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Logistic map analysis of biomolecular network evolution
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We study the expansion of biomolecular networks from the view point of first evolutionary principles based on
the duplication and divergence of ancestral genes. The expansion of gene families and subnetworks is analyzed
in terms of logistic map compositions, which capture the varying functional constraints of individual genes in the
course of evolution. Using a mean-field approach, we then demonstrate the existence of spontaneous growth-rate
variations between gene families and discuss the relevance of such heterogeneous expansions for the emergent
properties of actual biomolecular networks.
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I. INTRODUCTION

In the course of evolution, biomolecular networks have
experienced heterogeneous expansions of different gene
families. In particular, regulatory and signaling genes have
undergone a more rapid expansion than other gene families in
typically genomes [1]. Such heterogeneous expansions have
been proposed to arise through horizontal gene transfers in
prokaryotes [2]. Yet horizontal gene transfers are less prevalent
in eukaryotes, suggesting that the heterogeneous expansions
of their gene families arose, instead, from actual variations
in the gene duplication-divergence events, which have oc-
curred repeatedly and independently along each eukaryote
lineage [3].

The importance of duplication-divergence processes in
evolution has long been recognized [4] and motivated conver-
gent theoretical efforts to analyze its impact on the emergent
properties of biomolecular networks [5–14].

Here we analyze the expansions of gene families and
subnetworks, which cannot be studied by standard generating
function analysis [14]. To this end, we first demonstrate that
duplication-divergence processes can be analyzed in terms
of logistic map compositions, which capture the varying
functional constraints of individual genes in the course of
evolution. We then establish that, even beyond explicit distinc-
tions between gene families, heterogeneities in their expansion
rates arise in fact spontaneously under duplication-divergence
evolution and are directly coupled to the emergent properties
of their biomolecular subnetworks.

II. GENERAL DUPLICATION-DIVERGENCE MODEL

The General Duplication-Divergence (GDD) model, intro-
duced in Ref. [14], aims at capturing the statistical prop-
erties of biomolecular networks evolving through stochastic
duplication and divergence events at various genomic scales,
from single-gene to whole-genome duplications [12]. At each
evolutionary step, depicted in Fig. 1, a fraction q of genes
is randomly duplicated, and the interactions of the resulting
network are stochastically conserved with distinct probabil-
ities, γij . These probabilities reflect the different functional
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constraints between interacting partners, depending on their
recent duplication history. Indeed, “single” nonduplicated
genes (‘s’) are more evolutionary constrained than recently
duplicated gene pairs (‘o’/‘n’), which typically undergo
asymmetric divergence, i.e., γnj � γoj � γsj , j = s,o,n.

We note, Nk , the number of genes (or “nodes”) of
connectivity k in the overall network, N = ∑

k�0 Nk , the total
number of nodes and, L = ∑

k�0 kNk/2, the total number
of interactions (or “links”). We then study the evolutionary
dynamics of the ensemble averages 〈Nk〉(n) after n duplications
using the generating function,

F (n)(x) =
∑
k�0

〈Nk〉(n)xk. (1)

The evolutionary dynamics of F (n)(x) corresponds to the
following recurrence deduced from the microscopic definition
of the GDD model [14]:

F (n+1)(x) =
s,o,n∑

i

εiF
(n)(Ai(x))

Ai(x) = 1 − �i(1 − x) + Di(1 − x)2, (2)

where εs = 1 − q, εo = εn = q, �i = (1 − q)γis + q(γio +
γin), and Di = qγioγin for i = s,o,n. In the following, we note
� = ∑

i εi�i , the network growth rate in terms of number of
links and D = ∑

i εiDi . The exponentially growing network
is rescaled by introducing a normalized generating function
for the average degree distribution:

p(n)(x) =
∑
k�1

p
(n)
k xk with p

(n)
k = 〈Nk〉(n)

〈N〉(n)
, (3)

where 〈N〉(n) = ∑
k�1〈Nk〉(n), after removing 〈N0〉(n).

Then the complement generating function for degree
distribution, p̃(n)(x) = 1 − p(n)(x), follows the recurrence:

p̃(n+1)(x) =
∑s,o,n

i εi p̃
(n)(Ai(x))

�(n)
, (4)

where �(n) = 〈N〉(n+1)/〈N〉(n) = ∑
i εi p̃

(n)(Ai(0)) is the net-
work growth rate in terms of number of genes.

A characteristic equation relating the asymptotic growth
rate � = limn→∞ �(n) and the exponent α + 1 of the
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FIG. 1. (Color online) Schematic of the general duplication-
divergence model. The expansion of a gene family (white genes)
arising from a single gene of initial connectivity d � 1 is analyzed in
the text..

power-law degree distribution of the resulting networks (pk ∼
1/kα+1) was established in Ref. [14]:

� =
∑

i

εi�
α
i . (5)

Yet, this characteristic equation relating the two unknowns �

and α could not be solved in general, except in simple cases
for which � is independently known, namely, when gene and
interaction growth rates are the same, i.e., � = �.

Here we demonstrate that the network size 〈N〉(n) and
expansion rate �(n) can in fact be evaluated independently
from α in all evolutionary regimes (� � �) by analyzing the
duplication-divergence dynamics in terms of compositions of
logistic maps (Fig. 2), which are simple quadratic forms known
to exhibit complex dynamics.
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FIG. 2. (Color online) Logistic map analysis of network expan-
sion. (a) Example of stochastic composition of the three logistic maps,
Bi(u) = �iu − Diu

2, i = s,o,n, and mean-field weighted com-
position g(u) = u exp[

∑
i εi(�i − Di u) ln (�i − Di u)/(� − D u)]

with an effective fixed point u�; see text. Here �s = 1.3, Ds = 0.5,
�o = 0.9, Do = 0.4, �n = 0.7, Dn = 0.3, εo = εn = 1 − εs = 0.3,∑

i εi�i ln (�i) � 0.1 > 0 and u� � 0.23. (b) Corresponding evolu-
tionary history of individual genes and resulting network expansion.

III. LOGISTIC MAP ANALYSIS OF BIOMOLECULAR
NETWORK EXPANSION

A. Explicit expansion of (sub)networks 〈N〉(n+1)

We first note that �(n) can be expressed through successive
calls to the three functions Ai(x), i = s,o,n:

�(n) =
∑
i0

εi0 p̃
(n)

(
Ai0 (0)

)

=
∑

i1

∑
i0

εi1εi0 p̃
(n−1)

(
Ai1

(
Ai0 (0)

))
�(n−1)

=
∑

i1

∑
i0

εi1εi0 p̃
(n−1)

(
Ai1

(
Ai0 (0)

))
∑

i0
εi0 p̃

(n−1)
(
Ai0 (0)

)
=

∑s,o,n
i0,in

(∏n
k εik

)
p̃(0)

(
Ain

(
Ain−1

( · · · (Ai0 (0)
))))

∑s,o,n
i0,in−1

(∏n−1
k=0 εik

)
p̃(0)

(
Ain−1

( · · · (Ai0 (0)
)))

.

Then the expansion of a biomolecular network under
duplication-divergence evolution, 〈N〉(n+1), can be explicitly
expressed as

〈N〉(n+1) = �(n)〈N〉(n) = No

n∏
k=0

�(k)

= No

s,o,n∑
i0,in

(
n∏
k

εik

)
p̃(0)(Ain

(
Ain−1

( · · · (Ai0 (0)
))))

,

where No and p̃(0)(x) = 1 − p(0)(x) refer to the number of
nodes No and the node degree distribution p(0)(x) of the initial
network.

Note, however, that the approach is equally valid to describe
the expansion of a subnetwork within the overall network,
starting, for instance, from a single gene (No = 1) with initial
degree d � 1. We will study such simple initial conditions,
below, as the expansion of subnetworks derived from a single
gene can then be linearly combined to describe the expansion
of biomolecular networks starting from arbitrary initial graphs.

B. Subnetwork generated by a single node
of initial degree d = 1

1. Subnetwork expansion as composition of logistic maps

We will first discuss the expansion of a subnetwork gener-
ated by a single node of initial degree 1, which corresponds to
p̃(0)(x) = 1 − x. Then 〈N〉(n+1) = 〈N〉(n+1)

1 simply becomes

〈N〉(n+1)
1 =

s,o,n∑
i0,in

(
n∏
k

εik

) [
1 − Ain

(
Ain−1

( · · · (Ai0 (0)
)))]

=
s,o,n∑
i0,in

(
n∏
k

εik

)
Bin

(
Bin−1

( · · · (Bi0 (1)
))) = Z(n),

where Ai(x), i = s,o,n, are transformed into the three logistic
maps, Bi(u) = u (�i − Di u), u = 1 − x, with similar com-
position rules:

Bi(u) = 1 − Ai(1 − u) = u (�i − Di u),

Bi(Bj (u)) = 1 − Ai(1 − Bj (u)) = 1 − Ai(Aj (x)).
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So the expansion of the subnetwork, in terms of averaged
number of nodes 〈N〉(n+1)

1 corresponds to a partition function
Z(n) over all possible weighted compositions of the three
logistic maps, Bi(u) (Fig. 2). In particular, each weighted
composition [Fig. 2(a)] corresponds to the probability for a
unique duplication-divergence history of individual genes in
the course of evolution, as depicted in Fig. 2(b).

Interestingly, the duplication-divergence dynamics of
biomolecular networks combines three logistic maps, Bi(u) =
u (�i − Diu), that are each individually in simple monotonic
convergence regimes (�i � 2) with a single stable fixed point,
either at u�

i = 0 if �i � 1 or at u�
i = (�i − 1)/Di if 1 < �i �

1 + q � 2. While the stochastic compositions of logistic maps
have been shown to affect their stability in complex dynamical
regimes [15], the analysis of weighted compositions of logistic
maps remains apparently an open problem, even when each
map is in a monotonic convergence regime.

We propose below a mean-field approach that addresses this
question and leads to two evolutionary scenarios: (1) a linear
expansion regime with an “effective” fixed point at u� = 0 and
� = � and (2) a nonlinear expansion regime with u� > 0 and
� � � − D u� < �.

2. Mean-field approach

Noting u
(n)
i0,n

= Bin(Bin−1 (· · · (Bi0 (1)))), we have

u
(n)
i0,n

= (
�in − Dinu

(n−1)
i0,n−1

)
u

(n−1)
i0,n−1

= �
(n)
i0,n

u
(n−1)
i0,n−1

= �
(n)
i0,n

�
(n−1)
i0,n−1

· · · �(1)
i0,1

�
(0)
i0,0

u0 =
n∏
k

�
(k)
i0,k

,

where �
(k)
i0,k

= �ik − Diku
(k−1)
i0,k−1

and u0 = 1. Hence,

〈N〉(n+1)
1 =

∑
i0,in

(
n∏
k

εik

)
u

(n)
i0,n

=
∑
i0,in

(
n∏
k

εik�
(k)
i0,k

)
.

Yet, using Bik (u) = u(�ik − Diku), we can also directly
derive Z(n) = ∏n

k �(k) = 〈N〉(n+1)
1 as

Z(n) =
n∏
k

( ∑
ik

εik�
(k)
ik

)
=

∑
i0,in

(
n∏
k

εik�
(k)
ik

)
,

with �
(k)
ik

= �ik − Diku
(k−1)

and u(k−1) =
∑s,o,n

i0,ik−1

(∏k−1
l=0 εil

) (
u

(k−1)
i0,k−1

)2

∑s,o,n
i0,ik−1

(∏k−1
l=0 εil

)
u

(k−1)
i0,k−1

,

where u(k−1) is independent of the trajectory history as it is
effectively averaged over all trajectories u

(k−1)
i0,k−1

.

Hence, although all compositions u
(n)
i0,n

contribute to the

partition function Z(n) = 〈N〉(n+1)
1 , only a subset of trajectories

contributes significantly and becomes eventually independent
of their history in the asymptotic limit, i.e., u

(n)
i0,n

� u(n) and

�
(n)
i0,n

� �
(n)
in

.

Now, the average number of times n
(k)
ik

each factor �
(k)
ik

is

used in the partition function Z(n) = ∑
ik

(
∏n

k εik�
(k)
ik

) is given
by the mean-field result:

n
(k)
ik

= �
(k)
ik

∂ ln(Z(n))

∂�
(k)
ik

= εik�
(k)
ik

�(k)
. (6)

So, averaging over all trajectories u
(k)
i0,k

= �
(k)
i0,k

u
(k−1)
i0,k−1

, we
expect that u(k) follows:

u(k) =
( ∏

ik

�
(k)
ik

n
(k)
ik

)
u(k−1)

(7)
= u(k−1)e

∑
ik

εik
�

(k)
ik

ln (�(k)
ik

)/�(k)
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FIG. 3. (Color online) Network expansion rates �(n) under duplication-divergence evolution. (a) Examples of characteristic functions h(α)
and geometrical constructs giving � and α in linear regimes (red curve, right) [� = � = h(α�) and α = α� > 1] and nonlinear regimes (green
curve, middle, and blue curve, left) [� = �min = � − D um = h(αm) and α = αm < 1]. (b) Numerical estimates of network expansion rates
�(n) corresponding to the expansion regimes in (a). Evolutionary parameters: q = 1, γoo = 1, γnn = 0, γ = γon = γno = 0.2 (red lower curves),
0.35 (green middle curves), 0.5 (blue upper curves). For γ = 0.2 (red lower curves), the network expansion is linear, � = � (continuous
line). For γ > 0.32 (green middle curves and blue upper curves), the network expansion is nonlinear, � = �min = � − D um (dashed line)
� � − D u� (dotted-dashed line)< � (continuous line).
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in the mean-field approximation, which leads to

u(k) = g(u(k−1)),

g(u) = u e
∑

i εi (�i−Di u) ln (�i−Di u)/(�−D u),

g′(0) = e
∑

i εi�i ln (�i )/�,

where g(u) has a single fixed point either at u� = 0
if g′(0) � 1 or at u� > 0, if g′(0) > 1. In that case,
it is the unique positive solution u� > 0 of m(u�) =∑

i εi(�i − Di u�) ln (�i − Di u�) = 0 [Fig. 2(a)].

3. Linear (� = �) versus nonlinear (� < �) expansions

Hence, we have two regimes, u� = 0 (� = �) or u� > 0
(� < �), for the expansion of biomolecular (sub)networks
under duplication-divergence evolution, starting from node(s)
of connectivity d = 1. Their asymptotic node degree distri-
bution pk depends on the value of αm, which minimizes
the convex characteristic function h(α) = ∑

i εi�
α
i , h′(αm) =∑

i εi�
αm

i ln(�i) = 0,
Linear regime d = 1 (� = �): If

∑
i εi�i ln (�i) � 0,

�(n) → � = � (i.e., u� = 0) implies that the networks even-
tually expand at the same rates in terms of links (�) and
nodes (�). This result (� = �) and its domain of validity
[
∑

i εi�i ln (�i) � 0] were independently derived in Ref. [14],
where the resulting network degree distributions are also
established for linear regimes (αm � 1):

(1) αm = ∞ corresponds to an exponential degree distribu-
tion, pk ∝ x−k

0 , x0 = min[1 + (1 − �i)/Di] > 1.
(2) 1 � αm < ∞ leads to a scale-free node-degree distribu-

tion, pk ∝ k−α�−1, where α� > αm is the unique solution >1
of the characteristic equation h(α) = ∑

i εi�
α
i = � = �, as

depicted in Fig. 3(a) (red construct).
Nonlinear regime d = 1 (� < �): If

∑
i εi�i ln (�i) > 0,

�(n) → � = � − D u� < �, where u� > 0 is the solution
of

∑
i εi(�i − Di u�) ln (�i − Di u�) = 0; see Fig. 2. � < �

implies that the networks expand more slowly in terms of
nodes than links in this case, leading to a diverging mean
connectivity k̄(n) ∼ (�/�)n → ∞. Nonlinear regimes present
either stationary or nonstationary asymptotic node-degree
distributions depending on the value αm < 1:

(3) 0 < αm < 1 leads to stationary scale-free degree dis-
tributions, pk ∝ k−α−1, where α is the solution of the char-
acteristic equation h(α) = ∑

i εi�
α
i = � � � − D u�, while

u� is simultaneously solution of the mean-field equation
m(u�) = ∑

i εi(�i − Di u�) ln (�i − Di u�) = 0, in the mean-
field approximation. The latter can be differentiated as
∂αm(u�) = ∂αu�m′(u�) = 0 to yield h′(α) = −D∂αu� = 0
[as m′(u�) < 01], implying that α = αm and, hence, � =
�min = � − D um = h(αm) and pk ∝ k−αm−1, as depicted in
Fig. 3(a) (green and blue constructs).

(4) αm � 0 leads to nonstationary degree distributions
corresponding to increasingly dense networks with � = 1 +
q < �.

1Noting that m(u) = ∑
i εi(�i − Di u) ln (�i − Di u) is convex

[i.e., m′′(u) = ∑
i εiD

2
i /(�i − Diu) > 0] and in nonlinear

regimes m(0) = ∑
i εi�i ln �i > 0, m(u�) = 0 and m(1) =∑

i εi(�i − Di) ln (�i − Di) < 0 [as �i − Di = 1 − Ai(0) < 1], we
deduce that m′(u�) < 0.

These mean-field estimates of � in linear and nonlinear
regimes are in good agreement with the corresponding numer-
ical simulations of network expansion [Fig. 3(b)], although
nonlinear regimes are found to converge more slowly toward
their asymptotic limits.

C. Subnetwork generated by a single node
of initial degree d > 1

We now discuss the expansion of a subnetwork starting ini-
tially with a single node of degree d > 1, which corresponds to
p̃(0)(x) = 1 − xd . Then 〈N〉(n+1) = 〈N〉(n+1)

d simply becomes

〈N〉(n+1)
d =

n∏
k

�
(k)
d =

s,o,n∑
i0,in

(
n∏
k

εik

) [
1 − v

(n)
i0,n

d]

=
s,o,n∑
i0,in

(
n∏
k

εik

)
u

(n)
i0,n

[
1 + v

(n)
i0,n

+ · · · + v
(n)
i0,n

d−1]
,

where v
(n)
i0,n

= Ain(Ain−1 (· · · (Ai0 (0)))) = 1 − u
(n)
i0,n

.
Hence, for large initial degrees, d � 1, we find for the early

rounds of duplication, v
(n)d

i0,n
� 1 and �

(k)
d � ∑

ik
εik = 1 + q,

corresponding to the maximum expansion rate. Then, as for
d = 1, two asymptotic regimes should be distinguished for the
evolutionary expansion of subnetworks starting from a single
node with d > 1:

Linear regime d > 1 (� = �): If
∑

i εi�i ln (�i) � 0,
u(n) → u� = 0 and v(n) → v� = 1 implying that

〈N〉(n)
d

〈N〉(n)
1

→ d, (8)

where 〈N〉(n)
1 = ∏n−1

k=0 �(k). This corresponds to a heteroge-
neous expansion of subnetworks, for which nodes with d initial
neighbors generate on average d times more nodes in their
descent than nodes with one neighbor only. As a consequence,
any part of the initial network eventually generates an
expanding subnetwork of size 〈N〉(n)

sub proportional to its initial
mean degree, 〈N〉(n)

sub ∝ d̄ (o)〈N〉(n)
1 , where d̄ (o) = ∑

d d p
(o)
d .

This leads to biomolecular subnetworks with gene families
of different sizes but exhibiting, ultimately, the same degree
distributions independent of d̄ (o) (see pk above for d = 1).
The emergence of different stationary degree distributions
within the same biomolecular network requires, in fact, explicit
distinctions between gene families and their evolutionary
parameters (γij ).

This heterogeneous expansion of simple subnetworks in
linear regimes, 〈N〉(n)

d ∼ d 〈N〉(n)
1 , is in good agreement with

the corresponding numerical simulations (Fig. 4) (red curves),
although 〈N〉(n)

d /〈N〉(n)
1 is found to converge more slowly

toward d (red dash lines) for large initial degree, d � 1.
Nonlinear regime d > 1 (� < �): If

∑
i εi�i ln (�i) > 0,

u(n) → u� > 0 and v(n) → v� = 1 − u� < 1 where u� > 0 is
the solution of

∑
i εi(�i − Di u�) ln (�i − Di u�) = 0; see

Fig. 2(a). It implies that

〈N〉(n)
d

〈N〉(n)
1

→ 1 − (1 − u�)d

u�
∼ 1

u�
� d (9)
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FIG. 4. (Color online) Heterogeneous expansion of subnetworks. Numerical expansion of subnetworks 〈N〉(n)
d and (a) d = 2, (b) d = 10,

and (c) d = 50. Same evolutionary parameters as in Fig. 3: q = 1, γoo = 1, γnn = 0, γ = γon = γno = 0.2 (red upper curves), 0.35 (green middle
curves), 0.5 (blue lower curves). For γ = 0.2 (i.e., linear regimes, red upper curves) the network expansion is homogeneous, 〈N〉(n)

d /〈N〉(n)
1 → d

(red dashed lines, top) with a slower convergence for large initial degree, d = 50 (c). For γ > 0.32 (i.e., nonlinear regimes, green middle
curves and blue lower curves), the network expansion is more homogeneous, 〈N〉(n)

d /〈N〉(n)
1 � d (red dotted-dashed lines, top) for large initial

degree, d � 1. Mean-field estimates of asymptotic expansion 〈N〉(n)
d /〈N〉(n)

1 → (1 − (1 − u�)d )/u� (dotted-dashed lines) ∼ (1 − (1 − um)d )/um

(dashed lines), where um = (� − �min)/D corresponds to � = �min = � − D um = h(αm) (Fig. 3).

for d � −1/ ln(1 − u�), where 〈N〉(n)
1 = ∏n−1

k=0 �(k). This cor-
responds to a more homogeneous expansion across gene
families, which exhibit distinct and diverging average connec-
tivities and lead altogether to a long-tailed scale-free degree
distribution pk ∝ k−1−αm with 0 < αm < 1 and k̄(n) → ∞ as
for the case of d = 1. Such nonlinear expansion regimes,
converging toward small exponent power-law degree distribu-
tions, are typically observed for the out-degree distributions of
transcription networks and signal transduction networks [16].

This more homogeneous expansion of simple subnetworks
in nonlinear regimes is in good agreement with the correspond-
ing numerical simulations (Fig. 4) (blue curves), showing that
〈N〉(n)

d /〈N〉(n)
1 � d (red dash lines) for large initial degree,

d � 1.
Hence, in both evolutionary regimes, nodes with high

connectivity, d � 1, lead to large local expansion rates, �(k)
d �

1 + q, and, ultimately, to variable expansions of gene families
in relation to the emergent properties of their biomolecular
subnetworks.

Yet, in spite of these larger local expansion rates of
highly connected nodes (�(k)

d � 1 + q, d � 1), we find
that the global expansion of the overall network, 〈N〉(n) =∑

d�1〈N〉(n)
d pd (with pd ∝ 1/d1+α for d � 1), remains, in

fact, dominated by the slower expansion of the more numerous
low-connectivity nodes, in both linear (〈N〉(n)

d = 〈N〉(n)
1 d, α =

α� > 1) and nonlinear (〈N〉(n)
d = 〈N〉(n)

1 /u�, 0 < α = αm < 1)
regimes.

IV. SIZE VARIANCE OF EXPANDING NETWORKS

We now show that the logistic map analysis can also be
used to estimate the size variance of expanding (sub)networks
in the mean-field approximation. Recalling 〈N〉(n+1) =
No

∏n
k=0(

∑
ik

εik�
(k)
ik

), we can estimate 〈N (N − 1)〉(n+1), by
summing over all possible pairs of genes after n duplications of
a random fraction q of extant genes, using a logistic map com-
position analysis including duplication splitting events (Fig. 5).

This yields the following recurrence for 〈N (N − 1)〉(n):

〈N (N − 1)〉(n+1) �
[

n∏
k=0

( ∑
ik

εik�
(k)
ik

)]2

No(No − 1)

+
n∑

	=0

{
	−1∏
k=0

( ∑
ik

εik�
(k)
ik

)
2q �(	)

o �(	)
n

×
[

n∏
k=	+1

(∑
ik

εik�
(k)
ik

)]2 }
No

〈N (N − 1)〉(n+1) � �(n)2〈N (N − 1)〉(n) + 2q �(n)
o �(n)

n 〈N〉(n),

1 − Ai(x)
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Bn(u)
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2

FIG. 5. (Color online) Logistic map analysis of network expan-
sion second moment. (a) Example of stochastic composition of pairs
of logistic maps, Bi(u) = �iu − Diu

2, i = s,o,n, with an early joint
duplication-divergence history followed by a duplication splitting
event (‘o’/‘n’) and further disjoint duplication-divergence events
for each gene duplicate. Here �s = 1.3, Ds = 0.5, �o = 0.9, Do =
0.4, �n = 0.7, Dn = 0.3, εo = εn = 1 − εs = 0.3. (b) Corresponding
evolutionary history of a specific pair of genes and resulting network
second moment 〈N 2〉(n)

1 obtained by summing over the partially
coupled histories of all possible gene pairs.
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FIG. 6. (Color online) Expansion variance χ 2
N of subnetworks. Numerical expansion variance χ2

N of subnetworks 〈N〉(n)
d in linear (a)

and nonlinear (b and c) expansion regimes (continuous lines). Same evolutionary parameters as in Figs. 3 and 4: q = 1, γoo = 1, γnn = 0,
γ = γon = γno = 0.2 (a), 0.35 (b), 0.5 (c), and for initial degree connectivity d = 1 (blue curves, top), 2 (black curves, upper middle), 10 (green
curves, lower middle), and 50 (red curves, bottom). Numerical integration of χ2

N

(n) from Eq. (10) is also plotted for the corresponding regimes
(dotted-dashed lines).

where we have assumed that �
(n)
in

becomes eventually in-
dependent of any particular duplication-divergence series
{ik} = s,o,n, in the mean-field approximation. This leads to
the following recurrences for the second moment 〈N2〉(n) and
variance χ2

N

(n) = (〈N2〉 − 〈N〉2)(n)/〈N〉2(n)
,

〈N2〉(n+1) � �(n)2〈N2〉(n)

+[
2q �(n)

o �(n)
n + �(n)(1 − �(n))

]〈N〉(n)

χ2
N

(n+1) � χ2
N

(n) + 2q �(n)
o �(n)

n + �(n)(1 − �(n))

〈N〉(n)�(n)2 ,

which yields

χ2
N

(n) � 1

No

n−1∑
	=0

2q �(	)
o �(	)

n + �(	)(1 − �(	))

�(	)
∏	

k=0 �(k)
. (10)

Hence, in the GDD model with �(n) → � > 1 and �(n)
o,n →

�o,n one finds, that χ2
N

(n)
is always finite, in the asymptotic

limit:

χ2
N

(n) → C1 + C2
2q�o�n + �(1 − �)

No�(� − 1)
< ∞.

This means that, the variance (〈N2〉 − 〈N〉2)(n) is typically
of the same order as 〈N〉2(n)

, implying that the fluctuations
remain of the same order as the means, thereby justifying
a posteriori the validity of the ensemble average approach
to model the emergent properties of expanding biomolecular
networks (�(n) > 1) under duplication-divergent evolution.

This finite asymptotic variance, χ2
N

(n)
< ∞, of biomolec-

ular subnetworks under duplication-divergence expansion
is in good agreement with the corresponding numerical
simulations, both in linear [Fig. 6(a)] and in nonlinear
[Figs. 6(b) and 6(c)] regimes.

Note, however, that in the asymptotic limit of a vanishing
expansion rate, i.e., �(n) → � ∼ 1, χ2

N

(n)
, is found to diverge

as, χ2
N

(n) ∼ 1/(�(n) − 1). In particular, the ensemble average
framework of the model becomes inappropriate to describe the
evolutionary dynamics of fixed-sized networks with �(n) = 1
and 〈N〉(n) = No. While eukaryote genomes and biomolecular
networks do not appear to be under such size constraints, as
they span nearly 105 folds in size [3], biomolecular networks
of prokaryotes have been suggested to be under simultaneous
duplication-divergence evolution and genome size constraint,
which was shown to imply a need for horizontal gene
transfer [3].

In this limit of fixed-sized networks with �(n) = 1 and
〈N〉(n) = No, χ2

N

(n)
is found to diverge as χ2

N

(n) ∼ n, indicating
that the GDD model does not correspond to a collection of
networks of fixed size No, but instead, to the unbounded
expansion of a few atypical networks exactly compensated
by the vanishing of most other network instances, resulting,
overall, in a constant mean size No for the ensemble average
of the network collection. This failure of the ensemble
average framework in the limit of nonexpanding biomolecular
networks (�(n) = 1) is reminiscent of the emergence of similar
spontaneous heterogeneities in population dynamics models
under population size constraints [17].

In summary, we have studied analytically the expansions
of gene families under duplication-divergence evolution and
analyzed the emergent properties of their biomolecular sub-
networks in terms of logistic map compositions. In particular,
we showed that, beyond explicit distinctions between gene
families, their heterogeneous expansion arises in fact sponta-
neously under duplication-divergence evolution and is directly
coupled to their subnetwork connectivity.
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