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In this paper, we consider the problem of exploring structural regularities of networks by dividing the nodes
of a network into groups such that the members of each group have similar patterns of connections to other
groups. Specifically, we propose a general statistical model to describe network structure. In this model, a group
is viewed as a hidden or unobserved quantity and it is learned by fitting the observed network data using the
expectation-maximization algorithm. Compared with existing models, the most prominent strength of our model
is the high flexibility. This strength enables it to possess the advantages of existing models and to overcome
their shortcomings in a unified way. As a result, not only can broad types of structure be detected without prior
knowledge of the type of intrinsic regularities existing in the target network, but also the type of identified structure
can be directly learned from the network. Moreover, by differentiating outgoing edges from incoming edges, our
model can detect several types of structural regularities beyond competing models. Tests on a number of real
world and artificial networks demonstrate that our model outperforms the state-of-the-art model in shedding light
on the structural regularities of networks, including the overlapping community structure, multipartite structure,
and several other types of structure, which are beyond the capability of existing models.
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I. INTRODUCTION

Networks provide a powerful tool for representing the
structure of complex systems. These networks include social
networks [1,2], information networks [3,4], and biological
networks [1,5]. Much of the recent research on networks
actually aims to understand the structural regularities and
further to reveal the relationship between such structural
regularities and the function of networks [2,6]. For example,
as a widely studied structural characteristic of networks,
community structure is of high interest because communities
often correspond to functional units, such as pathways for
metabolic networks and collections of pages on a similar topic
on a website.

Community structure is a kind of assortative structure, in
which nodes are divided into groups such that the members
within each group are mostly connected with each other.
Contrary to community structure, multipartite structure is
another important kind of structural regularity observed in
real world networks. Multipartite structure means that nodes
of the network can be divided into groups such that most
of the edges are across different groups. In addition to these
salient structural characteristics, other types of structure are
also observed in real world networks, such as hierarchical
structure and core-periphery structure.

However, existing methods mostly presume that a certain
type of structure exists in the target network and are devoted
to detecting such structure. This raises concerns regarding
the reliability of the detected structure. On one hand, the
assumed structure may not match the intrinsic structure of
the target network and thus these methods are not applicable
to these situations. On the other hand, several real world
networks contain multiple types of structure simultaneously.
Most existing methods are designed for a certain type of
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structure and thus cannot detect the broad types of structure.
In addition, several unknown types of structure may also exist
in networks and a preferred method should be able to detect
such structure as well. Thus, it is important to explore multiple
types of structural regularities in networks.

In the last decade, the identification of community structure
has attracted much attention in various scientific fields. Many
methods have been proposed and applied successfully to some
specific complex networks [7–18]. For review, the reader
can refer to Ref. [19]. These methods are from different
perspectives, such as the centrality measures, modularity, link
density, percolation theory, network compression, and spectral
analysis. Recently, several generative models for network
data have been proposed to detect community structure
[20,21]. These models view network structure as observed
quantities and take communities as hidden groups of nodes.
The communities are then identified by fitting the model to
the observed network structure. For example, Ren et al. [22]
proposed a probabilistic model to uncover the overlapping
community structure. This model assumes that the two end
nodes of each edge are from the same community and this
assumption is satisfied by the fuzzy membership of nodes.
Zhang et al. [23] applied the latent Dirichlet allocation (LDA,
a well-known generative model) to social network analysis
and provided a method to detect community structure. The
common drawback of these two models is that they can only
uncover the community structure and fail to reveal other types
of structural regularities, e.g., multipartite structure.

To characterize the hierarchical organization of networks,
Clauset et al. proposed the hierarchical random graph model,
which is capable of expressing both assortative and disassor-
tative structure [25]. To explore more broad types of structure,
Newman et al. proposed a mixture model for the exploratory
analysis of network structure [24]. In this model, the nodes
with a similar connection preference, rather than the highly
connected nodes, are classified into the same group. In such
a general way, this model can reveal several other kinds of
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structural regularities beyond community structure. However,
this model fails to tell us which kind of structural regularities
has been identified. More importantly, this model may produce
a result that is a mixture of several types of structure, and
thus the identified structure may not provide clear information
about the structural regularities. The shortcoming of this
model is that it only models the relationship between groups
and nodes, rather than the relationship among groups. The
stochastic block model provides an appropriate alternative to
the mixture model for exploring a broad range of structural
regularities. Karrer et al. utilized a degree-corrected stochastic
block model [26] to investigate the community structure
of a network. Airoldi et al. provided a mixed membership
stochastic block model [27] to model network data. These
works have demonstrated that the stochastic block model
is a good choice for exploring the regularities of networks.
However, the effectiveness of these models is limited by
their inflexible model assumptions, e.g., the hard partition
assumption or neglecting the directionality of edges.

In this paper, we focus on exploring the intrinsic structural
regularities in networks by dividing network nodes into groups
such that the members of each group have similar patterns
of connections to other groups. A general stochastic block
model (referred to as the GSB model in this paper) is
proposed to model the network structure. In this model, node
groups are represented by unobserved or hidden quantities
and the relationships among groups are explicitly modeled
by a block matrix as the traditional block models. Then,
using the expectation-maximization algorithm, we fit the
model to specific network data and detect intrinsic structural
regularities of the network without prior knowledge of the type
of regularity existing in the network. Compared with existing
models, the most prominent strength of our model is the high
flexibility. This strength enables it to possess the advantages
of existing models and to overcome their shortcomings in a
unified way. As a result, not only can broad types of structure
be detected, but also the type of identified structure can be
indicated by the block matrix. In addition, our model can tell
us the centrality of the node in each group and the mixed
membership of nodes as well.

Tests on a number of artificial and real world networks
demonstrate that our model outperforms the state-of-the-art
models in shedding light on the structural regularities of
networks, including the overlapping community structure,
multipartite structure, and several other types of structure,
which are beyond the capability of existing models.

II. THE MODEL

Generally, a network with n nodes can be represented
mathematically by an adjacency matrix A with elements
Aij = 1 if there is an edge from node i to node j and
0 otherwise. For weighted networks, Aij is generalized to
represent the weight of the edge from i to j .

To investigate the structural regularities in a network, we
suppose that the n nodes of the network fall into c groups whose
memberships are unknown, i.e., we cannot observe or measure
them directly. In this paper, we propose a statistical model

to infer the group membership from the observed network
structure.

The model we used is a kind of stochastic block model. A
block model is a generative model and has a long tradition of
study in the fields of social science and computer science. For
a standard block model, a c × c matrix ω is generally adopted
such that the matrix element ωrs denotes the probability that
a randomly selected edge connects group r to group s, i.e.,
the tail node of the edge is from group r and the head node
is from s. The advantage of a block model is that the matrix
ω explicitly characterizes various types of connecting patterns
among groups.

In the standard block model, the nodes in the same group are
identical, i.e., each node in a group has an equal probability
to be the end node of an edge adjacent to the group. This
constraint is relaxed in our model. Specifically, for an edge
with its tail node from group r and its head node from group
s, we use θri to denote the probability that the tail node is
i and φsj to denote the probability that the head node is j ,
respectively. In addition, we use −→g ij and ←−g ij to denote,
respectively, the group membership of the tail node and head
node of the edge eij .

Until now, we have given all the quantities in our model.
They can be classified into three classes: observed quantities
{Aij }, hidden quantities {−→g ij ,

←−g ij }, and model parameters
{ωrs,θri ,φsj }. To simplify the notations, we henceforth denote
A as the entire set {Aij }, and, similarly, −→g , ←−g , ω, θ , and φ for
{−→g ij }, {←−g ij }, {ωrs}, {θri}, and {φsj }, respectively.

With our model, an edge eij is generated in the following
process:

(i) Select two groups −→gij = r and ←−gij = s, respectively, for
the tail node and head node of the edge with probability ωrs .

(ii) Draw the tail node i from the group r with probabil-
ity θri .

(iii) Draw the head node j from the group s with
probability φsj .

Summing over the latent quantities r and s, the probability
that we observe an edge eij can be written as

Prob(eij |ω,θ,φ) =
∑
rs

ωrsθriφsj . (1)

Then, the likelihood of the observed network with respect to
our model is

Prob(A|ω,θ,φ) =
∏
ij

(∑
rs

ωrsθriφsj

)Aij

. (2)

Note that the self-loop edges are allowed and the weight Aij is
taken as the number of multi-edges connecting node i to node
j , as done in many existing models including, for instance, the
widely studied configuration model [28].

Intuitively, the parameter θri characterizes the centrality
of node i in the group r from the perspective of outgoing
edges, while φsj describes the centrality of node j in the
group s from the perspective of incoming edges. Different
from traditional block models, by differentiating these two
kinds of centrality, our model can provide more flexibility
to explore broad types of intrinsic structural regularities in
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networks. Note that the parameters ωrs , θri , and φsj satisfy the
normalization conditions

c∑
r=1

c∑
s=1

ωrs = 1,

n∑
i=1

θri = 1,

n∑
j=1

φsj = 1. (3)

Now our task is to estimate the model parameters and to
infer the unobserved quantities by fitting the model to the
observed network data. The standard framework for such a
task is likelihood maximization. Generally, one works not
with the likelihood [Eq. (2)] itself, but with its logarithm (log
likelihood),

L = lnProb(A|ω,θ,φ) =
∑
ij

Aij ln

(∑
rs

ωr,sθriφsj

)
. (4)

The maximum of the likelihood and its logarithm are in the
same place since the logarithm is a monotonically increasing
function.

Directly maximizing the log likelihood is difficult because
of the inner sum over the unobserved quantities, −→g ij = r and←−g ij = s. Using Jensen’s inequality, the maximization of the
log likelihood can be transformed into the maximization of the
expected log likelihood,

L =
∑
−→g ,←−g

Prob(−→g ,←−g |A,ω,θ,φ)lnProb(A|−→g ,←−g ,ω,θ,φ)

=
∑
ijrs

Prob(−→g ij = r,←−g ij = s|eij ,ω,θ,φ)

× [Aij (lnωrs + lnθri + lnφsj )]

=
∑
ijrs

qijrsAij (lnωrs + lnθri + lnφsj ), (5)

where to simplify the notation we have defined qijrs =
Prob(−→g ij = r,←−g ij = s|eij ,ω,θ,φ), which denotes the prob-
ability that one observes an edge eij with its tail node i from
group r and its head node j from group s, given the observed
network and the model parameters.

With the expected log likelihood, we can give the best
estimate of the value L, and the position of its maximum
represents the best estimate of the most likely values of the
model parameters. Specifically, if the value of qijrs is known,
we can find the values of the model parameters ω, θ , and φ

where L reaches its maximum. However, the calculation of
qijrs requires the values of these model parameters. To address
such a problem, an expectation-maximization (EM) algorithm
is adopted.

Under the framework of the EM algorithm, we first calculate
the value of qijrs by

qijrs = Prob(−→g ij = r,←−g ij = s,eij |ω,θ,φ)

Prob(eij |ω,θ,φ)

= ωrsθriφsj∑
rs ωrsθriφsj

. (6)

Once we have the values of the qijrs , we can use them to
evaluate the expected log likelihood and hence to find the
values of ω, θ , and φ that maximize it.

Introducing the Lagrange multipliers ρ, γr , and λs to
incorporate the normalization conditions in Eq. (3), the
expected log-likelihood expression to be maximized becomes

L̃ = L + ρ

(
1 −

∑
rs

ωrs

)
+

∑
r

γr

(
1 −

∑
i

θri

)

+
∑

s

λs

⎛
⎝1 −

∑
j

φsj

⎞
⎠. (7)

By letting the derivative of L̃ be 0, the maximum of the
expected log likelihood occurs at the places where

ωrs =
∑

ij Aij qijrs∑
ijrs Aij qijrs

,

θri =
∑

js Aij qijrs∑
ijs Aij qijrs

, (8)

φsj =
∑

ir Aij qijrs∑
ijr Aij qijrs

.

Equations (6) and (8) constitute our expectation-
maximization algorithm. In the expectation step, the expected
value of log likelihood is calculated through evaluating the
values of qijrs with Eq. (6). In the maximization step, the
expected value of log likelihood is maximized when the values
of model parameters ω, θ , and φ are evaluated with Eq. (8).
Implementation of the algorithm consists merely of iterating
Eqs. (6) and (8) until convergence.

When the algorithm converges, we obtain a set of values
for hidden quantity qijrs and model parameters ω, θ , and φ.
This set of values is self-consistent with respect to Eqs. (6)
and (8). However, it is not always the place where the
log likelihood reaches its maximum. In other words, the
expectation-maximization algorithm may converge to local
maxima of the log likelihood. With different starting values,
the algorithm will give rise to different solutions. To obtain
a satisfactory solution, it is necessary to perform many runs
with different starting values of model parameters and take
the solution giving the highest log likelihood over all the runs
performed.

By fitting the model to the observed network structure with
the expectation-maximization algorithm, the estimated model
parameters provide us with vital information for structural
regularities of the network. Specifically, θ and φ describe the
centrality of a node in groups containing it from the perspective
of outgoing edges and incoming edges, respectively. The
parameter ω characterizes the connecting patterns among
different groups, i.e., the type of structural regularities.

More importantly, according to the model parameters, we
can define two kinds of group memberships, αir and βjs ,
from the perspective of outgoing edges and incoming edges,
respectively. Specifically, αir is the probability that node i is
from group r when it acts as the tail node of the edges, while
βjs is the probability that node j is from group s when it acts
as the head node of the edges. For αir , it can be calculated by

αir =
∑

s ωrsθri∑
rs ωrsθri

. (9)
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Actually, αir provides a soft or fuzzy membership, i.e., node
i can belong to more than one group simultaneously. When
the identified structural regularity corresponds to community
structure, we actually obtain the overlapping community
structure, which has attracted much research attention ever
since it was proposed. If one wants to get a hard partition,
we can simply assign each node i to the group r satisfying
r = arg maxs{αis, s = 1,2, . . . ,c}. These statements for αri

also apply to βir defined as

βjs =
∑

r ωrsφsj∑
rs ωrsφsj

. (10)

Finally, the model described above so far is based on di-
rected networks. Actually, the model can be easily generalized
to undirected networks by letting the parameter θ be identical
to φ. The derivation follows the case of directed networks and
the results are the same as Eqs. (6) and (8).

Now we discuss the computational cost of the
expectation-maximization algorithm for the fitting of
our model. For each iteration in this algorithm, the cost
consists of two parts. The first part is from the calculation
of qijrs using Eq. (6), whose time complexity is O(m × c2).
Here, m is the number of edges in the network and c

is the number of groups. The second part is from the
estimation of the model parameters using Eq. (8), whose time
complexity is also O(m × c2). We use T to denote the average
number of iterations before the iteration process converges.
Then, the total cost of the expectation-maximization
algorithm for our model is O(K × T × m × c2).
Here, K is the number of times that the iteration process is
restarted with different starting values to obtain a satisfactory
solution. It is difficult to give a theoretical estimation for the
number T of iterations. Generally speaking, T is determined
by the network structure and the starting values of the model
parameters. The number of runs is dependent on the scale of
the network and its structural characteristics. For the networks
tested in this paper, only less than 10 runs are needed to obtain
a satisfactory result.

The computational cost limits our model to dealing with
networks with tens of thousands of nodes. We look forward
to seeing more efficient implementation for our model. Note
that the method proposed in [29] provides a promising way
to improve the computational efficiency and to decrease the
memory space required. Finally, to make it convenient to
evaluate the results in this paper and apply our model to more
real world networks, we make the source computer code of
our model available as Supplemental Material [30].

III. COMPARISON WITH OTHER MODELS

In this section, we illustrate the difference and connections
between our model and several existing models. Figure 1 gives
the schematic for our model and two existing generative mod-
els, namely, Newman’s mixture model and Ren’s probabilistic
model.

For Newman’s model, as shown in Fig. 1(a), each group r

is characterized by the connecting preference θrj to node j ,
whether or not the node j is contained by the group r . The
nodes belonging to the same group have a similar connecting
preference. As a result, both assortative and disassortative

FIG. 1. Generative models for network data: (a) Newman’s
mixture model [24], (b) probabilistic model proposed in [22], and
(c) our model. Filled circles represent observed quantities and unfilled
ones correspond to hidden quantities. The solid line (with arrow)
between node i and j indicates the existence of one (directed) edge
connecting them. The dashed line connecting two circles indicates
that the relation between the corresponding quantities is unobserved
and must be learned from the observed network data. Arrows
represent the directions of relation.

structural regularities can be detected by this model. However,
this model has no parameter to explicitly characterize the type
of the identified structure. More importantly, this model may
produce a result that is a mixture of several types of structure
and thus, in these cases, the identified structure may provide
confusing information about the structural regularities. For
example, for the network shown in Fig. 2, nodes 12, 15, 16,
19, 21, and 23 are identified by this model as overlapped nodes
shared by the two groups, denoted by circles and squares,
although these nodes only have connections to one of the two
groups.

For Ren’s model, as shown in Fig. 1(b), the two end nodes
of each edge are assumed to be from the same group. As
a result, only the assortative structure (community structure)
can be detected using this model. Note that for this model, no
edge is allowed to connect different groups. The relationship
between communities is reflected by the overlapped nodes.

For our model, it essentially is a kind of stochastic block
model, in which the relationships among different node groups
are explicitly modeled by the block matrix w. In this way, our
model possesses the advantages of both Newman’s model and

FIG. 2. The network of the karate club studied by Zachary [31].
The real social fission of this network is represented by two different
shapes, i.e., circles and squares. The shades of the nodes indicate the
mixed membership obtained by fitting our model to this network. The
sizes of the nodes indicate the centrality degree (i.e., θri) of nodes
with respect to the left group. Here, θri ranges from 0 for the smallest
nodes to 0.22 for the largest nodes.
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Ren’s model, and overcomes the shortcoming of these two
models.

On one hand, through learning the matrix w according to ob-
served network data, various types of structural regularities can
be explored by our model. The type of the identified structure is
indicated by the matrix w. Specifically, when the matrix ω is an
identity matrix, the identified structural regularity corresponds
to an obvious community structure. Meanwhile, multipartite
or anticommunity structure is revealed when the estimated
model parameter ω is an antidiagonal matrix, with all of the
antidiagonal elements being 1. For other types of structure,
such as core-periphery structure and hierarchical structure, the
form of ω is the same as the block matrix ω in traditional block
models [26].

On the other hand, using the matrix w, our model discards
the assumption of Ren’s model that two end nodes of one
edge are required to be from the same community. In this
sense, Ren’s model is a special case of our model. In
addition, our model also provides several other flexibilities.
By representing the centrality of nodes in a group from two
different perspectives, i.e., according to the outgoing edges
and incoming edges, our model can detect a broader range
of structural regularities, which is beyond the capability of
other models. This will be shown in the subsequent section.
Moreover, our model can be further generalized by not
requiring that the matrix w be a square matrix.

Finally, we compare our model to two recently proposed
stochastic models for community detection [26,29]. First, both
our model and Karrer’s model [26] are stochastic block models,
where a block matrix is adopted to characterize the connecting
patterns among groups. The main difference between these two
models lies in that Karrer’s model is designed to detect disjoint
structural regularities, while our model is for fuzzy structural
regularities. This difference is reflected by the definition of
the model parameters θ and φ in our model and the definition
of the model parameter θ in Karrer’s model. In addition, our
model differentiates the outgoing edges from the incoming
edges of the nodes, while Karrer’s model does not. Second,
similar to Ren’s model, Ball’s model [29] focuses on the
community structure, while our model can uncover multiple
types of structural regularities.

IV. EXPERIMENTAL RESULTS

In this section, we demonstrate the effectiveness of our
model at exploring the structural regularities of networks by
experiments on several real world or artificial networks with
various types of intrinsic structural regularities. Then, we
discuss the model selection issue, i.e., how to determine the
optimal number of groups.

A. Detecting community structure

The test network is the famous karate club network
constructed by Zachary. This network characterizes the ac-
quaintance relationship between 34 members of a karate club
at an American university. A dispute arose between the club’s
administrator and its principal karate teacher, and as a result the
club eventually split into two smaller clubs, centered around
the administrator and the teacher, respectively. The network

TABLE I. Mixed membership of overlapped nodes.

Node αi1 qi1
a u1i

u1i+u2i

b

3 0.49 0.00 0.49
9 0.70 0.96 0.70
14 0.24 0.00 0.24
20 0.33 0.13 0.33
31 0.71 0.92 0.71
32 0.83 1.00 0.83

aqi1 is defined in [24] as the probability that node i belongs to group 1.
b u1i

u1i+u2i
is defined in [22] as the probability that node i belongs to

group 1.

and its fission are depicted in Fig. 2. The administrator and the
teacher are represented by nodes 1 and 33, respectively.

By setting the group number c = 2, we fit our model to the
karate club network data. The resulting matrix ω is a 2 × 2
identity matrix, indicating that the obtained structure is a
community structure. Figure 2 shows the two groups found
by our model with the expectation-maximization method. As
shown in Fig. 2, the shades of the nodes in the figure represent
the values of αi1,1 where group 1 is the left group. As we can
see, our model assigns most of the nodes strongly to one group
or the other. Actually, all but six nodes are assigned 100% to
one of the groups (black and white nodes in the figure). If we
simply divide the nodes into two disjoint groups by assigning
each node i to the group r according to the belong coefficients
αir , the resulting groups perfectly correspond to the real split
of the club.

In addition, Table I gives the belonging coefficient of the
six overlapped nodes that are shared by the two groups.
These overlapped nodes are nodes 3, 9, 14, 20, 31, and 32.
Note that these overlapped nodes are often misclassified by
traditional partition-based community detection methods. For
comparison, we also give the mixed membership of these
six nodes according to Newman’s mixture model and Ren’s
model. As we can see, our model and Ren’s model produce the
same results, which is attributed to the fact that Ren’s model
is a special case of our model. However, Newman’s model
behaves very differently from the other two models. Actually,
for Newman’s model, another 10 nodes are also assigned to
both of the two groups, e.g., nodes 12 and 15. Such a result
is counterintuitive to the real structure of this network. In
conclusion, our model performs better than Newman’s model
at detecting the overlaps between groups. Ren’s model can only
detect community structure, while our model can detect other
types of structural regularities, as illustrated in the following
test.

B. Detecting multipartite structure

Now we illustrate the detection of multipartite or anticom-
munity structure according to our model. The test network is
the adjacency network of English words taken from Ref. [9].
In this network, the nodes represent 112 commonly occurring

1Since this network is an undirected network, the two kinds of
belonging coefficient are identical, i.e., αir = βir .
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FIG. 3. The adjacency network of English words. Node groups
corresponding to adjectives and nouns are denoted by circles and
squares, respectively. The shades of nodes indicate their belonging
coefficient obtained by fitting our model to this network.

adjectives and nouns in the novel David Copperfield by
Charles Dickens, with edges connecting any pairs of words
that appear adjacent to each other at any place in the text.
Generally, adjectives occur next to nouns in English. Thus,
most edges in the network connect an adjective to a noun
and the network is approximately bipartite, i.e., this network
possesses anticommunity structure. This can be seen clearly
in Fig. 3, where the adjectives and nouns are represented by
circles and squares, respectively.

Fitting our model to this network with c = 2, the resulting
ω is a 2 × 2 antidiagonal matrix, indicating that the identified
structure is a bipartite structure. The obtained two groups and
node memberships are shown by the shades of nodes in Fig. 3.
We can see that most nodes are assigned to only one group,
although there are several ambiguous cases corresponding
to the nodes with intermediate shades. If we assign each
node to its most preferred group, the resulting two disjoint
groups well separate the adjectives from the nouns. In fact,
100 of the 112 total nodes are correctly classified. This
accuracy is the same as the result given by Newman’s mixture
model.

As a comparison, we also apply Ren’s model to this
network by setting the group number to 2. Only 60 nodes
of the 112 total nodes are correctly classified, similar to the
accuracy of random assignment. The ineffectiveness of Ren’s
model in this network is attributed to the fact that Ren’s
model presumes the existence of community structure in the
network, while the intrinsic structural regularity is a bipartite
structure.

C. Exploring other types of structural regularity

In the previous tests, we have demonstrated that our model
can be used to detect both the assortative structure (i.e.,
community structure) and the disassortative structure (i.e.,
multipartite structure) without knowledge of which type of
structural regularities exists in the target networks. Now we
will further show that our model can also detect other types of
structure, which cannot be revealed by competing models.

(a) (b)

FIG. 4. (Color online) (a) A schematic network. The directed
edges are placed according to the rules described in (b).

We consider the schematic network depicted in Fig. 4(a).
This network is constructed according to the rules in Fig. 4(b).
Intuitively, according to the outgoing edges in this network, the
nodes can be divided into two groups: {1,2,3,4} and {5,6,7,8}.
Meanwhile, according to the incoming edges, the nodes of
this network belong to another two groups: {1,2,5,6} and
{3,4,7,8}.

We apply Newman’s model, Ren’s model, and our model
to this schematic network. Limited by the assumptions of
models, both Newman’s model and Ren’s model fail to
uncover the intrinsic structural regularity indicated by the
construction rules. For our model, the flexibility of model
assumption enables it to accurately detect this type of structure.
Specifically, by fitting our model to this network, the obtained
θ or α reveals the two groups indicated by the outgoing edges,
while the φ or β reflects the two groups indicated by the
incoming edges.

D. Model selection issue

In the previous tests, we needed to specify the group number
before fitting our model to a network. However, the group
number is unknown a priori for many cases. Thus, it is helpful
to give a criterion to determine the appropriate group number
for a given network. This task is known as the model selection
issue in statistics. We deal with this problem by using the
minimum description length principle, which is also used to
handle the model selection issue in Ren’s model.

According to the minimum description length principle, the
required length to describe the network data is composed of
two parts. The first part describes the coding length of the
network using our model. This coding length is −L for a
directed network and −L/2 for an undirected network. The
second part gives the length for coding model parameters.
This part is −∑

rs lnωrs − ∑
ri(lnθri + lnφri) for a directed

network and −∑
rs lnωrs − ∑

ri lnθri for an undirected net-
work. In this way, the optimal c is the one that minimizes the
total description length.

As tests, we consider two real world networks with prior
knowledge of the intrinsic group numbers. These two networks
are, respectively, the journal citation network constructed in
Ref. [32] and the American football team network described
in Ref. [1]. In the journal citation network, each node
corresponds to a journal, in which all 40 journals are from
four different fields: multidisciplinary physics, chemistry,
biology, and ecology. Journals from the same field are more
likely connected by citation relation. For the football network,
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FIG. 5. (Color online) Model selection results for the (a) journal
citation network and (b) American football team network.

nodes represent the 115 teams, respectively, belonging to 12
conferences, and generally games are more frequent between
teams who belong to the same conference than between teams
of different conferences.

As shown in Fig. 5, the number of intrinsic groups is
correctly identified for the journal citation network. However,
for the football network, 11 is the optimal number of groups
while the intrinsic number is 12. By checking the found node
groups, we find that only 11 node groups have their identities,
i.e., each group contains at least one node after assigning
nodes to their most preferred groups according to the obtained
belonging coefficient α or β. This indicates that the appropriate
group number is 11 for the football network. In fact, many
well-known community detection methods also identify 11
communities.

V. CONCLUSIONS

In this paper, we have studied the exploration of intrinsic
structural regularities in networks using a general stochastic
block model. Without prior knowledge, our model not only
can detect broad types of intrinsic structural regularities, but
also can learn the type of identified structure directly from the
network data. Tests on a number of artificial and real world
networks demonstrate that our model outperforms the state-
of-the-art models at shedding light on the structural features of
networks. This flexibility enables our model to be an effective
way to reveal the structural regularities of networks and further
to help us understand the relationship between the structure and
function of networks. For potential applications, our model
can be used to predict the emergence or vanishing of edges in
networks. In a future work, we will generalize our model by
eliminating the requirement that the block matrix be a square
matrix, and we will investigate the possible applications of the
more flexible model.
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