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Identifying the starting point of a spreading process in complex networks
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When dealing with the dissemination of epidemics, one important question that can be asked is the location
where the contamination began. In this paper, we analyze three spreading schemes and propose and validate
an effective methodology for the identification of the source nodes. The method is based on the calculation
of the centrality of the nodes on the sampled network, expressed here by degree, betweenness, closeness, and
eigenvector centrality. We show that the source node tends to have the highest measurement values. The potential
of the methodology is illustrated with respect to three theoretical complex network models as well as a real-world
network, the email network of the University Rovira i Virgili.
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I. INTRODUCTION

In complex network research, it is usual to study dynamics
that have a source, that is, the process taking place in the
network originates from a well-defined set of nodes, which
can be sparse, appearing in many places of the system,
or clustered. There are many examples of the latter case
through the literature, including the spread of diseases in social
networks [1–3], computer virus [4–6], spam [7], fads, neuronal
signals [8–10], diseases in a metabolic network [11], and the
impact of a contaminated ambient in food webs [12,13], among
others, so that the study of spreading processes is one of the
main topics in this area [14–17]. In this work, we study three
types of propagation: snowball (also called dilation), diffusion,
and contact process. Snowball propagation is the classical
breadth-first graph search algorithm. Although the simplest
case of the three, it can be found in the real world (e.g., a spam
network that begins with a single individual and propagates
to every contact). Diffusion dynamics in networks is closely
tied with random walks and occurs when an agent present on
one node has to choose between one of its neighbors to travel,
where each neighbor has a probability of being visited. The
contact process is related to the classic disease propagation,
where each infected node has a chance to pass a disease to its
neighbors.

A fundamental question about a system that undergoes one
of the three processes as described above is where the origin of
the spreading is located. If this question is answered, we could,
for example, know the location where a computer virus started
its contamination, the origin of a fad, or even the origin of a
disease in a metabolic network. Little has been investigated
in the literature about this matter. Clauset and Moore [18]
show that when we sample an Erdős-Rényi (ER) network with
the snowball scheme, the resulting network has a power-law
degree distribution, which creates new topological properties
not found in the original network. Jeong et al. [19,20] made a
comprehensible study on this change of properties, especially
with respect to centrality measurements, which will be the
main study in this paper. Costa et al. [21] proposed a method
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of finding the origin of trails left by agents walking through
a network, although the dilation process was performed in
a different manner. Kitsak et al. [22] studied what makes
a node a good spreader in a network, based on the k-shell
decomposition, which is not a pure topological measurement
and is not suitable for our purposes of finding a single node,
so we will not use it in this paper.

To find the source of the spreading process, we start
by applying the classical centrality measurements known
as degree, betweenness, closeness, and eigenvector in the
network generated by the spread. Those measurements are
discussed extensively in the works of Freeman [23,24] and
Friedkin [25], with ideas based on the influential work of
Sabidussi [26]. Then, we propose a simple modification of
betweenness that accounts for cases where the source has a
very low centrality in the original network, and show that this
new measurement can provide information about the extracted
network with little influence of the original one where the
process occurred. The idea of why those measurements should
recover the source is straightforward, as the region where
the source node belongs should be central to the network
generated. So, this paper can be viewed also as an analysis
of the measurements, like the correlations that exist between
them or the effectiveness of each one. The measurements will
be applied to ER and scale-free networks in order to provide
insights about the topological influence on the success of the
method, considering the homogeneity of the former and the
heterogeneity of the latter. We will also apply the method to
a real network of email interchanges between members of the
University Rovira i Virgili [27].

The paper starts by presenting the five measurements that
will be used throughout this work. Next, we explain three
methods of spreading in networks and how they can be
used to evaluate the ideas presented. After the theoretical
concepts, we show how well each measurement performs with
a snowball spreading in ER and scale-free networks, and how
the result can be improved with a simple combination of two
measurements: betweenness and degree. We then proceed to
evaluate the success of the method for the three spreading
schemes. Finally, we obtain some results based on a real
network of email messages, and show that the method is still
valid.
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II. MATERIALS AND METHODS

Throughout this work, we use networks with two kinds of
degree distributions. The first is the classic ER graph, which
is a random graph with fixed number of nodes N and mean
degree 〈k〉, where the degrees follow a Poisson distribution.
The second is the scale-free network, which has a power-law
degree distribution and can be constructed in two ways. We
can use the Barabasi-Albert (BA) procedure described in [28],
that is, starting from m0 nodes, at each time step we introduce
a new node that makes m new connections with the older
ones following a probability proportional to the degree of
the older nodes. The procedure is repeated many times and
a network with a power-law degree distribution P (k) ∼ k−3

is generated, with average degree 〈k〉 ∼ 2m. Another way of
constructing a scale-free network is by using the configuration
model [29], where we randomly sample N numbers following
a power-law distribution of the kind P (k) ∼ k−γ and associate
these numbers with the degree of each node, forming stubs
(or half-connections) that are randomly connected among
each other with equal probability. The networks generated
by the two methodologies are a clear example of a highly
heterogeneous network because the degree distribution has
unbounded fluctuations when N → ∞.

A. Measuring centrality

Throughout this work, we will apply four well-known cen-
trality measurements, namely, degree, closeness, betweenness,
and eigenvector.

Let dij be the length of the shortest (geodesic) path between
nodes iand j, then the mean geodesic distance with respect to
node iis

li = 1

n − 1

∑
j,j �=i

dij , (1)

where n is the number of vertices in the network. By taking
the inverse of li , we define the closeness centrality [30] of the
node i, that is,

Ci = 1

li
. (2)

To define betweenness, let ni
st be the number of geodesic

paths between nodes s and t that pass through i, and nst the
total number of geodesic paths between sand t . We define
betweenness centrality [29] as

Bi =
∑

s,t,s �=t

s �=i,t �=i

ni
st

nst

. (3)

It is usual to normalize the measurement by dividing it by (N −
1)(N − 2), where N is the number of nodes of the network.

The eigenvector centrality follows the principle that a node
connected to some other high-rank node tends to have more
relative importance in the network. Let si denote the score of
the ith node. Let A be the adjacency matrix of the network.
For the ith node, let the centrality score be proportional to the
sum of the scores of all nodes that are connected to it. Hence,

si = 1

λ

N∑
j=1

Aij sj , (4)

where Aij = 1 if node i is connected to j (Aij = 0 otherwise)
and λ is a constant. Equation (4) can be written in vector
notation as

As = λs. (5)

The eigenvector associated with the maximal eigenvalue of
this equation represents the eigenvalue centrality of the nodes.

We observe that, if we consider the usual centrality
measurements, the one that has more chances of remaining
constant after the sampling is the degree because it is a local
measurement. So, we can work to eliminate the bias caused by
the original topology from which we extracted the network by,
for example, dividing betweenness by the degree of the node.
With this in mind, we define the measurement

B̂i = Bi

(ki)r
, (6)

which is an unbiased betweenness with the proper choice of
r . In the results section, we will make clear why we choose
betweenness instead of closeness or eigenvector centrality (see
Fig. 4). Also, in [31,32] there is a great discussion about
the relation of betweenness and degree on large scale-free
networks.

B. Spreading on complex networks

Among the several types of spreading in complex networks,
we focus on those that can begin from a single node. The most
common methods used in the literature are snowball (also
called dilation), random walk, and contact process.

Snowball is a trivial spread where the subgraph is formed
by the first n breadth-first searched nodes, forming the
hierarchical levels of a given node. Because of its triviality, it

(a) (b)

(c)

FIG. 1. Illustration of the spreading schemes after two iterations,
considering the black node as seed. (a) Snowball spreading: the
numbers 1 and 2 indicate the hierarchical levels. (b) Diffusion
spreading: the numbers indicate the agent index that is executing the
random walk. (c) Contact process: T represents nodes that accepted
the contact, and F those that did not.
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(a) (b)

(c) (d)

FIG. 2. (Color online) Frequency of occurrence for the four
measurements considered, separated in seed nodes (diagonal hatch
and red online) and nonseed (checkered hatch and blue online) for
40 000 nodes (400 subgraphs with size n = 100). It is clear that, for
all measurements, the seed has higher mean than the rest of the nodes.
Note that the frequency of occurrence is normalized separately for
the seed and nonseed nodes. The original network is an ER with
N = 10 000.

is rarely used in practical problems, but more realistic methods
tend to it on limiting cases, so we will start our analysis by this
method. In our analysis, if the last hierarchical level can not
be entirely covered, we randomly choose nodes from it so as
to achieve the desired size of the extracted network.

On the random sample scheme, we start with R agents
inside a unique node and let them simultaneously execute
random walks through the network, the n first nodes visited by
the agents are considered in the final subgraph. This method
reduces to snowball when we let a large enough number of
agents execute the walk. To show this, we call P h

i (T ) the
probability that a node i a geodesic distance h from the starting

node receives a visit at iteration T, it is clear that

P h
i (T < h) = 0,

P h
i (T = h) ∝ 1 −

(
1 − 1

{k}
)R

,

where {k} is the multiplication of the degree k of each node in
a shortest path between the starting node and i. If R is made
large enough, P h

i (T = h) → 1 and we have again the snowball
spreading (see Fig. 1 for a visual explanation).

The contact process, well known as the epidemic process
in the study of disease transmission, is done exactly like
the susceptible-infected (SI) model [33], one of the simplest
models of epidemics. In the initial state, all nodes of the
network are in a susceptible state except one; then, for every
connection between an infected and a susceptible node, the
susceptible node turns to infected with a fixed probability p,
which is equal for all connections. If p = 1, a breadth-first
transmission occurs and we have exactly the snowball scheme
explained above.

Our method consists of performing S samplings of n nodes
in an original network of size N, then we apply the centrality
measurements to find each of the Sinitial nodes used to start the
spreading process. Clearly, it is expected that the nodes with the
higher centrality measurements have a better chance of being
the seed, so we begin our analysis by verifying how much
such measurements separate the seed from the other nodes
and how well each one performs for the snowball spreading.
Bear in mind that, from now on, spreading and sampling have
the same meaning.

III. RESULTS AND DISCUSSION

A. Source identification of a spreading process
on theoretical networks

We start our analysis with an ER network with mean degree
〈k〉 = 6 and size N = 10 000. We sampled 400 subgraphs
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FIG. 3. (Color online) Histogram of the nodes with the highest centrality measurements with respect to the distance from the seed for ER
(left) and BA (right) networks. The parameters are the same used in Fig. 2.
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with size n = 100 each. For every subgraph, we applied the
four centrality measurements discussed above and plotted
the histogram of the data separating the values measured for
the nodes used as seed and those that were not the seed. The
results are shown in Fig. 2.

The degree distribution of the seed nodes form a Poissonian
shape [18] with mean degree 〈k〉 ≈ 6, like the original network,
but the distribution of the rest of the nodes has a scale-free
shape, which is expected considering that during the extraction
process we create a small number of hubs that are close
to the seed and many low-degree nodes in the last sampled
level. From the histograms in Fig. 2, it is clear that using the
degree to find seeds is not a good choice, while the other three
measurements have a smaller overlapping region between the
two types of nodes, especially the betweenness that appears to
give the best distinction for our purposes.

In Fig. 3, we show the number of nodes with the highest
centrality measurement divided by the number of extracted
networks as a function of the distance from the seed; clearly,
the ideal situation is when every node found has a distance
zero from the seed, which is the seed itself. We see that, in the
case of the ER model, even for a sampling of 1000 nodes, we
get good results using closeness and betweenness, which is a
consequence of the homogeneity of the network. The sampling
breaks this homogeneity, as is clearly seen by the change in
the degree distribution. Considering the strong topological bias
present in the samples of the scale-free model (bear in mind
that because we randomly choose the seeds, the majority of the
samples were constructed from a very low-degree node, and
such a node usually has a hub as a first or second neighbor) the
method gives fair results for small extractions, but completely
fails for larger ones.

In order to improve the results, we refer to Fig. 4,
which shows the scatter plot of closeness and betweenness
as a function of degree when considering an ER network,
constructed using the same parameters of Fig. 2, with seeds
in black. We can see that, for low degree, the closeness tends
to mix the two types of nodes, which is a property of the
measurement and impossible to solve, but betweenness mixes
low-degree seeds with high-degree normal nodes, a problem
that can be solved, for example, by using Eq. (6). We now
turn our attention to the unbiased betweenness defined by
this equation, especially to the proper value of r . Starting
with a BA network with N = 1 000 000 nodes and 〈k〉 = 6,
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FIG. 4. Betweenness (left) and closeness (right) as a function of
the degree of the nodes for 400 sampled networks. The black nodes
are those used to start the sampling. The original network follows an
ER model with N = 10 000 and 〈k〉 = 6.

FIG. 5. (Color online) Angular coefficients of the linear regres-
sion of the relation log(betweenness) × log(degree), for networks
extracted with different sizes. The original network was constructed
using the BA model with N = 1 000 000 nodes and 〈k〉 = 6. For a
given size, the mean was taken using 100 randomly selected seeds that
originated a snowball sample. The vertical bars indicate the standard
deviation.

we extracted, using snowball sampling, networks with sizes
ranging from n = 100 up to n = 10 000 (100 networks for
each n) and fitted using linear regression the log-log plot of
the relation betweenness versus degree. The obtained angular
coefficients are shown in Fig. 5; we expect that those values
of r0 are the best choice to define the unbiased betweenness at
each extracted size, as it correctly eliminates the bias caused
if the seed has low degree compared to other extracted nodes.
To test this hypothesis, we plot in Fig. 6 the success of
finding the seed (finding rate, defined as number of correct
guesses divided by number of networks sampled) using the
unbiased betweenness as a function of extracted size and
parameter r . The original scale-free network was generated
using the BA model [Fig. 6(a)] and the configuration model
with a power-law degree distribution with exponent γ = 3
[Fig. 6(b)]. It is clear that the model used for the construction
of the network is essential to the quality of the method in

FIG. 6. Finding rate, represented in grayscale with contours as
visual aid of the seed as a function of extracted size and parameter r.
The original network was generated using (a) the BA procedure and
(b) the configuration model with N = 1 000 000 and 〈k〉 = 6. Note
the different scale of r between the plots and the logarithmic scale of
the extracted size.
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FIG. 7. Finding rate of the seed as a function of extracted size and
parameter r. We used the configuration model to generate a network
with (a) γ = 2 and (b) γ = 4 with N = 1 000 000 and 〈k〉 = 6. Again,
note the different scale of r between the plots and the logarithmic scale
of the extracted size.

such a way that even the best choice for r was different
between models. For the BA network, the finding rate was as
high as 0.97 for some parameters, which is an almost perfect
result, and the best choice for r is near the constant value
of Fig. 5.

To test the influence of the exponent of the power-law
degree distribution, the same simulation of Fig. 6 was done
for other two networks constructed using the configuration
model with exponents γ = 2 and 4, as shown in Fig. 7. We
found that larger values of γ improve the results, while on very
heterogeneous networks (small γ ), we have too many nodes
with high centrality and too strong fluctuations, leading to a
failure of the methodology.

By using the unbiased betweenness with the empirical
value r = 0.85 suggested by the results, we can analyze the
seed-finding success for the other two spreading techniques
discussed above. In Fig. 8(a), we show the finding rate of the
seed for networks extracted using random walkers with respect
to different extracted sizes and number of agents, represented
by fac defined as

(number of agents) = fac × (extracted size).

It is clear that, even for a small number of agents, which
creates a network composed of many chains (a sequence of
connected nodes with degree two), the method still gives fair
results. We repeated the procedure for contact process with

(a) (b)

FIG. 8. Finding rate of the seed as a function of extracted size
and (a) number of random walkers (represented by fac, see text for
explanation) and (b) contagion rate p of the contact process. The
original network has N = 1 000 000 and 〈k〉 = 6.

FIG. 9. Finding rate of the seed as a function of extracted size and
parameter r. The original network represents the exchange of emails
between members of the University Rovira i Virgili.

varying contagion rates, shown in Fig. 8(b), where we see that
the procedure still gives good results, and the quality falls fast
for different contagion rates.

B. Source identification in a real network

At last, we applied the unbiased betweenness with r = 0.85
described above to the email network of the members of the
University Rovira i Virgili [27], where each email address
becomes a node and a connection occurs if address A has
sent a message to B and B has sent an email to A. The
giant component of the network contains 1133 nodes and
10 902 edges, so we extracted a number of nodes ranging
from 100 to 1000 using snowball spread beginning from
randomly selected seeds. The obtained results are shown
in Fig. 9. We can see that, even for a real network, it is
possible to obtain a hint about the location of the source, if
the extracted (or infected) network is small compared to the
original.

IV. CONCLUSION

It is clear that the identification of the seed node has great
importance for the characterization of a network originated
from a spreading process. Our purpose was to devise a method
that could find this seed node with the highest success rate
possible. To do so, we utilized four centrality measurements,
which provide information about the relative importance of
a node, and applied them to diverse networks extracted from
ER and scale-free models, as well as an email network. We
found that the seed node has, in general, higher centrality than
the other nodes, so that finding the node with the highest
potential of access allows the identification of the source
of the network. When applying a single measurement, the
obtained results had success rates higher than 0.8 for large
ER networks and fairly good values for scale-free structures.
We showed that a simple combination of those measurements
offers a remarkable result of more than 0.95 success rate for
small scale-free networks, considering the high heterogeneity
of the network and that the result strongly depends on the
data being analyzed, as indicated by the different results
obtained between the BA, the configuration model, and the
email network. Finally, we compared the success rate for two
other spreading schemes, namely, random sample and contact
process, with a varying number of walkers and contagion rate,
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showing that the method works very well if the dynamic is
close enough to a snowball spreading and gives fairly good
results to intermediate parameters.

As said before, it may be possible to improve the results
by combining different centrality measurements with pattern
recognition methods. Also, we could devise a method of
comparing the centrality of the original network with that
of the sampled one, which is an interesting idea, but would
require us to entirely know the original network, which is
not always possible. Finally, the method could be applied

to a network containing information about a real spreading
process.
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