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Resonant wave formation in Bose-Einstein condensates
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We investigate analytically the dynamics of a trapped, quasi-one-dimensional Bose-Einstein condensate subject
to resonant and nonresonant periodic modulation of the transverse confinement. The dynamics of the condensate
is described variationally through a set of coupled ordinary differential equations, and the period of the excited
waves is determined analytically using a Mathieu-type analysis. For a modulation frequency equal to that of the
radial confinement we show that the predicted period of the resonant wave is in agreement with the existing
experimental results. Finally, we present a detailed comparison between the resonant waves and the Faraday
waves that emerge outside of resonance.
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I. INTRODUCTION

The dynamical properties of a driven Bose-Einstein con-
densate (BEC) go from purely quantum effects stemming from
its superfluid nature to nonlinear effects that can be explained
on classical grounds. Examples of such effects include the
emergence of quantized vortices in stirred BECs for the former
type [1] and a wide variety of nonlinear waves (such as shock
waves, bright, dark, gap and vortex solitons, period doubled
and fractional states, etc.) for the latter [2].

The interest in the parametric excitation of nonlinear waves
in superfluids [3–5] has been substantially catalyzed by the
experiments on Faraday waves in 87Rb BECs [6] and 4He
cells [7], and those on the collective modes of a 7Li BEC
subject to periodic modulation of the scattering length [8].
Among the recent investigations we mention the study of
resonances and the nonlinear correction to the frequencies of
the collective modes of a BEC [9], the ultra-fast path-integral
methods for the dynamics of quantum gases [10], the detailed
analyses of Faraday patterns in superfluid Fermi gases [11,12]
and trapped BECs [13–16], the removal of excitations in
BECs subject to time-dependent periodic potentials [17], the
parametric excitation of “scars” in BECs [18] and, finally, the
spin-charge separation in one-dimensional fermionic systems
[19]. On a related topic, the formation of density waves has
been predicted for expanding condensates [20,21], and the
spontaneous formation of density waves has been recently
reported for antiferromagnetic 87Rb BECs [22].

In this paper we investigate by variational means the
dynamics of a trapped, cigar-shaped BEC subject to peri-
odic modulation of the transverse confinement. It has been
noted experimentally that the waves excited at a modulation
frequency equal to that of the radial confinement have a
period considerably smaller than that of the Faraday waves
excited outside of resonance [6], while on the theoretical
side the nonpolynomial Schrödinger equations [23] used to
model Faraday waves were not able to capture the radial
parametric resonance and, consequently, the emergence of the
longitudinal resonant wave. Following the recent variational
treatment of Faraday waves [24], we show that such a
modulation of the transverse confinement turns unstable an
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otherwise stable longitudinal wave and has a minor influence
on the Faraday wave. Using a Mathieu-type analysis on the
equations that stem from the variational recipe, we determine
analytically the period of the excited wave and show that it is
in agreement with the experimental results [6].

The rest of the paper is structured as follows: In Sec. II we
introduce the variational recipe and derive a set of coupled ordi-
nary differential equations for the dynamics of the condensate.
In Sec. III we introduce the Faraday and the resonant waves,
and we determine the corresponding dispersion relations and
show numerically that for a modulation frequency equal to
that of the radial confinement the resonant wave is the most
unstable. Finally, in the last section of the paper we present
the concluding remarks along with some directions of future
research.

II. VARIATIONAL TREATMENT

We build the variational equations starting from the Gross-
Pitaevskii (GP) Lagrangian density (with h̄ = m = 1) of a
cylindrically symmetric condensate [25], namely,

L[ψ ; r,z,t] = i

2

(
ψ

∂ψ∗

∂t
− ψ∗ ∂ψ

∂t

)
+ 1

2
|∇ψ |2

+V (r,t) |ψ |2 + gN

2
|ψ |4 , (1)

where r2 = x2 + y2, ψ = ψ(r,t), V (r,t) = 1/2 �2(t)r2, g is
proportional to the scattering length, and N is the number of
bosons, using the hybrid trial wave function

ψ = f [k,w(t),u(t),v(t)] exp

[
− r2

2w2(t)
+ ir2α(t)

]
×{1 + [u(t) + iv(t)] cos kz} , (2)

where the normalization function is given by

f [k,w(t),u(t),v(t)] = 1

πw(t)

√
k

2 + u2(t) + v2(t)
. (3)

The wave function accounts for the bulk part of the conden-
sate through a radial Gaussian envelope of width w(t) and
incorporates a longitudinal surface wave of wave number k
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grafted on the radial envelope. For the normalization we have
used ∫ ∞

0

∫ π/k

−π/k

dr dz2πr |ψ |2 = 1. (4)

To address more realistic experimental setups the ansatz can
be refined to cover high-density condensates by using a
q-Gaussian function for the radial envelope [26], and one can
also incorporate a longitudinal external potential by grafting
the corresponding envelope to the ansatz. These refinements,
however, do not impact the mechanism behind the emergence
of the resonant waves, and we shall neglect them for the
moment. Computing the Lagrangian one has

L = w2(t)α̇(t) + �2(t)w2(t) + 1

2w2(t)
+ 2w4(t)α2(t)

+ k2[u2(t) + v2(t)] + 2u(t)v̇(t) − 2u̇(t)v(t)

2[2 + u2(t) + v2(t)]

+ 8 + 3[u2(t) + v2(t)]2 + 8v2(t) + 24u2(t)

8π [2 + u2(t) + v2(t)]2w2(t) (ρg)−1 , (5)

where ρ represents the linear (longitudinal) density of the
condensate and L = L[w(t), α(t), u(t), v(t); t]. The first four
terms of the Lagrangian describe the bulk of the condensate,
while the last two represent the contribution of the surface
wave. To cast the Euler-Lagrange equations

d

dt

(
∂L

∂q̇(t)

)
= ∂L

∂q(t)
, (6)

with q(t) ∈ {w(t), α(t), u(t), v(t)}, in a simple form, we will
restrict our analysis to small-amplitude surface waves, in
which case we have

ẇ(t) = 2w(t)α(t), (7)

α̇(t) = −�2(t)

2
+ 1

2w4(t)
+ ρg

4πw4(t)
− 2α2(t), (8)

and

u̇(t) = k2v(t)

2
, (9)

v̇(t) = −k2u(t)

2
− ρgu(t)

πw2(t)
. (10)

Equations (7) and (8) are well known and describe the
dynamics of the bulk of the condensate, while Eqs. (9) and (10)
describe the dynamics of the surface wave and resemble those
derived in Refs. [15,27]. The main difference between Eqs. (9)
and (10) and those derived in Refs. [15,27] is that the above
equations stem from an energy minimization recipe and
include the full impact of the radial dynamics on the surface
wave [through the last term in Eq. (10)], while the equations
derived in Refs. [15,27] appear after linearizing a perturbed
ground state of a homogeneous cigar-shaped condensate and
include the radial dynamics only in its lowest approximation;
namely, the radial width is inversely proportional to the
square root of the radial (time-modulated) trap frequency. This
approximation of the dynamics of the radial width is intrinsic
to nonpolynomial Schrödinger equations and prevents them
from describing the formation of resonant waves.

Considering a drive of the form �(t) = �(1 + ε sin ωt) the
previous equations can be conveniently recast as

ẅ(τ ) = 4

ω2

[
1

w3(τ )
+ ρg

2πw3(τ )
− �2(1 + ε sin 2τ )2w(τ )

]
,

(11)

ü(τ ) = −2k2

ω2

[
k2

2
+ ρg

πw2(τ )

]
u(τ ), (12)

where ωt = 2τ. Equation (11) was originally introduced
in 1880 by Ermakov [28], and it was later rediscovered
several times (see Ref. [29] for a review). It is well known
that it exhibits a series of parametric resonances at ω =
2�,�,�/2, . . . ,2�/n2 [3], where n is a positive integer,
whose characteristic curves, however, cannot be derived
explicitly. For the rest of this paper we will focus only on
the resonances at ω = 2� and ω = �. The other resonances
are outside of the frequency range used in the experiments on
Faraday waves [6] and have substantially smaller widths.

III. RESULTS AND DISCUSSION

A. Nonresonant regime

In the nonresonant regime, namely, ω �= � and ω �= 2�,
one can disregard the second derivative of w(τ ) in Eq. (11)
and take

w(τ ) ≈ 1√
�(1 + ε sin 2τ )

(
1 + ρg

2π

)1/4

, (13)

which is identical with the approximation of the radial width
considered in one-dimensional nonpolynomial Schrödinger
equations [23], such that Eq. (12) yields

d2u(τ )

dτ 2
+ [a(k,ω) + b(k,ω) sin 2τ ] u(τ ) = 0, (14)

where

a(k,ω) = k4

ω2
+ 2ρgk2�

ω2
√

π2 + ρgπ

2

, (15)

b(k,ω) = 2ερgk2�

ω2
√

π2 + ρgπ

2

. (16)

The surface waves observed experimentally correspond to the
most unstable solutions of Eq. (14), and for small and positive
values of b(k,ω) the dispersion relation of these solutions is
given by a(k,ω) = 1 [15]. To see this more clearly, we recall
that (14) is a Mathieu equation, and according to the Floquet
theory it has solutions of the form u(τ ) = exp(iμτ )h(τ ),
where, for small values of b, h(τ ) is a linear combination of
sin(

√
aτ ) and cos(

√
aτ ) [30]. The imaginary part of μ consists

of a series of symmetrical lobes located at a = n2, with n a
positive integer, as depicted in Fig. 1. It is transparent from the
figure that the most unstable solutions correspond to the lobe
centered around a = 1, all the other ones being considerably
smaller. For this lobe one has that

Im[μ] ≈ −
√

b2(k,ω) − 4 [a(k,ω) − 1]2

4
, (17)
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FIG. 1. Structure of Im[μ ] of the solution of Eq. (14) for b = 0.1.
Notice the large lobe centered around a = 1 and the substantially
smaller one around a = 22. The other lobes (not shown) are centered
around a = n2, with n a positive integer larger than 2. These lobes are
orders of magnitude smaller than the previous two and appear only
above some (relatively large) critical values of b, being therefore
irrelevant for the stability analysis of the surface waves.

where we have tacitly assumed that b(k,ω) is small. In honor
of Faraday’s classic study [31] on the behavior of “groups
of particles (placed) upon vibrating elastic surfaces” and
its much-celebrated appendix on the dynamics of “fluids
in contact with vibrating surfaces,” excited waves with a
frequency half that of the drive are now called Faraday waves.
In our case the dispersion relation of the Faraday waves is
given by

kF =
√√√√√

2ρ2g2�2 + πω2 (2π + ρg) − √
2ρg�√

2π2 + πρg
, (18)

and the corresponding period is in agreement with the
experimental results in Ref. [6]. Finally, let us notice that
Eqs. (17) and (18) indicate that Faraday waves emerge slower
at higher driving frequencies as

Im[μF ] ∼ − εgρ�

ω2 (2π + gρ)
[ω2π (2π + gρ) + 4g2�2ρ2

−2g�ρ
√

4g2�2ρ2 + 2ω2 (2π + gρ)]1/2. (19)

B. Resonant regime

In the vicinity of the first resonance, namely, ω ≈ �, the
higher harmonics in 1/w2(τ ) can no longer be disregarded
(as in the approximation used far from resonance), and the
excited waves are therefore no longer governed by a Mathieu
equation. For the dispersion relation, however, we will neglect
the impact of these higher harmonics and will use a(k,ω)
defined in Eq. (15).

Let us first notice that due to the resonant behavior
a(k,ω) = 1 does not correspond anymore to the most unstable
solutions. In fact, the instability now emerges due to the
resonant energy transfer between w(τ ) and u(τ ), which sets
a(k,ω) = 22 such that (unlike the nonresonant regime) w(τ )
and u(τ ) oscillate on the same frequency. The dispersion
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FIG. 2. (Color online) The emergence of the resonant and the
Faraday wave at ω = � for a realistic experimental setup consisting of
a condensate of N = 5 × 105 atoms extending over 180 μm, ε = 0.1,

and a magnetic trap with a radial frequency � = 160.5(2π ) Hz. The
thin black line corresponds to the A(t) amplitude of the resonant
wave, and the full red line corresponds to the A(t) amplitude of the
Faraday wave. Notice that the Faraday wave has a frequency half that
of the resonant wave.

relation of the resonant waves is then given by

kR =
√√√√√

ρ2g2�2 + 2πω2 (2π + ρg) − ρg�√
π2 + πρg/2

. (20)

To see more clearly the resonant dynamics of the conden-
sate, we compare in Fig. 2 the emergence of the resonant
and the Faraday wave at ω = � in a realistic experimental
setup consisting of N = 5 × 105 87Rb atoms extending over
180 μm, ε = 0.1 and a magnetic trap with � = 160.5(2π )
Hz [32]. The numerical solutions of Eqs. (11) and (12) [with
k given by Eq. (18) for the Faraday wave and by Eq. (20)
for the resonant wave] provide the longitudinal profile of the
condensate, namely,

φ(z,t) =
∫ ∞

0
dr2πr |ψ |2 , (21)

that we use to compute the amplitude of the wave

φ (0,t) − φ

(
π

k
,t

)
= 4ku(t)

π [2 + u2(t) + v2(t)]
. (22)

The 4k/π factor can be disregarded as it plays no role in the
dynamics, and one can monitor the emergence of the instability
by looking at the function

A(t) = u(t)

2 + u2(t) + v2(t)
(23)

for each wave under scrutiny. As one can clearly see from
Fig. 2, the resonant wave emerges faster than the Faraday
wave and shows the exponential growth typical for resonant
forcing. In the absence of the drive the resonant wave shows
very weak signs of numerical instability.

In the vicinity of the second resonance, namely, ω ≈ 2�,
the resonant wave emerges slower than the Faraday wave and
is therefore not observed experimentally. To see this, we plot in
Fig. 3 the numerical solution of Eqs. (11) and (12) at ω = 2�
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FIG. 3. (Color online) The emergence of the resonant and the
Faraday wave at ω = 2� for an experimental setup identical to that
considered in Fig. 2. The thin black line corresponds to the A(t)
amplitude of the resonant wave, and the full red line corresponds to
the A(t) amplitude of the Faraday wave. Notice that the Faraday wave
has a frequency half that of the resonant wave.

for the two waves, using Eq. (18) for the dispersion of the
Faraday wave and Eq. (20) for the dispersion of the resonant
wave. As this resonance is considerably wider than that at
ω = � [3] and we have seen that outside of resonances Faraday
waves emerge slower at higher values of ω, one could naively
expect the opposite situation. A close inspection, however,
of w(t) shown in Fig. 4 reveals the strong contribution of the
higher harmonics responsible for the “bouncing ball” behavior.
This means that close to ω = 2� Eqs. (9) and (10) do not yield
a Mathieu equation, and, consequently, the approximation of
Im[μ] fails. In fact, u(τ ) is now governed by a general Hill
equation, namely,

ü(τ ) + [a + b sin 2τ + c sin 4τ + d sin 8τ · · ·] u(τ ) = 0, (24)

for which no analytic approximation of the Floquet exponent
is known.

Using Eq. (20) one has that at ω = � the period of the
resonant wave is around 12.4 μm. The experimental results
indicate that close to resonance the surface wave has a
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FIG. 4. (Color online) The dynamics of w(t) at ω = 2� for an
experimental setup identical to that considered in Fig. 2. The red line
represents w(t), and the black line shows the equilibrium value of the
width.
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FIG. 5. (Color online) The period of the surface waves excited
in cigar-shaped BEC through periodic modulations of the radial
component of the confining potential. The black diamonds correspond
to the experimental data in Ref. [6], the full blue curve corresponds
to the Faraday waves defined by Eq. (18), and the red pentagram
represents the current prediction for the period of the resonant
wave.

period between 7.68 and 9.17 μm, which is in qualitative
agreement with our result given that the variational calculation
consistently overestimates the period of the observed surface
waves, as one can see in Fig. 5. Note that the instability onset
time of the resonant wave increases with the distance from the
resonance, therefore the rather scattered experimental data just
before the first resonance could signal the superposition of a
Faraday and a resonant wave. At ω = 2� Eq. (20) indicates
a period of around 6.2 μm, but the resonant wave cannot be
seen experimentally as it emerges slower than the Faraday
wave.

To address directly the experimental results reported in
Ref. [6] for ω = �, we incorporate a weak longitudinal poten-
tial in the GP Lagrangian density and graft the corresponding
envelope to the ansatz, that is,

ψ = f [· · ·] exp

{ ∑
j=r,z

[
− j 2

2w2
j (t)

+ ij 2αj (t)

]}

×{1 + [u(t) + iv(t)] cos kz} , (25)

where the normalization function f [· · ·] is such that∫
dr |ψ |2 = 1. Under the (experimentally correct) assumption

that the period of the resonant wave is much smaller than
the longitudinal width of the condensate, the Lagrangian is
amenable to analytical manipulations, and one can derive the
corresponding variational equations [24]. For waves of small
amplitude they take the form

ẇj (t) = 2wj (t)αj (t), (26)

α̇j (t) = 1

2w4
j (t)

− �2
j

2
+ Ñg

wm
j (t)wn

l (t)
− 2α2

j (t), (27)
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FIG. 6. The emergence of the resonant wave at ω = � for the
experimental conditions in Ref. [6] with ε = 0.1. The bright regions
of the density profile are the ones with the most number of atoms.

and

v̇(t) = −u(t)

[
k2

2
+ Ng√

2π3/2w2
r (t)wz(t)

]
, (28)

u̇(t) = k2

2
v(t), (29)

where j ∈ {z,r},l ∈ {r,z},m ∈ {2,4},n ∈ {3,1}, and Ñ = N/4√
2π3/2. As in the case of a longitudinally homogeneous

condensate k is determined such that close to equilibrium
u(t) and wr (t) oscillate on the same frequency. Using these
equations we reconstruct in Fig. 6 the dynamics of φ(z,t) and
show the emergence of the resonant wave for the experimental
conditions in Ref. [6].

Finally, let us notice that for a trapping potential of constant
strength and a scattering length modulated such that g(t) =
g(1 + ε sin ωt), we can use Eqs. (26) and (27) to study the
emergence of surface waves through longitudinal resonances.
To this end, one can show that outside of radial resonances

ẅz(t) = −�2
zwz(t) + 1

w3
z (t)

+ g(t)N�rπ
−3/4w

−3/2
z (t)√

23/2g(t)N + 8π3/2wz(t)
(30)

and

ü(t) = k2u(t)

4

[
− k2 − 23/2g(t)N�rπ

−3/4w
−1/2
z (t)√

23/2g(t)N + 8π3/2wz(t)

]
, (31)

which can be easily solved numerically. Such longitudinal
resonances could be seen for small values of ε in experimental
setups similar to that in Ref. [8].

IV. CONCLUSIONS

We have presented a variational treatment for the dynamics
of surface waves in BECs with longitudinal homogeneity,
and have shown that for condensates subject to periodic
modulation of the transverse confinement on a frequency
equal to that of the radial confinement the excited surface
wave is distinct from the Faraday waves that emerge out-
side of resonance. The period of this resonant wave has
been determined analytically using a Mathieu-type anal-
ysis, and we have compared numerically our theoretical
results with the available experimental data to illustrate the
agreement.

Extending the variational treatment of surface waves to
address the recently reported condensate fragmentation [8] is
still an open problem, as is the management of surface waves
through the joint modulation of the scattering length and the
radial component of the magnetic trap. Also on the side of
future research topics we mention the dynamics of surface
waves in dissipative BECs, especially the coupling of a surface
wave to the thermal component of the cloud, and the formation
of resonant waves in binary condensates.
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E 79, 036701 (2009); A. Balaž, I. Vidanović, A. Bogojević,
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