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Beyond the edge of chaos: Amplification and temporal integration by recurrent networks
in the chaotic regime
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Randomly connected networks of neurons exhibit a transition from fixed-point to chaotic activity as the
variance of their synaptic connection strengths is increased. In this study, we analytically evaluate how well
a small external input can be reconstructed from a sparse linear readout of network activity. At the transition
point, known as the edge of chaos, networks display a number of desirable features, including large gains and
integration times. Away from this edge, in the nonchaotic regime that has been the focus of most models and
studies, gains and integration times fall off dramatically, which implies that parameters must be fine tuned with
considerable precision if high performance is required. Here we show that, near the edge, decoding performance
is characterized by a critical exponent that takes a different value on the two sides. As a result, when the network
units have an odd saturating nonlinear response function, the falloff in gains and integration times is much slower
on the chaotic side of the transition. This means that, under appropriate conditions, good performance can be
achieved with less fine tuning beyond the edge, within the chaotic regime.
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The dynamic state of a network of neurons influences
its information processing capabilities [1]. A network of
recurrently connected neurons generates complex dynamics
that have been utilized for various computational purposes
[2–4]. Large networks of this type exhibit a sharp transition
from nonchaotic to chaotic dynamics [5,6], and performance
has been characterized as optimal at the edge of this transition
[4,7–9]. The location of the transition depends on properties
of the inputs to the network [10,11], so maintaining a
network right at the edge of chaos would require finely tuning
parameters for each input, which is impractical. Therefore,
it is important to determine how performance degrades away
from this optimal transition point. Here, using a model that is
amenable to analytic calculation, we find that, under many
circumstances, performance degrades more slowly on the
chaotic side of the transition than on the nonchaotic side,
showing that it is advantageous to work in the chaotic regime
when fine tuning to the edge of chaos cannot be achieved.

Our study is based on a dynamic mean-field calculation
applied to randomly connected networks. We compute the
signal-to-noise ratio for reconstructing a small external input
from a sparse linear readout, a standard network task. This
ratio bounds decoding accuracy for both static [12] and
dynamic [13] stimuli. To quantify the behavior of the signal-
to-noise ratio near the transition point, we evaluate its critical
exponents. The analytic expression for the signal-to-noise
ratio provides an intuitive picture of the tradeoff between
increasing the signal through a larger gain and increasing
chaotic noise. The presence of observation noise emphasizes
the importance of increasing the signal over decreasing the
internally generated noise, providing an advantage to the
chaotic state. As outlined above, in the presence of observation
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noise, the signal-to-noise ratio is maximized at the edge
of chaos, where the network time constant shows a critical
slowing and small inputs are highly amplified. In addition, at
a given distance from the transition point, the chaotic state is
often more informative than the nonchaotic state and provides
longer-lasting memory.

I. MODEL AND METHOD

We use the dynamic mean-field method [5,10,11,14] to
analyze responses of randomly connected networks to external
input. For simplicity, we study a discrete-time model with N

units. The dynamics of the recurrent input to unit i on trial a

(where each trial starts from a different initial condition; what
we call trials are also known as replicas) is described by

ha
i (t) =

N∑
j=1

Jijφ
a
j (t), (1)

where Jij is the coupling strength from unit j to unit i,

φa
j (t) ≡ φ

(
θ (t−1) + ha

j (t−1)
)

(2)

is an abbreviation used for a saturating response nonlinearity,
φ, and θ (t) is a spatially uniform external input. Our goal
is to determine how accurately and over what time period
θ (t) can be decoded from a linear readout of network activity
[15,16]. Each coupling strength is independently and randomly
drawn from a distribution with zero mean and standard
deviation g/

√
N . For the purposes of calculation, we use

a Gaussian distribution, but distributions that include a δ

function at zero, corresponding to sparse connections, or that
have discrete support, corresponding to a finite number of
possible connection strengths, give the same results in the
limit of large N .
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We introduce a mean-field distribution for the set of state
variables h={ha

i (t)} through a Dirac delta function constraint,

P (h)=
⎡
⎣∏

i,t,a

δ

⎛
⎝ha

i (t)−
N∑

j=1

Jijφ
a
j (t)

⎞
⎠
⎤
⎦

J

, (3)

with [·]J denoting an average over random Gaussian couplings.
In the following, we make use of two other averages: E[·|J ],
which is an average over trials with a fixed {Jij }, and E[·] ≡
[E[·|J ]]J . In other words, to compute E[·|J ], we average over h
using the distribution inside the brackets in Eq. (3), removing
the average over {Jij }. To compute E[·], we average over h
weighted by the full J -averaged distribution of Eq. (3).

Calculations using the dynamic mean-field method [10,14],
in the limit of large N , give the moment-generating function
for h (see Appendix A),

E

[
exp

(∑
i,t,a

ξ a
i (t)ha

i (t)

)]
≈ exp (Nf (ξ ,q(ξ ),q̂(ξ ))) , (4)

where ξ ={ξa
i (t)} is the parameter of the generating function, f

is the free energy, and the order parameters q ={qab(t,s)} and
q̂ ={q̂ab(t,s)} are determined self consistently by the saddle-
point equations

∂f

∂q
= 0 and

∂f

∂ q̂
= 0 . (5)

In principle, all the moments of h can be obtained by evaluating
the derivatives of the generating function. In particular, the
average is E[ha

i (t)]=0 and the correlation is

E
[
ha

i (t)hb
j (s)

] = δij q
ab(t,s) . (6)

All higher-order cumulants above the second order are
O(1/N ).

When the input is constant in time, the system converges to
a stationary state. In this case, the self-consistent solution for
the order parameter is determined by only two parameters,

qab(t,s) = (q0 − q)δabδts + q, (7)

satisfying, self consistenly,

q0 = g2
∫

Dx φ(θ + √
q0x)2, (8)

q = g2
∫

DxDy φ(θ + √
q0x)φ

⎛
⎝θ+ q√

q0
x+

√
q2

0 − q2

q0
y

⎞
⎠

with

Dx = dx e−x2/2

√
2π

. (9)

For θ =0, using a hyperbolic tangent nonlinearity φ(x)=
tanh(x), q =0 is a stable solution, so the order parameter
simplifies to

qab(t,s) = q0δabδts , (10)

with q0 increasing from zero in the chaotic region, g>1
[Fig. 1(a)].
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FIG. 1. (Color online) The self-consistent solution for the order
parameters, q0 and q (which is 0), in the stationary state (a), and
the Lyapunov exponent (b) plotted as a function of the synaptic
variability, g. The dotted line at g=1 indicates the edge of chaos.

The chaotic state is characterized by a Lyapunov exponent
given in Ref. [10]

1

2
ln
∫

Dx[φ′(θ + √
q0x)]2 , (11)

which increases more rapidly below the transition to chaos
(g<1) than above the transition [g>1; Fig. 1(b)]. This
difference foreshadows the asymmetric behavior of the signal
detection and integration properties analyzed below, but it is
important to point out that our later results do not follow
directly from this feature of the Lyapunov exponent. The
Lyapunov exponent, which determines how two trajectories
starting from nearby initial conditions diverge, and the param-
eter we use to characterize signal detection and integration
measure different things and, depending on the nonlinearity
used, can take dissimilar values.

II. SIGNAL-TO-NOISE RATIO

We now evaluate the signal-to-noise ratio for sparse linear
decoders designed to optimally read out a dynamic input θ (t)
from a fixed subset of K(�N ) units. We assume that the
measurement of the total input to network unit i on trial a,
θ (t) + ha

i (t), is corrupted by Gaussian measurement noise,
σobsη, of mean zero and variance σ 2

obs, so that the actual
measured value is

va
i (t)=θ (t)+ha

i (t)+σobsη
a
i (t). (12)

We limit our analysis to odd nonlinear functions, φ(x)=
−φ(−x), because this simplifies the analysis. To evaluate
the signal-to-noise ratio, we consider a small deviation of
the external input from θ = 0 occurring at time t0. We could
alternatively consider decoding information from the nonlinear
function of the total input, φ(θ + h)+σobsη, but the result is
unaltered to the leading order for finite σobs around the edge
of chaos because φ(θ + h) ≈ θ + h there.

The average (over networks) signal-to-noise ratio for an
optimal linear decoder reading out this perturbation after a
measurement period lasting from t0 to T is [12]

R(t0)≡
∑
i,j

T∑
t,s�t0

[
∂μi(t)

∂θ (t0)
Dij (t,s)

∂μj (s)

∂θ (t0)

]
J

(13)

where

μi(t) = E
[
va

i (t)
∣∣J ] , (14)

051908-2



BEYOND THE EDGE OF CHAOS: AMPLIFICATION AND . . . PHYSICAL REVIEW E 84, 051908 (2011)

and the sums over i and j are restricted to the values of the
K units being used in the readout. The quantities in R(t) are
all evaluated at θ = 0. The matrix D ≡ C−1 is the inverse of
the trial-averaged covariance of the observed K units for a
given network (i.e., for a specific {Jij }), whose elements are
described by

Cij (t,s) = Cov
[
va

i (t),va
j (s)|J ]

= E
[(

va
i (t)−μi

)(
va

j (s)−μi

)∣∣J ] . (15)

It is important for what follows that this covariance matrix has
dimensions K × K , not N × N , and that D is the inverse of
this K × K matrix.

The memory curve for an optimal linear decoder, which
is sometimes used to quantify the ability of networks to
buffer past input [15,16], is identical to Eq. (13) for small
input. Equation (13) characterizes the accuracy of a readout
based on the trial-mean μ. Generally, information could also
be readout from higher-order statistics by using nonlinear
decoders [12,17,18]. In this sense, Eq. (13) is a lower bound
on the information available from more general nonlinear
decoders. Note that the optimal linear readout weights depend
on the specific {Jij }, so it is necessary to adjust the decoder
for each network.

From the mean-field analysis, we find that each element of
the covariance matrix converges to its averaged value in the
limit of large N (see Appendix B), i.e.,

Cij (t,s) = [Cij (t,s)]J + O(N−1/2), (16)

with

[Cij (t,s)]J = σ 2
obsδij δts + [

Cov
[
ha

i (t),ha
j (s)

∣∣J ]]
J

= δij δts

(
σ 2

obs + q0
)

(17)

evaluated at θ = 0. The O(N−1/2) term in Eq. (16) introduces
corrections of order

√
K/N into R [Eq. (13)]. To avoid these

corrections, we restrict our analysis to the case K ∼O(
√

N ).
This assures that the O(N−1/2), J -specific residuals in Eq. (16)
do not contribute to R for large N , and we find

R(t0) = 1

σ 2
obs + q0

∑
i

T∑
t�t0

[
∂μi(t)

∂θ (t0)

∂μi(t)

∂θ (t0)

]
J

, (18)

with[
∂μi(t)

∂θ (t0)

∂μi(t)

∂θ (t0)

]
J

=
[

∂2E
[
va

i (t)
∣∣J ]E[vb

i (t)
∣∣J ]

∂θa(t0)∂θb(t0)

∣∣∣∣∣
θa=θb=θ

]
J

= ∂2E
[
va

i (t)vb
i (t)

]
∂θa(t0)∂θb(t0)

∣∣∣∣∣
θa=θb=θ

= ∂2(θa(t)θb(t) + qab(t,t))
∂θa(t0)∂θb(t0)

∣∣∣∣
θa=θb=θ

(19)

for a �=b. This means that, to evaluate R, we need to
evaluate the second derivative of the order parameter, q. This
calculation simplifies for an odd nonlinear response function
(see Appendix C), and we obtain

R(t0) = K

T∑
t�t0

γ t−t0

σ 2
obs + q0

(20)
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FIG. 2. (Color online) The factor
√

γ plotted for φ(x) = tanh(x)
as a function of the synaptic variability, g.

√
γ takes the maximum

value of 1 at the edge of chaos (g=1; dotted line) and falls off more
slowly in the chaotic regime (g>1) than for g<1.

with

√
γ ≡g

∫
Dxφ′(

√
q0x), (21)

which corresponds to g times the effective gain (slope) of the
response nonlinearity.

Equation (20) tells us that, at any particular time during the
measurement period, R receives a contribution from the past
input being detected that decays exponentially in time. The
decay constant γ therefore determines the memory lifetime
of the network, which is −1/ ln(γ ), and γ near 1 indicates
a long memory lifetime. The denominator in Eq. (20) sums
two sources of noise, the measurement noise σ 2

obs and internal
network noise quantified by q0. The best strategy for increasing
R is to minimize the internally generated noise, q0, and to make
γ as close to 1 as possible to allow long-time integration of the
signal. In the presence of large observation noise σobs 	q0,
the value of R is dominated by how close γ is to 1.

The lifetime variable
√

γ reaches its maximum value γ =1
at the edge of chaos and, importantly, it decreases more slowly
in the chaotic regime than in the nonchaotic regime (Fig. 2).
This indicates that, although optimal performance occurs at
the edge of chaos and requires fine tuning of g to 1, for a given
magnitude of detuning from this value (i.e., a given |g − 1|),
γ is closer to 1 in the chaotic regime (g>1; Fig. 2).

Assuming an infinitely long observation period,

R = K

σ 2
obs + q0

1

1 − γ
, (22)

which is plotted as a function of g in Fig. 3 for some σobs.
When the decay constant γ approaches 1, which happens at
the edge of chaos, R diverges because any input perturbations
cause perpetually lasting changes in network activity. These
analytic results agree well with simulation results (Fig. 4).

III. CRITICAL BEHAVIOR NEAR THE EDGE OF CHAOS

We next analyze the critical behavior of the system near the
edge of chaos. By definition, the derivative of φ at 0 is 1, so
we can expand any odd, monotonically increasing φ as

φ(x) = x + α3x
3

3!
+ α5x

5

5!
+ · · · . (23)

051908-3



T. TOYOIZUMI AND L. F. ABBOTT PHYSICAL REVIEW E 84, 051908 (2011)

0.8 1.0 1.2
g

0.01

0.02

0.03

K R

σobs 0.0

σobs 0.1

σobs 0.3

0.00

FIG. 3. (Color online) The factor K/R plotted for φ(x) = tanh(x)
as a function of the synaptic variability, g. In the presence of
observation noise, R is maximized at the edge of chaos and falls
off more slowly in the chaotic regime (g>1) than for g<1 reflecting
γ shown in Fig. 2.

The Landau expansion of Eq. (8) for small q0 yields that
the sign of α3 determines the nature of the phase transition
around q0 =0. The system shows a first-order transition if the
nonlinearity is accelerating (α3 > 0). In this case, q0 jumps
discontinuously from zero to a positive value at g=1 as g

increases. The transition is second order if the nonlinearity
is saturating (α3 <0). In this case, q0 increases from zero
continuously at g=1 as g increases. The analysis of the
critical behavior is much easier for the second-order transition
(α3 <0), the case we examine.

We analyze the critical behavior of R near the edge of
chaos, that is, for small �g≡g−1, using Eqs. (20) and (21).
In the nonchaotic regime (�g < 0), q0 =0 so the decay factor
is γ =g2. From Eq. (22), we find that

R = K

σ 2
obs(1−g2)

≈ K

2σ 2
obs|�g| . (24)

In the chaotic regime (�g>0), we expand Eq. (8) for small q0

and find that the order parameter is

q0 = 2

|α3|�g + α5/α
2
3 − 4/3

|α3| �g2 + O(�g3). (25)
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FIG. 4. (Color online) Numerical calculation of Eq. (13) (circles)
with σobs = 0.1. compared with the analytic result of Eq. (22) (solid
line). The numerical result was obtained by linearly decoding a
simulated network with N =3000 and K =20. The small circles
describe performances of each network and the large circles describe
the average performance across different networks. The analytic
results matched well with the numerical results.
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FIG. 5. (Color online) The critical behavior of R does not
depend on details of the nonlinearity or on the noise level. For any
saturating odd nonlinear response function, R diverges linearly on
the nonchaotic and quadratically on the chaotic side of the edge
or transition. The solid line describes the asymptotic behavior; the
dash-dotted line describes φ(x) = tanh(x) and σobs = 0.1; and the
dashed line describes φ(x) = erf(

√
πx/2) and σobs = 0.3.

Based on this expression, the effective gain is
√

γ ≈1−�g2/3
to leading order. Hence, to leading order,

R = 3K

2σ 2
obs(�g)2

(26)

near the edge but on the chaotic side. Interestingly, the
dependencies of

√
γ and R on φ (such as α3 and α5) disappear

up to this order. In contrast to the nonchaotic regime with
R∼�g−1, the divergence is stronger in the chaotic regime
with R∼�g−2, yielding larger R at an equal distance, |�g|,
away from the edge (Fig. 5).

We have determined analytically that the signal-to-noise
ratio of large randomly connected networks diverges at the
edge of chaos, and the memory lifetime of the network
also diverges. Observation noise is an important element
for this property. Without observation noise, any network
without internally generated noise yields an infinite R. On
the other hand, addition of observation noise emphasizes
the benefit of increasing signal over increasing internally
generated noise. Hence, if a deterministic network performs
sensory or memory processing and if a receiver of its output has
limited observational resolution, it is advantageous to increase
the signal by increasing the network gain. Generally, setting
network parameters right at the edge of chaos requires fine
tuning. We have shown that at the same small distance away
from the edge, R is larger in the chaotic regime than in the
nonchaotic regime for any saturating odd nonlinear function.

Although, we have concentrated on a rather special situation
in this paper for mathematical simplicity, several lines of
generalization are possible without losing analytic tractability.
First, we have neglected internal stochastic noise within the
network. Although neurons behave irregularly in networks,
they respond reliably in isolation. This observation has lead to a
speculation that the dominant apparent stochasticity of cortical
circuits is generated by the chaotic dynamics of, individually,
essentially deterministic neurons [6]. The mean-field analysis
with system noise has been studied previously [10]. With an
addition of small system noise, R is peaked (but does not
diverge) near the edge of chaos on the nonchaotic side. Second,
we have concentrated on a class of odd nonlinear response
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functions. This assumption is a mathematical convenience
that simplifies the final expression of R. For a general
response nonlinearity, R depends not only on γ and q0 but on
other factors as well. Third, although we considered discrete
temporal dynamics, it is possible to analyze a continuous-time
model in a similar way [5,11]. We believe that qualitative
aspects of the signal-to-noise ratio are common in the two
models. Fourth, although we consider unstructured networks
in this paper, it would be interesting to study how structured
connections change chaotic dynamics [19] and influence signal
extraction and integration [20].
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APPENDIX A: MEAN-FIELD CALCULATION

In this appendix, we calculate the moment-generating
function of Eq. (4). We denote ha

i (t) = ha
it and φ(θ (t − 1) +

ha
j (t − 1)) = φa

jt . In this section, we follow the convention
that summation is implied when the same index appear twice
in an expression (e.g.,

∑
j Jijφ

a
jt = Jijφ

a
jt ). A calculation

of the moment-generating function (as a function of ξ )
yields

Z(ξ ) =
[∫ (∏

i,t,a

dha
it

)
exp

(
ξa
ith

a
it

)∏
i,t,a

δ
(
ha

it − Jijφ
a
jt

)]
J

=
∫

dH exp
(
ξa
ith

a
it + iĥa

ith
a
it

) [
exp

(−iĥa
itφ

a
jtJij

)]
J

=
∫

dH exp

(
ξa
ith

a
it + iĥa

ith
a
it + g2

2N
iĥa

it iĥ
b
isφ

a
jtφ

b
js

)

=
∫

dH

(∫ ∏
t,s,a,b

Ndqab
ts δ

(
Nqab

ts − g2φa
jtφ

b
js

))
exp

(
ξa
ith

a
it + iĥa

ith
a
it + 1

2
qab

ts iĥa
it iĥ

b
is

)

=
∫ ( ∏

t,s,a,b

Ndqab
ts dq̂ab

ts

2π

)∫
dH exp

(
iq̂ab

ts

(
Nqab

ts − g2φa
jtφ

b
js

) + ξa
ith

a
it + iĥa

ith
a
it + 1

2
qab

ts iĥa
it iĥ

b
is

)

=
∫ ( ∏

t,s,a,b

Ndqab
ts dq̂ab

ts

2π

)
exp(Nf (ξ ,q,q̂)) , (A1)

where dH ≡ ∏
i,t,a(dha

itdĥa
it /2π ),

f (ξ ,q,q̂) ≡ iq̂ab
ts qab

ts + 1

N
log

∫
eLdH , (A2)

and

L ≡ ξa
ith

a
it + iĥa

ith
a
it + 1

2
qab

ts iĥa
it iĥ

b
is − g2iq̂ab

ts φa
itφ

b
is . (A3)

Next, we use the saddle-point method to evaluate Z(ξ ). To
leading order, the integrals of q and q̂ are approximated by the
saddle-point value, i.e.,

ln Z(ξ ) ≈ Nf (ξ ,q(ξ ),q̂(ξ )) , (A4)

and the saddle-point, [q(ξ ),q̂(ξ )], is determined self consis-
tently by solving

0 = ∂f

∂qab
ts

= iq̂ab
ts + 1

2N

〈
iĥa

it iĥ
b
is

〉
L ,

(A5)

0 = ∂f

∂iq̂ab
ts

= qab
ts − g2

N

〈
φa

itφ
b
is

〉
L ,

with the average, 〈·〉L, defined as

〈A〉L ≡
∫

AeLdH∫
eLdH

. (A6)

Equation (A5) is especially easy to solve when ξ = 0 because
q̂(0) = 0 is a self-consistent solution of Eq. (A5). To confirm
this, we define L0 ≡ L|ξ=0,q̂=0 = iĥa

ith
a
it + qab

ts (0)iĥa
it iĥ

b
is/2,

and find that〈
iĥa

it iĥ
b
is

〉
L0

= 2
∂

∂qab
ts

∫
eL0dH = 0 . (A7)

Hence, when ξ = 0, a solution of the saddle-point condition is

qab
ts = g2

∫ ( ∏
t,a dha

t√
det(2πq)

)
φa

t φb
s exp

(
−1

2
(q−1)ab

ts ha
t h

b
s

)
,

q̂ab
ts = 0 . (A8)

Note that, in the above expression, 〈·〉L0 describes a Gaussian
average of h with mean zero and covariance δij q

ab
ts . The

possibility of a q̂(0) �= 0 solution is not within the scope of
this paper (see Ref. [14], for example). Thus, we concentrate
on the q̂(0) = 0 solution Eq. (A8) in the following.

051908-5



T. TOYOIZUMI AND L. F. ABBOTT PHYSICAL REVIEW E 84, 051908 (2011)

In principal, we can obtain all higher-order cumulants of h
by differentiating the cumulant-generating function ln Z(ξ ) =
Nf (ξ ,q(ξ ),q̂(ξ )) by ξ and, then, setting ξ = 0. From the
normalization constraint, ln Z(0) = 0. The first derivative is

N
df

dξa
it

= N
∂f

∂ξa
it

+ N
∂f

∂q
∂q
∂ξa

it

+ N
∂f

∂ q̂
∂ q̂
∂ξa

it

= N
∂f

∂ξa
it

, (A9)

because ∂f/∂q = 0 and ∂f/∂ q̂ = 0 at the saddle-point
Eq. (A5). Hence, the first-order cumulant is

E
[
ha

it

] ≈ N
∂f

∂ξa
it

∣∣∣∣
ξ=0

= 〈
ha

it

〉
L0

= 0 . (A10)

The calculation of high-order cumulants becomes easier if we
neglect O(1/N) factors. First, ∂nf/∂ξn = O(1/N ) for n � 1
at ξ = 0. Moreover, the nth (n � 1) derivatives of the order
parameters are ∂nq/∂ξn = O(1/N ) and ∂nq̂/∂ξn = O(1/N )
at ξ = 0 from Eq. (A5). This means that perturbations to a
single unit contribute only ∼1/N to the mean-field variables,
which are defined by averaging over N units. Hence, terms
that contain derivatives of order parameters contribute only
to O(1/N ) terms. Thus, for the calculation of higher-order
cumulants, the full derivatives of ξ can be approximated by
its partial derivatives, d/dξ ≈ ∂/∂ξ , and the order parameters
can be approximated, using their ξ = 0 values as q(ξ ) ≈ q(0)
and q̂(ξ ) ≈ q̂(0). Neglecting O(1/N) terms, we find

Nf (ξ ,q(0),q̂(0)) = ln
∫

dH exp

(
ξa
ith

a
it + iĥa

ith
a
it + 1

2
qab

ts (0) iĥa
it iĥ

b
is

)
= 1

2
qab

ts (0) ξa
it ξ

b
is . (A11)

This shows that the mean-field distribution P (h) is a Gaussian distribution for independent units with mean zero and covariance
δij q

ab
ts (0) up to O(1/N) terms. Hence, to this precision, the two averages E[·] and 〈·〉L0 are indistinguishable.

APPENDIX B: NETWORK SPECIFIC STATISTICS

In this appendix, we evaluate statistics of the state variable, h, for given {Jij }. The trial-mean of a quantity A(h) is written as
E[A(h)|J ], where each trial has different initial conditions at t → −∞. When the system is ergodic this trial average does not
depend on a specific set of initial conditions. From this definition and Eq. (A11), to the leading order, we can derive the following:

[E[hit |J ]]J = E[hit ] = O(1/N) and

[Cov[hit ,hjs |J ]]J = [E[hithjs |J ] − E[hit |J ]E[hjs |J ]]J
= [

E
[
ha

ith
a
js

∣∣J ] − E
[
ha

ith
b
js

∣∣J ]]
J

= E
[
ha

ith
a
js

] − E
[
ha

ith
b
js

]
= δij

(
qS

ts − qD
ts

) + O(1/N), (B1)

where a �= b, and qaa
ts = qS

ts and qab
ts = qD

ts . Now we define the network specific covariance as 
ij ;ts ≡ Cov[hit ,hjs |J ] and
evaluate how 
 is different from one realization of {Jij } to another. The variance of 
 across networks is, from Eq. (A11),[


2
ij ;ts

]
J

− [
ij ;ts]
2
J = [(

E
[
ha

ith
a
js

∣∣J ] − E
[
ha

ith
b
js

∣∣J ])2]
J

− (
E
[
ha

ith
a
js

] − E
[
ha

ith
b
js

])2

= E
[
ha

ith
a
jsh

c
ith

c
js

] − 2E
[
ha

ith
a
jsh

c
ith

d
js

] + E
[
ha

ith
b
jsh

c
ith

d
js

] + (
E
[
ha

ith
a
js

] − E
[
ha

ith
b
js

])2

= δij

{(
qS

tsq
S
ts + qD

ts q
D
ts + qD

tt q
D
ss

) − 2
(
qS

tsq
D
ts + qD

ts q
D
ts + qD

tt q
D
ss

) + (
2qD

ts q
D
ts + qD

tt q
D
ss

) − (
qS

ts − qD
ts

)2}
× (1 − δij )

{
qD

tt q
D
ss − 2qD

tt q
D
ss + qD

tt q
D
ss

} + O(1/N )

= O(1/N ), (B2)

where a,b,c,d are all different. Therefore, each component of 
 converges to its network average as


ij ;ts = [
ij ;ts]J + O(N−1/2). (B3)

APPENDIX C: PERTURBATION EXPANSION OF THE ORDER PARAMETER

In this appendix, we evaluate the signal component of Eq. (19) by calculating the responses of the order parameter, {qab
tt },

to perturbations in the external input, θ = {θa
t }. Dynamic evolution of the order parameter is described by the saddle-point

Eq. (A8), which we repeat here for convenience

qab
t+1,t+1 = g2

〈
φa

t+1φ
b
t+1

〉
L0

= g2
∫ ( ∏

t,a dha
t√

det(2πq)

)
φ
(
θa
t + ha

t

)
φ
(
θb
t + hb

t

)
exp

(
−1

2
(q−1)ab

ts ha
t h

b
s

)
,
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where L0 ≡ L|ξ=0,q̂=0. To simplify expressions, we omit the temporal index so that θa
t = θa and qab

tt = qab in the following, and
find that, for general smooth functions φ and ψ , the Gaussian integral is expressed as

〈φaψb〉L0 ≡ 〈
φ
(
θa
t + ha

t

)
ψ
(
θb
t + hb

t

)〉
L0

=
∫

DxDy φ(θa + √
qaax)ψ

⎛
⎝θb + qab

√
qaa

x +
√

qaaqbb − (qab)2

qaa
y

⎞
⎠ , (C1)

with Dx ≡ dx e−x2/2/
√

2π . Note that this expression implies that ha and hb have variances of qaa and qbb, respectively, and
covariance qab under the average 〈·〉L0 . The first derivative of this average is

d〈φaψb〉L0 =〈φ′aψb〉L0dθa + 〈φaψ ′b〉L0dθb + 1

2

⎛
⎝ 1√

qaa
〈xφ′aψb〉L0 − qab

√
qaa3 〈xφaψ ′b〉L0 +

(
qab

qaa

)2√
qaaqbb−(qab)2

qaa

〈yφaψ ′b〉L0

⎞
⎠ dqaa

+ 1

2
√

qaaqbb−(qab)2

qaa

〈yφaψ ′b〉L0dqbb +
⎛
⎝ 1√

qaa
〈xφaψ ′b〉L0 +

− qab

qaa√
qaaqbb−(qab)2

qaa

〈yφaψ ′b〉L0

⎞
⎠ dqab

= �aT d �� (C2)

with vectors �a = (〈φ′aψb〉L0 ,〈φaψ ′b〉L0 ,〈φ′′aψb〉L0 ,〈φaψ ′′b〉L0 ,〈φ′aψ ′b〉L0 )T and �� = (θa,θb,qaa/2,qbb/2,qab)T .
In the second line of Eq. (C2), we used the following relations

〈xφaψb〉L0 =
〈(

d

dx
φaψb

)〉
L0

= √
qaa〈φ′aψb〉L0 + qab

√
qaa

〈φaψ ′b〉L0 , (C3)

〈yφaψb〉L0 =
〈(

d

dy
φaψb

)〉
L0

=
√

qaaqbb − (qab)2

qaa
〈φaψ ′b〉L0 , (C4)

obtained from integration by parts. Similarly, using Eq. (C2) repeatedly, the second derivative is

d2〈φaψb〉L0 = �aT d2 �� + (d ��)T d�a
= �aT d2 �� + (d ��)T Ad ��, (C5)

where, applying Eq. (C2) once again to each component of �a, we find d�a = Ad �� with

A =

⎛
⎜⎜⎜⎜⎝

〈φ′′aψb〉L0 〈φ′aψ ′b〉L0 〈φ′′′aψb〉L0 〈φ′aψ ′′b〉L0 〈φ′′aψ ′b〉L0

〈φ′aψ ′b〉L0 〈φaψ ′′b〉L0 〈φ′′aψ ′b〉L0 〈φaψ ′′′b〉L0 〈φ′aψ ′′b〉L0

〈φ′′′aψb〉L0 〈φ′′aψ ′b〉L0 〈φ′′′′aψb〉L0 〈φ′′aψ ′′b〉L0 〈φ′′′aψ ′b〉L0

〈φ′aψ ′′b〉L0 〈φaψ ′′′b〉L0 〈φ′′aψ ′′b〉L0 〈φaψ ′′′′b〉L0 〈φ′aψ ′′′b〉L0

〈φ′′aψ ′b〉L0 〈φ′aψ ′′b〉L0 〈φ′′′aψ ′b〉L0 〈φ′aψ ′′′b〉L0 〈φ′′aψ ′′b〉L0

⎞
⎟⎟⎟⎟⎠ . (C6)

Although we had to distinguish φ and ψ to derive Eq. (C5),
we only have to consider the derivatives of 〈φaφb〉L0 in the
following, so we can replace ψ by φ. When the external input is
constant in time, the order parameter takes only two distinctive
values, qab

ts = (q0 − q)δabδts + q in the stationary state [see
Eq. (7)]. Moreover, when the response nonlinearity is an odd
function and the input is zero, θ = 0, we know that q = 0 is a
stable solution. Hence, in this case, it is easy to check that

〈φ(m)(ha)φ(n)(hb)〉L0 = 0 if m + n is odd (C7)

for all integers m and n, where φ(n) is the nth derivative of φ.
When θ = 0, the order parameter qab = 0 for a �= b, meaning
that ha and hb are independent Gaussian random variables of
mean zero. In this case, Eq. (C7) results because either φ(m)

or φ(n) (with an even m or n) is an odd function. When a = b,
on the other hand, φ(m)(ha)φ(n)(ha) is an odd function of a

Gaussian random variable, ha with zero mean. Using Eq. (C7),
Eq. (C2) can be simplified to

d〈φaφb〉L0

= 〈φ′′aφb〉L0

dqaa

2
+ 〈φaφ′′b〉L0

dqbb

2
+ 〈φ′aφ′b〉L0dqab.

(C8)

Because qab
t+1,t+1 = g2〈φaφb〉L0 , we obtain the self-consistent

update equations

dqaa
t+1,t+1 = g2(〈φaφ′′a〉L0 + 〈φ′aφ′a〉L0 )dqaa

tt (C9)

when a = b, and

dqab
t+1,t+1 = g2

(
〈φaφ′′a〉L0

dqaa
tt

2
+ 〈φbφ′′b〉L0

dqbb
tt

2

+〈φ′aφ′b〉L0dqab
tt

)
(C10)
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when a �= b, respectively. We can see from Eq. (C9) and Eq.
(C10) that the stability condition of the order parameter is
g2(〈φaφ′′a〉L0 + 〈φ′aφ′a〉L0 ) < 1 and g2〈φ′aφ′b〉L0 < 1. Under
this stability condition, both dqaa and dqab should converge
to zero in time.

Next, we evaluate the quantity of interest:
∂2qab

t+1,t+1/∂θa
k ∂θb

k for a �= b in Eq. (19). By using a simplified

notation for partial derivatives (i.e., ∂a
t ≡ ∂

∂θa
t

) we find ∂a
k

�� =
(δtk,0,∂a

k qaa/2,0,∂a
k qab)T , ∂b

l
�� = (0,δtl,0,∂b

l qbb/2,∂b
l qab)T ,

and ∂a
k ∂b

l
�� = (0,0,0,0,∂a

k ∂b
l qab)T . Furthermore, because

∂qab → 0 for large t from Eq. (C9) and Eq. (C10), we

can use ∂a
k

�� = (δtk,0,0,0,0)T , ∂b
l

�� = (0,δtl,0,0,0)T , and
∂a
k ∂b

l
�� = (0,0,0,0,∂a

k ∂b
l qab)T for sufficiently large t . Hence,

from Eq. (C5), the dynamics of the second derivative of the
order parameter is

∂a
k ∂b

l qab
t+1,t+1 = g2

[�aT ∂a
k ∂b

l
�� + (

∂a
k

��)T
A∂b

l
��]

= g2〈φ′aφ′b〉L0

[
∂a
k ∂b

l qab + δtkδtl

]
= (g2〈φ′aφ′b〉L0 )t−k+1δkl�(t − k) (C11)

where �(x) is the step function, which is one for x � 0 and
zero otherwise.
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