 3.0 for systems 1 and 2,
respectively. Two additional subtypes of pattern (types 1′ and
4′) are found. Type 1′ denotes the double-phase-drifting pattern
and type 4′ denotes the phase-synchronized-and-multispiral
pattern. Their patterns and frequency spectra are listed in the
last two columns of Fig. 2 for μ1 = 3.1 and e = 0.005 and
μ1 = 3.1 and e = 0.4, as two examples. Basically types 1′
and 4′ are special cases for μ1 ≈ μ2 only, and type 1′ (4′)
belongs to type 1 (4). Since here the frequency discrepancy
is so small and the dominant effect of the fast spiral over the
slow can only be weak, it is easy to understand the occurrence
of these two subtypes of pattern as a slight deviation from
the pure directionality effect. In the sixth column of Fig. 2
for type 1′ (μ1 = 3.1, μ2 = 3.0, and μ1 � μ2), we do find
a weaker dominant effect: spiral 1 (2) drifts around a small
(large) circle.

FIG. 4. As Fig. 1, but for two coupled inward-rotating spirals;
α = −1.5, β = −0.4, and μ2 = 3.0. Similar dynamical behaviors
have been found and the dominance direction from the fast to the
slow spiral is the same.
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Since the frequency-dependent dominance in monolayer
systems is determined by the medium property: for two cou-
pled antispirals, the invading direction will become opposite
and the slow spiral will be dominant in the end [14,17]; here
one may naturally ask what will happen in bilayer systems.
Extensive simulations and observations demonstrate that here
the dominant effect is independent of the properties of the
medium, namely, the high-frequency dominance of faster
spirals is absolute and no opposite effect exists. As an example,
a different parameter set, α = −1.5 and β = −0.4, within the
inward-rotating spiral parameter region [36] is chosen and the
corresponding phase diagrams are shown in Fig. 4. μ2 = 3.0 is
unchanged. Obviously, for μ1 > μ2 = 3.0, the spiral 1 keeps
being the driving spiral, whereas for μ1 < μ2 = 3.0, the fast
spiral 2 becomes the driving spiral. The detailed subtypes 1′
and 4′ are also illustrated in Figs. 4(c) and 4(d). In addition, all
different types of pattern formation and their corresponding
FFT’s for different system parameters are displayed in Fig. 5,
which is quite similar to Fig. 2 again.

To show this unique high-frequency dominance more
clearly, in Fig. 6 we plot ω1c (open triangles) and ω2c (open

circles) as functions of α with all other parameters fixed:
β = −1.0, e = 0.5, μ1 = 14.0, and μ2 = 3.0. Obviously for
both the outward-rotating spiral for α < αc (left of the vertical
dashed line) and the inward-rotating spiral for α > αc (right
of the vertical dashed line), the patterns of ω2c jumping
from two values to one single large value just prior to the
phase-synchronization region are the same. Here αc ≈ 0.075.
Within the phase-synchronization region, ω1c and ω2c become
identical.

IV. TWO COUPLED IDENTICAL SPIRALS

Clearly the dynamics of two coupled spirals should be
determined by the following four major factors: the system
parameters (such as μ, α, and β), the coupling strength e, the
relative sense of rotation (the same or opposite chiralities),
and their initial separation distance d. So far the first two
factors have been well studied in two spirals having the same
chirality and a sufficiently large d. For the last two factors, our
extensive simulations on different chiralities and d show that,
if μ1 �= μ2, all the above results are robust and unchanged,

0 5 10 15
0

1

2

0 5 10 15
0

1

2
0 5 10 15

0

1

2

0 5 10 15
0

1

2
0 5 10 15

0

1

2

0 5 10 15
0

1

2
0 5 10 15

0

1

2

0 5 10 15
0

1

2
0 5 10 15

0

1

2

0 5 10 15
0

1

2
0 5 10 15

0

1

2

0 5 10 15
0

1

2
0 5 10 15

0

1

2

0 5 10 15
0

1

2

Re(A
1
)

Re(A
2
)

|A
1
|

|A
2
|

FFT
1

FFT
2

initial conditions type  1 2 3 4 1 4 
e=0.0 e=0.19 e=1.0 e=1.6 e=4.0 μ

′ ′
1
=3.1,e=0.02 μ

1
=3.1,e=1.0

FIG. 5. (Color online) As Fig. 2 but for two coupled inward-rotating spirals. For the first five columns, μ1 = 8.4.
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FIG. 6. Plots of ω1c and ω2c vs α, showing the universality of the
high-frequency dominance for both the interactions of two outward-
and two inward-rotating spirals. The phase-synchronization region
is denoted by the letters PS. β = −1.0, e = 0.5, μ1 = 14.0, and
μ2 = 3.0.

but if μ1 = μ2, these two factors do play a significant role.
Therefore, for the nonidentical case, the system parameter
effect is dominant. In this section we will focus on the study of
two coupled identical spirals (μ1 = μ2 = 3.0). α = −0.4 and
β = −1.5 within the outward-rotating spiral parameter region,
the same as in Figs. 1–3.

Table I summarizes all the different types of dynamics for
μ1 = μ2. Obviously, they change with e, d, and the relative
sense of rotation (either corotating or antirotating). Some
typical eventual patterns are presented in Fig. 7. For e < ec,
if the two spirals are corotating, synchronization appears for
a small d (d < dc), but for a large d (d > dc) the spirals drift
on an identical circular trajectory but with a different phase,
represented as circular drifting in Table I. Here ec ≈ 0.04, as
shown by the critical point in Figs. 1(c) and 1(d). dc ≈ 10. In
contrast, for two antirotating spirals, we find that the coupling
always leads to a parallel drift of the spiral tips (represented
as parallel drifting in Table I), and it is independent of d.
These behaviors are intuitively understandable: for a small e,
corotating spirals with a small d will always give rise to a
complete synchronization (as a stable attractor), whereas for
other conditions, only double phase driftings for type 1′ are
possible.

Correspondingly, if e > ec, corotating spirals with a small
d will always lead to two completely synchronized spirals
showing only one tip (represented as synchronized and single
spiral in Table I). However, for other cases, synchronized
spirals with multiple spiral tips are generally observed.

Based on these observations, the effects of coupling, initial
distance, and relative rotation direction in the interaction of
two coupled identical spirals have become clear, and the phase
diagram in Fig. 1 is complete.

V. COMPARISON WITH TWO COUPLED SPIRALS
IN MONOLAYER MEDIA

Now the differences of the dominant effect between the
interaction of two spiral waves in bilayer systems and that
in monolayer systems have become clear, and all different
types of pattern for the slower forced spiral, including phase
drifting, amplitude modulated, and amplitude dominated, have
been well recognized in the synchronization scenario. A pure
one-way effect has been uncovered under the condition of
a mutual two-way coupling. All these classifications and
findings provide a useful paradigm for the pattern competi-
tion of two spatially extended systems. Compared with the
horizontal line-to-line interaction of two wave fronts from
the point sources (tips) of two spiral waves in one spatial
domain [12], clearly now it is a vertical surface-to-surface
interaction. The origin of these generic behaviors must come
from this type of global coupling and the spatial extension of
the medium as well. Unlike the invasion of the faster spiral into
the domain of the slower one, even driving it out of the domain
completely, here the dynamics is different, with the pattern
in the response system sustained. The other key difference
is that now the high-frequency dominant effect is absolute,
independent of whether the spirals are outwardly or inwardly
rotating. These discoveries are expected to be valuable for an
improved understanding of not only the interaction of two
spirals in such a quasi-three-dimensional system, but also
scroll wave dynamics in truly three-dimensional systems [37].
They might also be helpful for potential applications in the
control of spiral waves [38,39].

VI. COMPARISON WITH PREVIOUS WORKS ON TWO
COUPLED SPIRALS IN BILAYER MEDIA

In this section, it is worthwhile to give some more
comparisons with earlier relevant results. In this paper, we
find that, as e increases, the slower spiral may gradually show
phase-drifting, amplitude-modulated, amplitude-dominated,
and phase-synchronized patterns. Actually, all these various
patterns have been reported in the literature. For instance,
phase drifting was found in Ref. [23], amplitude modulation
was reported in Ref. [18] as a transient behavior, amplitude
domination was discovered recently in Ref. [26], and phase
synchronization occurs as a common behavior if e is large

TABLE I. Description of two coupled identical spirals (μ1 = μ2) for three important effects: the coupling strength e (either e < ec or
e > ec), initial separation distance d (either d < dc or d > dc), and relative rotation direction (either corotating for identical chiralities or
antirotating for opposite chiralities). ec ≈ 0.04, indicated by the black point in Figs. 1(c) and 1(d). See the text for more details.

e < ec e > ec

Small d Synchronized and single spiral Synchronized and single spiral Corotating
Parallel drifting Synchronized and multispiral Antirotating

Large d Circular drifting Synchronized and multispiral Corotating
Parallel drifting Synchronized and multispiral Antirotating
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FIG. 7. (Color online) Some typical patterns of two coupled identical spirals, showing the remarkable impacts of initial conditions for
different separation distances and relative rotations under the condition of two identical systems (μ1 = μ2).

[18,23,26]. Therefore, it seems that all these behaviors, now
found to simply depend on different values of the frequency
discrepancy and coupling strength, can be well combined in a
single model. As a result, the synchronization scenario can be
understood in a comprehensive way.

For the other important effect, the so-called high-frequency
dominance, which was reported in Ref. [18] in a chemical
experiment and in Ref. [23] in a numerical study, we extend it
to the antispiral parameter region and find it is unchanged. In
addition, we find that it is independent of the initial conditions.
In the simulations of coupled Bär reaction-diffusion systems
[23], two different cases including the resonant case for a
small frequency mismatch and the nonresonant case for a large
one were studied. In particular, for the resonant case, one
oscillatory spiral was coupled with another excitable spiral
with a small frequency mismatch. Therefore, some findings
(e.g., the dependence of high-frequency dominance on initial
conditions) reported there may not be relevant to our system.

For two identical spirals, the classification of all the various
dynamical behaviors, which depend on the choice of initial
conditions, is also remarkable. Some of them have been
reported by Hildebrand et al. [19], such as the parallel drift
for two antirotating spirals and the circular drift for two
corotating spirals. However, two phenomena reported there,
the spiral breakup and resonance attractors for a discrete set
of circular-drifting diameters, have not been observed by us;
the reason might come from the fact that in Ref. [19] excitable
(not oscillatory) media were treated.

To summarize, we have considered all major factors in
the interaction of coupled spirals in bilayer oscillatory media
and uncovered a number of interesting results. They provide
coherent insight into our improved understanding of spiral
wave dynamics.

VII. COMPARISON WITH TWO COUPLED
PHASE OSCILLATORS

Finally, it is interesting to further compare with the
dynamics of two coupled phase oscillators written as [5]

θ̇1,2(t) = μ1,2ω0 + e sin(θ2,1 − θ1,2), (2)

where μ1 and μ2 are scales for the natural frequencies of
the oscillators, ω0 is the normalized frequency, and e denotes
the coupling strength. Without losing generality, μ2 = 3.0 and
ω0 = 1.0 are chosen.

These two coupled oscillators can transit to phase synchro-
nization showing an identical frequency ω1c = ω2c, where

ωic = lim
T →∞

1

T

∫ T

0
θ̇i(t)dt, (3)

as e is larger than a threshold ec. Considering the phase
difference �θ = θ1 − θ2 to be independent of time after e � ec

and analyzing its stability, we can easily obtain the critical
condition for phase synchronization:

ec = ω0

2
|μ1 − μ2|, (4)

or equivalently

μ1c = μ2 ± 2e/ω0. (5)

These two synchronization-desynchronization critical lines
in Eq. (5) are plotted in the phase diagram in Fig. 8(a), where

FIG. 8. Study of two coupled phase oscillators (2), showing
the absence of dominance effect. (a) Phase diagram for (phase)
synchronization and desynchronization behaviors, denoted by the
letters S and D, respectively. (b) ω1c (solid lines) and ω2c (dash-dotted
lines) vs μ1 for different e’s. Here the actual coupling effect is two
way. μ2 = 3.0 and ω0 = 1.0.
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the two letters D and S indicate the (phase) desynchronization
and synchronization regions, respectively. A regular tongue
structure is apparent in the (e,μ1) parameter plane. We also
numerically integrated Eq. (2) and calculated ω1c and ω2c

for different μ1’s and e’s; the results are shown in Fig. 8(b),
where solid (dash-dotted) lines are for oscillator 1 (2). As μ1

decreases, ω1c (ω2c) decreases (increases), and their difference
vanishes after μ1 � μ1c, signaling the establishment of phase
synchronization. These continuously changing behaviors are
fundamentally different from the discrete sharp jumping
behaviors seen in Figs. 3(a), 3(c), and 6 for two coupled spiral
waves. Here the action between two oscillators is bidirectional,
and the so-called asymmetric dominant effect disappears.

Therefore, based on these comparisons, we understand that the
rich dynamics and high-frequency dominance in coupled spi-
rals reported in the present work are indeed collective behav-
iors between spatially extended systems, which are unobserv-
able in coupled oscillators in the absence of spatial extension.
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[25] Q. Wang, Q. Y. Gao, H. P. Lü, and Z. G. Zheng, Commun. Theor.

Phys. 53, 977 (2010).
[26] J. H. Gao, L. L. Xie, H. C. Nie, and M. Zhan, Chaos 20, 043132

(2010).
[27] H. C. Nie, L. L. Xie, J. H. Gao, and M. Zhan, Chaos 21, 023107

(2011).
[28] L. F. Yang and I. R. Epstein, Phys. Rev. Lett. 90, 178303 (2003).
[29] L. Junge and U. Parlitz, Phys. Rev. E 62, 438 (2000).
[30] M. van Hecke, C. Storm, and W. van Saarloos, Physica D 134,

1 (1999).
[31] S. Boccaletti, J. Bragard, F. T. Arecchi, and H. Mancini, Phys.

Rev. Lett. 83, 536 (1999).
[32] J. Bragard, S. Boccaletti, and H. Mancini, Phys. Rev. Lett. 91,

064103 (2003).
[33] J. Bragard, S. Boccaletti, C. Mendoza, H. G. E. Hentschel, and

H. Mancini, Phys. Rev. E 70, 036219 (2004).
[34] C. T. Zhou, Chaos 16, 013124 (2006).
[35] I. S. Aranson and L. Kramer, Rev. Mod. Phys. 74, 99 (2002).
[36] Y. Gong and D. J. Christini, Phys. Rev. Lett. 90, 088302 (2003);

L. Brusch, E. M. Nicola, and M. Bär, ibid. 92, 089801 (2004);
Y. Gong and D. J. Christini, ibid. 92, 089802 (2004).

[37] Z. L. Qu, F. G. Xie, and A. Garfinkel, Phys. Rev. Lett. 83, 2668
(1999).

[38] D. M. Goldschmidt, V. S. Zykov, and S. C. Müller, Phys. Rev.
Lett. 80, 5220 (1998).

[39] O. U. Kheowan, V. S. Zykov, O. Rangsiman, and S. C. Müller,
Phys. Rev. Lett. 86, 2170 (2001).

056204-8

http://dx.doi.org/10.1103/RevModPhys.65.851
http://dx.doi.org/10.1016/0167-2789(87)90068-6
http://dx.doi.org/10.1021/cr00035a012
http://dx.doi.org/10.1021/cr00035a012
http://dx.doi.org/10.1016/S0167-2789(97)00025-0
http://dx.doi.org/10.1103/PhysRevE.75.016214
http://dx.doi.org/10.1103/PhysRevE.75.016214
http://dx.doi.org/10.1063/1.3224034
http://dx.doi.org/10.1103/PhysRevLett.79.2907
http://dx.doi.org/10.1016/0167-2789(83)90310-X
http://dx.doi.org/10.1103/PhysRevE.63.031905
http://dx.doi.org/10.1103/PhysRevE.63.031905
http://dx.doi.org/10.1103/PhysRevE.59.2203
http://dx.doi.org/10.1103/PhysRevLett.82.859
http://dx.doi.org/10.1103/PhysRevLett.82.859
http://dx.doi.org/10.1103/PhysRevE.61.4943
http://dx.doi.org/10.1103/PhysRevE.71.036212
http://dx.doi.org/10.1103/PhysRevE.71.036212
http://dx.doi.org/10.1016/j.chaos.2007.07.057
http://dx.doi.org/10.1103/PhysRevE.75.016107
http://dx.doi.org/10.1038/351132a0
http://dx.doi.org/10.1103/PhysRevE.68.026205
http://dx.doi.org/10.1103/PhysRevLett.88.208303
http://dx.doi.org/10.1103/PhysRevE.70.046219
http://dx.doi.org/10.1098/rsta.2007.2097
http://dx.doi.org/10.1098/rsta.2007.2097
http://dx.doi.org/10.1103/PhysRevE.76.016206
http://dx.doi.org/10.1088/0253-6102/43/3/017
http://dx.doi.org/10.1088/0253-6102/43/3/017
http://dx.doi.org/10.1088/0253-6102/53/5/35
http://dx.doi.org/10.1088/0253-6102/53/5/35
http://dx.doi.org/10.1063/1.3526965
http://dx.doi.org/10.1063/1.3526965
http://dx.doi.org/10.1063/1.3571476
http://dx.doi.org/10.1063/1.3571476
http://dx.doi.org/10.1103/PhysRevLett.90.178303
http://dx.doi.org/10.1103/PhysRevE.62.438
http://dx.doi.org/10.1016/S0167-2789(99)00068-8
http://dx.doi.org/10.1016/S0167-2789(99)00068-8
http://dx.doi.org/10.1103/PhysRevLett.83.536
http://dx.doi.org/10.1103/PhysRevLett.83.536
http://dx.doi.org/10.1103/PhysRevLett.91.064103
http://dx.doi.org/10.1103/PhysRevLett.91.064103
http://dx.doi.org/10.1103/PhysRevE.70.036219
http://dx.doi.org/10.1063/1.2170459
http://dx.doi.org/10.1103/RevModPhys.74.99
http://dx.doi.org/10.1103/PhysRevLett.90.088302
http://dx.doi.org/10.1103/PhysRevLett.92.089801
http://dx.doi.org/10.1103/PhysRevLett.92.089802
http://dx.doi.org/10.1103/PhysRevLett.83.2668
http://dx.doi.org/10.1103/PhysRevLett.83.2668
http://dx.doi.org/10.1103/PhysRevLett.80.5220
http://dx.doi.org/10.1103/PhysRevLett.80.5220
http://dx.doi.org/10.1103/PhysRevLett.86.2170

