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Calculation of complex DNA damage induced by ions
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This paper is devoted to the analysis of the complex damage of DNA irradiated by ions. The assessment of
complex damage is important because cells in which it occurs are less likely to survive because the DNA repair
mechanisms may not be sufficiently effective. We study the flux of secondary electrons through the surface of
nucleosomes and calculate the radial dose and the distribution of clustered damage around the ion’s path. The
calculated radial dose distribution is compared to simulations. The radial distribution of the complex damage is
found to be different from that of the dose. A comparison with experiments may solve the question of what is more
lethal for the cell, damage complexity or absorbed energy. We suggest a way to calculate the probability of cell
death based on the complexity of the damage. This work is done within the framework of the phenomenon-based
multiscale approach to radiation damage by ions.
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I. INTRODUCTION: MULTISCALE APPROACH
TO RADIATION DAMAGE

Ion-beam cancer therapy has recently been in a stage of
booming development. Despite the success of this technique,
a number of scientific questions on the microscopic level
have not yet been resolved. This field has attracted much
attention in the scientific community [1–9]. Among the studies
is the multiscale approach to the radiation damage induced
by irradiation with ions, aimed at the phenomenon-based
quantitative understanding of the scenario from the incidence
of an energetic ion on tissue to the cell death. This approach
combines many spatial, temporal, and energetic scales in-
volved in this scenario. The success of this approach will
provide a phenomenon-based foundation for ion-beam cancer
therapy, radiation protection in space, and other applications
of ion beams. The main issues addressed by the multiscale
approach are ion stopping in the medium [10]; the production
and transport of secondary electrons produced as a result of
ionization and excitation of the medium [10,11]; the interaction
of secondary particles with biological molecules, the most
important being DNA [7]; the analysis of induced damage; and
the evaluation of the probabilities of subsequent cell survival
or death. This approach is interdisciplinary since it is based
on physics, chemistry, and biology. Moreover, it spans several
areas within each of these disciplines.

The multiscale approach started with the analysis of ion
propagation, which resulted in the description of the Bragg
peak and the energy spectrum of secondary electrons [10,11].
The practical goal of these works provided a recipe for an
economical calculation of the Bragg peak position and shape. It
was concluded theoretically that the cross section of ionization
of molecules of the medium, singly differentiated with respect
to the energies of secondary electrons, is the most important
physical input on this scale (the longest in distance and
highest in energy). Relativistic effects play an important role
in describing the position of the Bragg peak as well as the
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excitation channel in inelastic interactions [10]. The effect of
charge transfer and projectile scattering influence the shape
of the Bragg peak [10]. The effects of nuclear fragmentation
happening in the events of projectile collisions with the nuclei
of the medium are also important on this scale.

The next scale in energy and space is related to the transport
of the secondary particles, which has been considered in
Refs. [7,12], but it may still be revisited. The results of these
analyses give the spatial distributions of secondary particles as
well as an accurate radial dose distribution.

The goal of the analysis of DNA damage mechanisms is to
obtain the effective cross sections for the dominant processes,
which should be taken into account in order to calculate the
probability of different lesions caused by different effects. The
above three stages of processes represent not only different
spatial scales, but also different time scales, ranging from 10−21

to 10−5 s. The aim of the physical part of the analysis is the
calculation of the spatial distribution of primary DNA damage,
including the degree of complexity of this damage. Then the
repair and other biological effects can be included and thus
the relative biological effectiveness (RBE) can be calculated.
The RBE [1,5] is one of the key integral characteristics of the
effect of ions compared to that of photons. This ratio compares
the doses of different projectiles leading to the same biological
effect.

Traditionally, the radial dose, calculated in Ref. [12], is
related to the radial distribution of damage. However, this
does not include the complexity of damage, which may not be
directly related to the dose. It is still not clear how to relate the
dose to the complexity of the damage. This work is a step in
this direction.

Finally, the analysis of the possibility of thermomechanical
damage pathways was presented in Ref. [10] and was further
advanced in Refs. [13,14]. It was shown that forces, caused by
high-pressure gradients emerging as a result of local heating
of the medium by passing ions, can be strong enough to break
covalent bonds (more than 10 nN), but act only for a very short
time.

This work is devoted to the calculation of damage com-
plexity and its distribution. This is an important stage in
the multiscale approach since it is closely related to the
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probability of cell death as a result of damage [15–19]. Damage
complexity is one of the defining factors in calculating the
RBE.

In Sec. II we define the complex damage and present a way
to quantify it. In Sec. II A we calculate the fluence of secondary
electrons as a step in the assessment of complex damage. In
Sec. II B we calculate the radial dose distribution and give an
example of a calculation of the complex damage on that basis.

II. DISTRIBUTION OF THE COMPLEX DAMAGE

Complex damage is defined as the number of DNA lesions,
such as double-strand breaks (DSBs), single-strand breaks,
abasic sites, and damaged bases, that occur within about
two helical turns of a DNA molecule so that when repair
mechanisms are engaged they treat a cluster of several of
these lesions as a single damage site [15–17]. In Ref. [9] the
complexity of DNA damage has been quantified by defining a
cluster of damage as a damaged portion of a DNA molecule by
several independent agents such as secondary electrons, holes,
or radicals.

In humans, DNA molecules are by and large located in cell
nuclei, where they are organized with proteins into chromatin
fibers. The main structural unit of chromatin fibers is a
nucleosome [20]. A nucleosome core particle consists of about
a 146-base-pair section of a DNA molecule wrapped around
a cylindrical aggregate of eight histone proteins (histone
octamer).

A. Damage complexity distribution from the random-walk
approach

In Ref. [7] we studied the transport of secondary electrons
to a given DNA convolution. This study led to the calculation
of the radial distribution of DSBs with respect to the ion path.
This calculation was limited by only considering secondary
electrons to be the agents of DNA lesions. Nevertheless, this
allowed us to make an estimation of the number of DSBs
produced by ions per unit length of path in the vicinity of
the Bragg peak. The results obtained in that work were in
reasonable agreement with the experimental data [21]. The
approach of Ref. [7] can be used for calculating the radial
distribution of damage complexity.

Let us choose two adjacent convolutions of a DNA molecule
as a target. Then the average number of lesions per this segment
of DNA, N , is given by the product of the probability of
inducing damage by a secondary particle on impact � by the
fluence through the target. Alternatively, it is given by the
same probability multiplied by the volume of the segment and
by the number density of agents. The probability of complex
damage is then a Poisson distribution P (N,ν),

P (ρ,ν) = exp[−N (ρ)]
N (ρ)ν

ν!
, (1)

where ν is the degree of complexity [9]. In Eq. (1), N is
written as a function of ρ, the distance of the segment from
the path. Our goal is to calculate the radial distribution of
complex damage with respect to the ion path in the simplest
case, when all agents are equivalent, keeping the probability
� as a parameter. In this paper we limit secondary particles
to secondary electrons. A further development will include

transport of secondary particles including chemical reactions
and more details of their distributions.

In this section we calculate the fluence of the secondary
electrons through the DNA segment. In order to do this we
consider their diffusion from the place of their origin, as done
in Ref. [7]. We assume that the diffusion of the secondary elec-
trons is cylindrically symmetric with respect to the ion’s path
and calculate the number of electrons that hit two adjacent con-
volutions of a DNA molecule. The cylindrical diffusion in the
vicinity of the Bragg peak can be justified by the fact that dur-
ing the time that it takes secondary electrons to diffuse by about
10 nm, the projectile moves a distance of about 1 μm [14].
The linear energy transfer (LET) along this distance, described
by the coordinate ζ , remains nearly constant, as does the
production of secondary particles per unit length dN

dζ
; therefore,

the latter is independent of ζ . This number of secondary
electrons produced per nanometer of the ion’s path is taken
to be equal to 20, which corresponds to the average number of
ionizations per nanometer of the ion’s path in the vicinity of
the Bragg peak [7,10].

Naturally, we expect the largest damage to occur when the
incident ion passes through a nucleosome. Therefore, in this
paper we calculate the complex damage that takes place in two
consecutive convolutions of a DNA molecule on the surface
of a nucleosome situated outside the ion’s path (neglecting
the stretches of linker DNA connecting nucleosomes). In what
follows, a nucleosome is represented by a cylinder with a
radius of 5.75 nm and height of 6 nm and the target section of
a DNA molecule is a rectangular patch (7.2 × 2.3 nm2) of its
surface, as shown in Fig. 1.

In order to calculate the fluence we consider the rate of
secondary electrons, dNA/dt , at the time t , passing through
the patch dA, located at a distance ρ from the path. According
to Ref. [22], for a cylindrically symmetric random walk, it is
given by the expression

dNA(r,t)
dt

= dA · D∇P (t,ρ)
dN

dζ

= dA · Dnρ

∂P (t,ρ)

∂ρ

dN

dζ
, (2)

FIG. 1. (Color online) Geometry of the problem. Secondary
electrons radially diffuse from the ion’s path and interact with a
section of DNA molecule wrapped around a histone octamer.
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where D = v̄l/4 is the diffusion coefficient, l is the elastic
mean free path of electrons in the medium,1 v̄ is the speed of
the electron, nρ is a unit vector in the radial direction from the
path, and

P (t,ρ) = 1

πv̄tl
exp

(
− ρ2

v̄t l

)
(3)

is the probability density to observe a randomly walking
electron at a time t and a distance ρ from the path. Eventually
we are going to integrate Eq. (2) over both the time (to get the
total number of electrons incident on the patch dA) and dA
(in order to calculate the total number of electrons incident on
a two-twist segment of a DNA molecule). Before we do this,
we need to somewhat modify Eqs. (2) and (3).

First, the time dependence can be translated to the de-
pendence on the number of steps, k, using v̄t = kl and
v̄dt = ldk. Second, there is a probability that the electron
interacts with a molecule inelastically, loses energy, and drops
off from a random walk. In order to account for such a
subtraction, we introduce an attenuation factor ε(k). In Ref. [7]
we used

ε(k) = γ exp(−γ k), (4)

where γ is a constant that is proportional to the ratio of
mean free paths between inelastic and elastic collisions. This
expression is physically motivated, but it does not take into
account the energy dependence of mean free paths and their
ratio. In this paper we will keep the elastic mean free path l

energy independent and equal to 1 nm [12], while we will use
the attenuation given by

ε(k) = exp [α exp (−kβ)]. (5)

This expression with constants α = 60 and β = 0.055 appears
as a result of fitting the radial dose distribution derived from
a model of secondary electron transport to that obtained using
Monte Carlo simulations [23]. This model assumes a random
walk of electrons with a constant mean free path, i.e., the
same used by us in this section. Equation (5), with a modified
dependence on k, implicitly introduces the dependence of the
attenuation on energy. The attenuation according Eq. (5) is
steeper than that according to Eq. (4) for small k. This means
that electrons with higher energy tend to lose it in inelastic
collisions more quickly than those with smaller energies and
the attenuation at large k is much smaller. We will return to
this parametrization in Sec. II B.

Now we can rewrite Eq. (2), substituting Eq. (3), including
the attenuation, and switching from variable t to k as

dNA(r,k) = dk dA · nρ

ρ

2πk2l2
exp

(
− ρ2

kl2

)
ε(k)

dN

dζ
, (6)

and integrate it over the target part of the surface of the cylinder,
representing a nucleosome. The results of integration [Eq. (6)]
over time and the area of the patch are shown in Fig. 2. As
expected, this number decreases with distance ρ from the path.

1In two dimensions, l is a product of the mean free path in three
dimensions multiplied by the factor of

√
2/3.
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FIG. 2. (Color online) Number of secondary electrons diffused
through a two-convolution segment of DNA molecule on the surface
of a nucleosome in the vicinity of the ion’s path, plotted as a function
of the distance ρ of the nucleosome from the path. The calculation is
done using the attenuation function given by Eq. (5).

If we multiply this number NA by the probability � of
producing a lesion in a DNA molecule, uniformly distributed
on the surface of the nucleosome, we obtain the dependence
of the number of lesions on the distance from the path. Then
Eq. (1) can be used, with

N (ρ) = �NA(ρ), (7)

to calculate the radial distributions of probabilities of clusters
of lesions.

This number has to be corrected to include further ion-
izations and holes, which also play a role in the damage.
Holes may recombine producing Auger electrons, capable
of inducing lesions to DNA [24]. Before these corrections
are made, these calculations remain qualitative. When the
transport properties of electrons and other secondary particles
in the medium are known and N (ρ) is calculated more
definitely, the approach to the calculation of the clustered
damage, described above, can be useful.

In addition to this calculation, it is possible to compute
similar probabilities for cases when the path passes through
the nucleosome; however, this would require calculating
the transport of secondary electrons through a histone and
knowledge of the elastic and inelastic cross sections of
electrons in this medium. Recent calculations indicate a 20%
higher stopping power of DNA compared to liquid water [25].
We will defer these calculations until another time. However,
it may be worth mentioning that the clustered damage of a
histone may also deserve attention in regard to cell damage.

The calculation of the number of secondary electrons
passing through a patch on a nucleosome presented in this
section is important for several reasons. First, it can be
compared with Monte Carlo simulations done for the purposes
of nanodosimetry [26]. Second, it will be possible to compare
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this dependence (correspondingly modified) with dosimetric
experiments [27,28]. At this point it is possible to use the
dependence shown in Fig. 2 for the calculation of the complex
damage (using additional parameters); however, in this paper
we choose to use the radial dose distribution to demonstrate
a calculation of complex damage. At this moment, the latter
approach allows for more checkpoints and we describe it in
the following section.

B. Derivation of damage complexity from the radial dose
distribution

As shown in Ref. [12], the radial number density distri-
bution of secondary electrons that lose energy and become
thermalized or bound is related to the radial dose. Here we
revisit the calculation of the radial dose and infer the sec-
ondary particle distribution, with the complexity distribution
following from that.

Let us assume that all secondary electrons start from the
ion’s path and propagate via a random walk in two dimensions;
this corresponds to the cylindrically symmetric propagation
(neglecting some fast δ electrons). Then, according to Eq. (3),
rewritten in terms of k, the probability to find a secondary
particle in a cylindrical layer of unit length between ρ and ρ +
dρ after k random steps is dNs

dζ
P (k,ρ)2π ρ dρ. This probability

is normalized to dNs

dζ
for any number of steps k if we integrate

over dρ from 0 to infinity. The normalization does not change
if we include the attenuation ε(k) due to inelastic processes
and introduce a distribution over k. Transferring from the sum
to the integral, which is appropriate for large k, this can be
written as ∫ ∞

1

∫ ∞

0
P (k,ρ)ε(k)2π ρ dρ dk = 1. (8)

Then the density of the particles, which lost energy within the
cylindrical layer of a unit length between ρ and ρ + dρ, can
be obtained by dividing the integrand of Eq. (8) by the volume
of this shell of a unit length, i.e., 2π ρ dρ, and the radial dose
D(ρ) can be obtained by multiplication of this density by the
average energy per particle W̄ = 45 eV [10]:

D(ρ) = W̄
dNs

dζ

∫ ∞

1
P (k,ρ)ε(k)dk. (9)

This dose is normalized by the LET L:∫ ∞

0
D(ρ)2π ρ dρ = L. (10)

However, the radial dose distribution calculated using Eq. (9)
with the attenuation, defined by Eq. (4), does not agree with
simulations of, e.g., Ref. [23]. The reason for this is that
in Eq. (4) we have assumed energy-independent attenuation.
According to, e.g., Ref. [29], both elastic and inelastic mean
free paths are energy dependent. Moreover, as pointed out in
Ref. [7], the dependence of ranges of low-energy electrons in
liquid water on energy, discussed in Ref. [30], indicates that
the attenuation steeply decreases as the energy of the electron
decreases (after several inelastic collisions). This can be taken
into account by parametrizing the attenuation as a function
of k so that the dose calculated using Eq. (9) agrees with
experiments and simulations. In this work we have found that
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FIG. 3. (Color online) Comparison of the calculated radial
dose (line) [Eq. (9)] with that simulated in Ref. [23] (dots) for
25-MeV/nucleon carbon ions.

the dose calculated using Eq. (9) with attenuation defined by
Eq. (5) with parameters α and β given above2 is in reasonable
agreement with that simulated in Ref. [23]. This comparison
is shown in Fig. 3.

The simulation done in Ref. [23] corresponds to
25-MeV/nucleon carbon ions with L = 60 eV/nm. This is
about 4 mm in front of the Bragg peak, whereL = 900 eV/nm.
Therefore, we recalculated the same dose using the procedure
described above for 0.3-MeV/nucleon carbon ions with L =
900 eV/nm. The result is presented in Fig. 4. This distribution
can be compared to the experimental measurements of the

2Equation (5) has to be divided by
∫

ε(k)dk for normalization.
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FIG. 4. (Color online) Calculated radial dose distribution for a
LET of 0.9 keV/nm.
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FIG. 5. (Color online) Radial distribution of clusters of two
lesions (solid line) and clusters of three lesions (dashed line) for
� = 0.1.

radial dose distribution; however, such data are currently
unavailable for such a LET.

Using this dose distribution around a single ion’s path, we
can calculate the distribution of clusters of DNA damage. In
order to do this, we have to divide the expression in Eq. (9)
for the dose by W̄ and obtain the radial distribution of the
density of inelastically interacting secondary electrons. If we
then multiply that by the effective volume of the target segment
DNA and the probability of producing a lesion �, we will
obtain N (ρ). Then we can calculate the radial distribution of
complex damage using Eq. (1). This will be correct only if
N (ρ) does not significantly change over this volume.

If we assume that the effects of varying N (ρ) on the size
of some effective volume can be neglected, then we can
calculate the radial distribution Pc of clusters for a given ν.
An example of such dependences for a volume of 40 nm3

(corresponding to the volume occupied by two convolutions
of DNA molecule) and � = 0.1 of two- and three-lesion
clusters is shown in Fig. 5.

These distributions give us an opportunity to verify the
significance of clustering. If, e.g., all clusters containing three
or more lesions are lethal for the cell, we can add up their
probabilities and plot the dependence of the probability of cell
death Pd on the distance from the path. These dependences
for � = 0.1 and 0.3 are shown in Fig. 6. This figure indicates
that if the clusters of three and more lesions per nucleosome
are indeed lethal, then the effective distance from the path
on which the cells are killed is less than 1.5 nm for � = 0.1
and exceeds 2 nm for � = 0.3. Hence, in the former case,
it is essential that the ion passes through a nucleosome in
order to kill the cell, while in the latter, a nucleosome can
be at a distance and still be severely damaged. This analysis
opens several fields for comparison with experiments: the
dependence of lethality on the radial distance from the path
and on the size of clusters of lesions for biophysics and the
radial dependence of the dose and cluster damage distribution
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FIG. 6. (Color online) Radial distribution of clusters of three and
more lesions, deemed proportional to the probability of cell death. The
solid curve corresponds to � = 0.1 and the dashed curve corresponds
to � = 0.3.

for nanodosimetry. The radial scale in Fig. 6 is shorter than
10 nm. Even though this size is about 1000 times smaller
(for glial cells) than that of the cell’s nucleus [7], it plays a
significant role in calculations of the probability of cell death
and will be critical for the comparisons with nanodosimetric
data [26–28,31].

If we keep the assumption that three- and higher-order
lesion clusters are lethal to the cell, then we can plot the
dependence of 1 − Pd , which is similar to the probability of
cell survival, on the radial dose. This dependence is presented
in Fig. 7 and can also be compared with experiments. The
scale on the abscissa for the radial dose is indeed in MGy.
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FIG. 7. (Color online) Dependence of 1 − Pd , which is similar to
the cell survival rate (dimensionless), on the local radial dose per ion
with � = 0.3.
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This is larger (by a factor of 106) than that in typical cell
survival curves [32], where the dose is absolute, i.e., planar
integrated per ion and distributed for the whole beam. A typical
spatial distance between the ion paths is larger than 350 nm.3

Therefore, the volume per 1 nm of the ion’s path is at least
105 nm3. This makes the average integral dose at the Bragg
peak of a single carbon ion about 7 × 10−3 eV nm−3 = 110 Gy.
This dose has to be averaged once again when one considers
the whole ion beam. This results in another factor of the order
of 0.1, which reduces the maximum dose to 10–15 Gy. The
absolute dose is important for treatment planning, but here we
are interested in a more detailed description and the radial,
not averaged, dose is more relevant for this purpose. This is
why we present the dependence of a probability cell survival
on the local radial dose. Below we show how to do a planar
integration and give an example of an estimate.

The radial distributions of clustered damage probabilities
can be integrated over the radius in order to obtain the
probability of lethal damage per unit length. This is relevant
for current experiments. When experimentalists study foci that
reveal the efforts of proteins to fix damaged DNA they observe
that the foci are very large compared to the scale of the radial
distribution of the dose. The experimentalists can measure
the linear density of clusters along the path and hypothesize
about the number of certain lesions, such as DSBs, per unit
length [33].

In order to obtain the longitudinal distributions of clusters,
we have to introduce the density of the distribution of
nucleosomes with respect to the ion path η(ρ). We can then
integrate the radial-dependent probability of the complex
damage given by Eq. (1) [for appropriate N (ρ) dependence]
with this density distribution:

P (ν) =
∫ ∞

0
exp [−N (ρ)]

N (ρ)ν

ν!
η(ρ)2π ρ dρ. (11)

This gives the number of clusters of ν lesions per nanometer,
which can be compared with the nanodosimetric experiments
[26–28,31] and can give still another relation for unknown
parameters such as � and the dependence of the lethality of
damage on the order of cluster ν.

3According to the beam data [1].

The density of the distribution of nucleosomes η(ρ) depends
on the structure of packing nucleosomes in fibers. If we
consider a section of a cylindrical fiber of tightly packed
nucleosomes [20] to be parallel to the path 1 nm away from
its surface, then an estimate made with the above assumptions
producing the maximal effect of damage complexity predicts
about three complex damage sites (with ν > 2) per 10 nm of
a carbon ion’s path.

III. CONCLUSION

The multiscale approach was designed in order to un-
derstand the mechanisms that make the ion-beam therapy
effective. This includes an understanding of what is truly
different between different therapies. It is widely accepted
that the high-LET radiation brings about a high dose in the
desired location. However, it is not yet clear whether the dose
entirely accounts for all biological consequences, namely, how
different the dose and complexity distributions are and which
of them is responsible for the cell death. This paper tackled
these questions and, although more experiments are needed
to confirm them, the principle framework of the problem has
been set up.

The main accomplishments of this paper are the calculation
of the radial dose distribution (comparable with that obtained
by simulations), the derivation of the radial distribution of
secondary electrons from the radial dose distribution, and
the calculation of the radial distributions of different clusters
of lesions. On the basis of these distributions we developed
models for calculations of dependences of the probabilities of
cell death as a result of complex damage of DNA at a distance
from the ion’s path and along the path. These calculations may
be very practical and we hope that they will be explored by
experimentalists in nanodosimetry as well as by biophysicists.
The main point in our approach to damage complexity is that
it can be described by a spatial distribution and compared to
the radial dose distribution and the distribution of killed cells.
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