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Noise-free logical stochastic resonance
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The phenomena of logical stochastic resonance (LSR) was demonstrated recently [Phys. Rev. Lett. 102, 104101
(2009)]: namely, when a bistable system is driven by two inputs it consistently yields a response mirroring a
logic function of the two inputs in an optimal window of moderate noise. Here we examine the intriguing
possibility of obtaining dynamical behavior equivalent to LSR in a noise-free bistable system, subjected only
to periodic forcing, such as sinusoidal driving or rectangular pulse trains. We find that such a system, despite
having no stochastic influence, also yields phenomena analogous to LSR, in an appropriate window of frequency
and amplitude of the periodic forcing. The results are corroborated by circuit experiments.
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It has been shown that a noisy bistable system, when
driven by two square waves as inputs, produces a logical
response in some optimal range of noise [1]. The probability of
getting such response increases to unity with increasing noise
intensity, and then decreases for noise strengths exceeding
the optimal window. Further, it was observed that varying the
threshold (or bias) allowed the system to morph the output
into different logical operations. This concept, named “logical
stochastic resonance” (LSR) has led to much recent research,
spanning both basic aspects of the interplay between noise
and nonlinearity, and applied problems such as design of
flexible logic gates with enhanced performance [1–7]. The
relevance of LSR has been established in physical systems,
ranging from electrical [2,4] and nanomechanical [3] to optical
systems [5,6]. It has also been found to occur in chemical [7]
and biological [8] scenarios.

Now we examine the possibility of “noise-free LSR,” by
driving a two-state system with periodic forcing instead of
random noise. The central question is this: if the driving is
completely regular, such as sinusoidal forcing or a periodic
train of pulses, would we still observe LSR? Namely, is noise
a necessary ingredient of LSR?

Here we will demonstrate how noise-free LSR is indeed
possible, i.e., we will show that when a nonlinear bistable
system is presented a low amplitude input signal, consisting
of (aperiodic) pulses encoding logic inputs, accompanied
with periodic forcing, the state of the system accurately and
consistently mirrors the output of a logic gate. We also show
how one can reconfigure the type of logic response obtained by
variation of a readily adjustable bias. Further, this concept can
be potentially used to recover LSR-like response in situations
where noise is suboptimal.

First we lay out the general principle. Consider a nonlinear
system under periodic forcing:

ẋ = F (x) + b + I + Df (ωt), (1)

where F (x) is a generic nonlinear function obtained via the
negative gradient of a potential with two distinct stable energy
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wells at x+ and x−. The bias b has the effect of asymmetrizing
the two potential wells. I is the low amplitude input, typically
aperiodic, signal. The functional form of the periodic forcing
is f , with ω being the frequency and D being the amplitude
(intensity) of the forcing.

A logical input-ouptut association (cf. Table I) can be
obtained by feeding the system with an input signal I = I1 +
I2, where I1 and I2 are two (aperiodic) trains of square pulses
encoding the two logic inputs. Without loss of generality,
consider the inputs to take value 0.5 when the logic input
is 1, and value −0.5 when the logic input is 0. The logic inputs
being 0 or 1, produce four sets of binary inputs (I1,I2): (0,0),
(0,1), (1,0), and (1,1). These four distinct input conditions
give rise to three distinct values of I . Hence, the input signal
I = I1 + I2, is a three-level aperiodic wave form.

The logic output is determined by the state x, and can be
defined by a threshold value x∗, obtained from the position
of the barrier between the two potential wells. If x > x∗, i.e.,
when the system is around the potential well x+, then logic
output is 1. The logic output is 0 if x < x∗, i.e., when the
system is in the other well. Thus the output toggles as the state
of the system switches between wells.

We now explicitly demonstrate noise-free LSR, under
sinusoidal forcing, for a system with cubic nonlinearity:

ẋ = 2x − 4x3 + b + I1 + I2 + Df (ωt), (2)

where f (ωt) = sin(ωt).
This particular nonlinear function, F (x) = 2x − 4x3, is

efficiently realized by a linear resistor, linear capacitor, and a
small number of complementary metal-oxide-semiconductor
(CMOS) [9] transistors [2], and is capable of operating in
very high frequency regimes [10]. Further, such a system may
be implemented with integrated circuits and nanoelectronic
devices.

For this system the threshold value x∗, defining the output,
is 0. So, we interpret the state x > 0 as logic output 1 and
x < 0 as logic output 0. Alternately, complementary gates can
be obtained by interpreting the output as 1 when x < 0, and
as 0 when x > 0.

The response of the system under different angular frequen-
cies of sinusoidal forcing is displayed in Fig. 1. Interestingly
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TABLE I. Relationship between the two inputs and the output of
the fundamental OR and AND logic, and the complementary NOR and
NAND logic operations. All possible logical circuits can be constructed
by combining the NOR (or NAND) gates [11].

Input set (I1,I2) OR AND NOR NAND

(0,0) 0 0 1 1
(0,1)/(1,0) 1 0 0 1
(1,1) 1 1 0 0

we observe, that in order to produce a robust logical combina-
tion of the inputs, the system requires an appropriate forcing
frequency, which is neither too small nor too large. Namely,
for a given value of bias b and amplitude of forcing D, we get
the desired logical output only for some suitable range of ω.

Note that by simply changing the bias we can easily switch
to another logic operation. In this case, when bias b is changed
from 0.5 to −0.5, we morph from OR logic to AND logic. This is
clearly evident from the timing sequences displayed in Fig. 2.
This effect arises from the change in the symmetry and depths
of the potential wells due to changing b. The complementary
logic gates, namely, NOR and NAND, can be straightforwardly
obtained by the alternate output interpretation.

We can quantify the consistency of obtaining a given logic
output as follows: first we calculate the probability of obtaining
the desired logic output for different sets of input, i.e., the ratio
of the number of successful runs (namely, a run where the
desired logic output is obtained) to the total number of runs. We

then define a very stringent measure P reflecting the reliability
of the system as a logic gate: when the probability defined
above is ∼1 (i.e., when the logic operation is correctly obtained
for all given input sets) we take P to be 1, and 0 otherwise.
Namely, partial success, where certain combinations of inputs
fail to give the correct logic output, leads to P = 0, since
we want the logic response to be obtained for all random
combinations of inputs. From the point of view of applications,
anything less is not useful, and our measure of successful gate
operation P reflects this stringent requirement.

Figure 3 shows the variation of P for logic operations AND

and OR with respect to drive frequency. It is clearly evident that
we obtain a window of angular frequency for which our system
consistently gives the desired logic response as output, i.e., for
ωlow < ω < ωhigh the system yields perfect gate operations.
Forcing at angular frequencies lower than ωlow acts like a
quasistatic “signal,” akin to a bias, as the time scale of the
drive is too slow and does not vary much vis-à-vis the natural
time scale of the system. Frequencies larger than ωhigh do
not achieve the desired response, as the drive then varies so
fast that the system effectively responds to an averaged force
field.

Further, we observe in Fig. 4 that by increasing the
amplitude of sinusoidal forcing (D) the optimal window we get
for ω, widens and shifts to the higher end. Namely, the lower
and upper thresholds of optimal angular frequency (ωlow and
ωhigh) increases for increased value of D.

In order to demonstrate the generality of our results, we
now drive the system with a periodic rectangular wave form,
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FIG. 1. (Color online) Panels top to bottom show (a) streams of inputs I1 and (b) I2 (which take value −0.5 when logic input is 0 and value
0.5 when logic input is 1), and output x(t) for forcing frequencies [cf. Eq. (2)]: (c) ω = 2, (d) ω = 10, and (e) ω = 20. Here, b = 0.5 and
D = 2. The dashed blue line in panels (c)–(e) indicates the expected OR logic output (with state x > 0 being logic output 1, and x < 0 being
logic output 0). Clearly, only when ω = 10, do we get the desired OR gate consistently.
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FIG. 2. (Color online) Wave form of x(t) [cf. Eq. (2)] with angular
frequency ω = 10, b = −0.5, and D = 2. The bold blue line indicates
the expected AND logic output. By changing bias b from 0.5 to −0.5,
we were able to switch from an OR (cf. Fig. 1) to an AND gate.

and show that this too allows us to obtain a LSR-like response.
So consider the system in Eq. (2) above, now forced with a
rectangluar wave, where f (ωt) switches periodically between
the values 1 and −1, with time period T = 2π/ω, where ω

is the angular frequency, D is the amplitude of rectangular
pulse, and b is the asymmetrizing bias. In this system too, we
observe that reliable logic output is obtained for intermediate
frequencies.

Further it is evident from Fig. 4 that driving with rectangular
pulses is more efficient, as the system can function as a logic
gate for lower amplitudes D, as well as over larger ranges
of forcing frequencies for fixed D. We also investigated the
logic response under increasingly low input strengths. We
found that rectangular forcing allows logic behavior for lower
input strengths than sinusoidal forcing, again demonstrating
the efficiency of driving with rectangular wave forms.
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FIG. 3. (Color online) The shaded areas indicate where the
probability P of obtaining the OR (top blue) and AND (bottom green)
logic operations is 1, as functions of angular frequency (x axis) and
bias (y axis). In both cases, D = 2.
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FIG. 4. (Color online) The curves indicate the limiting forcing
frequencies ωlow and ωhigh, for varying amplitude D, for sinusiodal
forcing (red solid line) and rectangular forcing (green dashed line).
Here b = 0.5 and the probability of obtaining the OR logic operation
(leaving small transience after the switching of inputs) is 1 for the
values of D and ω lying between the two lines, i.e., the lines mark
the highest and lowest forcing frequencies yielding robust logic for
different forcing amplitudes (and analogously the highest and lowest
driving amplitudes for different frequencies).

In the examples above, we have thus shown that noise is not
a necessary condition to obtain a consistent logic response. It
is possible to have phenomena completely analogous to LSR,
without noise. So the forcing that induces the desired hopping
in response to inputs does not have to be random noise, but can
be a sine wave or even a cyclic set of pulses. The system needs
only appropriate pushes sufficiently often, in order to change
its state to the desired well. The time scale of the forcing
is crucial, while its form can range from noise to sinusoidal
forcing or rectangular pulses.

An explanation for the optimal band of frequencies is
obtained by examining the time taken by the system to cross
over the barrier from the bottom of the wells under the input
signal encoding the logic inputs (0,1) or (1,0), which is
the most difficult and sensitive case to satisfy consistently.
The inverse of this time is analogous to the Kramer’s rate
representing the characteristic escape rate from a stable state
of a potential, and determines the band of forcing frequencies
and amplitudes that allow robust logic response. Now, in
order to obtain a consistent logic response, the system must
simultaneously satisfy certain conditions. First, the driving
frequency should be more than the frequency at which the
stream of inputs switch. Secondly, for a fixed value of
amplitude D, the following has to be ensured: when the
input signal encodes the logic input set (0,1) or (1,0) (i.e.,
I = I1 + I2 = 0), the system should be in the appropriate
well. For instance, for OR logic, under net zero input signal
the system should be in the higher well. So it should be able
to cross the barrier from the lower to the upper side. At the
same time, the reverse crossing should not occur. These two
conditions set the two limits on forcing frequency (see Fig. 5).

Further, the forcing frequency should not be so high that
the system is unable to respond to it, i.e., the time for which
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FIG. 5. (Color online) Lines indicating the limiting forcing
frequencies for which the system crosses the barrier, when driven by
a rectangular wave of amplitude D. Specifically for all frequencies
ω and amplitudes D above the lines, the system crosses over with
probability 1, within 100 time steps, from upper to lower well (solid
red line), and from lower well to upper well (dashed green line).
Here bias b = 0.5 (appropriate for OR logic) and input signal I = 0
[namely, encoding logic input set (1,0)/(0,1)]. The area inside these
curves gives the allowed forcing frequency and amplitude band, as it
allows crossing from the lower to the upper well, but not the reverse.
These curves mirror the ones displayed in Fig. 4.

the driving force pushes the system in the requisite direction
should be more than the time that the system takes to shift from
one well to other. The amount of time taken by the system to
cross over to the desired well in response to a new input signal,
namely, the transience (which determines latency), should also
be sufficiently high so that the system has enough time to
make the passage. Further, for very low frequency forcing, the
system may have long transience as the transient period must
include at least one full cycle of forcing.

Lastly, we present the realization of these results in
electronic circuit experiments. In Fig. 6, the analog simulation
circuit for Eq. (2) is depicted. The input sinusoidal signal is
denoted as f (t). The amplitude of the sinusoidal signal is fixed
at 2V and the frequency values range from 500 Hz to 30 KHz.
I (t) corresponds to logic input signal (I1 + I2), where the logic

FIG. 6. Circuit diagram: here OA1, OA2, and OA3 are oper-
ational amplifiers (AD712). M1 and M2 are analog multipliers
(AD633). The resistor values are fixed as R1 = R3 = R4 = R5 =
R6 = R8 = 100 k�. R2 = 50 K�, R7 = 10 K�, and R9 = 400 k�.
The capacitor value is fixed as C1 = 0.01 μF.

input signals I1 and I2 take value −0.5 V when logic input is
0 and value 0.5 V when logic input is 1. The bias voltage Vc

corresponds to bias b in Eq. (2). We set Vc equal to 0.5 and
−0.5 V for the different logic operations. The output node
voltage (VO) of operational amplifier OA2 corresponds to x(t)
of Eq. (2).

Representative results of circuit realizations of sinusoidal
forcing are displayed in Fig. 7. Comparison with Fig. 1
clearly shows that the same phenomenon is observed in
these experiments. Namely, only with sinusoidal forcing with
moderate frequency, equal to 10 KHz, do we get the desired
logic gate operation reliably.

In summary, we have explicitly shown through numerics
and circuit experiments, that it is possible to obtain a logic
response similar to LSR, without the presence of noise. Using
only a periodically driven bistable system, we are able to
produce a logical combination of two inputs streaming in
any random sequence. For very small or very large forcing
frequencies the system does not yield any consistent logic
output, but in a wide band of moderate frequencies the system
produces the desired logical output very reliably. Furthermore,
the logic response of the system can be easily switched from
one logic gate to another by varying the bias in the system.
Thus it is evident that noise-free LSR indeed exists, and noise
is not a necessary ingredient to facilitate changes of state that
reliably mirror logical outputs.

FIG. 7. (Color online) From top to bottom: panels (a) and (b)
show streams of inputs I1 and I2, which take value −0.5 when logic
input is 0 V and value 0.5 V when logic input is 1; panels (c)–(e)
show the wave forms of the output voltage, with angular frequencies:
ω = 2 KHz, ω = 10 KHz, and ω = 20 KHz. Here, b = 0.5 V and
D = 2 V. The bold blue line indicates the expected OR logic output.
Clearly, only when ω = 10 KHz, do we get the desired OR gate
consistently.
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