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Simulating flexible polymers in a potential of randomly distributed hard disks
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We perform equilibrium computer simulations of a two-dimensional pinned flexible polymer exposed to a
quenched disorder potential consisting of hard disks. We are especially interested in the high-density regime of
the disorder, where subtle structures such as cavities and channels play a central role. We apply an off-lattice
growth algorithm proposed by Garel and Orland [J. Phys. A 23, L621 (1990)], where a distribution of polymers
is constructed in parallel by growing each of them monomer by monomer. In addition we use a multicanonical
Monte Carlo method in order to cross-check the results of the growth algorithm. We measure the end-to-end
distribution and the tangent-tangent correlations. We also investigate the scaling behavior of the mean square
end-to-end distance in dependence on the monomer number. While the influence of the potential in the low-density
case is merely marginal, it dominates the configurational properties of the polymer for high densities.
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I. INTRODUCTION

Transport phenomena and polymers in porous media [1–3]
already required theoretical models of polymers in disordered
systems in the 1980s. Since then these problems have been
widely discussed [4–14]. In this paper we apply two algorithms
for simulating the equilibrium properties of a flexible polymer
in a disorder potential of hard disks. We are especially
interested in the high-density regime of the disorder, which
gives rise to structures that are hard to tackle with common
methods. We place the disks of the potential randomly onto
the sites of a square lattice, so that, e.g., the distance between
nearest neighbors can be controlled. This somewhat artificial
arrangement, which causes, e.g., narrow channels and small
cavities (see Sec. II B), was chosen in order to investigate the
influence of those structures on flexible polymers and to test
the methods we use. In forthcoming work we want to apply
them to the more general biophysically inspired problem of
semiflexible polymers in crowded media where the disorder
is irregular and possibly correlated (e.g., a hard-disk fluid)
[15]. We access this problem by applying and comparing two
algorithms. One algorithm is an off-lattice growth algorithm
[16]. Growth algorithms are intensively used for lattice
polymer systems [17–20], whereas they are rarely applied for
the off-lattice case. The other method is the multicanonical
Monte Carlo method [21–23], which is a common instrument
for handling systems with rough energy landscapes. It has
already proven to be very efficient for polymeric systems [24].
Throughout our analysis we found perfect agreement of the
two methods except for some special cases of parameters. We
discuss the merits and drawbacks of these methods in Sec. IV.

The rest of the paper is organized as follows: In Sec. II we
describe our polymer model and how the disorder is realized.
Then, in Sec. III, we describe the algorithms. At the end of
this section, we specify the parameters for our simulations.
In Sec. IV we discuss our findings. A conclusion is given in
Sec. V.

II. POLYMER MODEL AND DISORDER

We simulate a polymer exposed to a disorder landscape
consisting of hard disks. The polymer is pinned at one end. We

carry out the quenched disorder average as follows: We choose
a random starting point for each disorder realization and run
an equilibrium computer simulation. We estimate averages
from the resulting distribution of polymer configurations.
Averages for a single disorder realization are written in angular
brackets 〈· · ·〉. This is done for all disorder realizations and the
quenched average is calculated from this by averaging over
the measured values of the single disorder realizations. The
quenched average is written as [〈· · · 〉]. The parameters we use
for our simulations are described in detail in Sec. III C.

A. Polymer model

Our polymer model is a freely jointed chain. Effectively, this
is a bead-stick model whose contour is defined by N + 1 beads
at positions ri connected by bonds of fixed length b. Therefore
the contour has the fixed length L = Nb. The polymer chain
is a phantom chain, which means that there is no monomer-
monomer interaction except for the fixed distance between
bonded monomers. The connecting line of bonded monomers
defines unit vectors ti = (ri+1 − ri)/b. Our methods can easily
be adapted to other polymer models. In a forthcoming work
[15], we will extend it to involve bending energy.

B. Disorder potential

The background potential consists of hard disks with
diameter σi , which interact with the monomers of the polymer
via hard-core repulsion. The interaction potential between
monomers and disks is thus described by

V =
{∞ for d < σi/2,

0 else,
(1)

where d is the distance between a monomer and the center of
a disk of the background potential (no monomer volume).

The disks are placed onto the sites of a square lattice with a
lattice constant chosen to be of the order of the disk diameter.
This arrangement was chosen in order to be able to control
the distance between neighboring disks. In such a disorder
landscape the algorithms can be well tested. The algorithms
can then easily be applied to other potentials such as, e.g.,
hard-disk fluids.
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FIG. 1. Hard-disk disorder configuration with site occupation
probability p = 0.64.

In order to generate random configurations we occupy each
lattice site with the same probability. The resulting structure
mimics—to a certain extent—the structure of a diluted square
lattice. Figure 1 shows an example configuration of hard disks
with site occupation probability p = 0.64.

III. ALGORITHMS

Application of a standard Markov chain Monte Carlo
(MCMC) method based upon the Metropolis algorithm [25],
that is, building up an initial polymer chain and then updating
it in order to sample the configuration space, did not work
well for our purposes. The updates included only the changes
of angles between neighboring bonds, but even more refined
update moves such as pivot moves would certainly not work
efficiently in this situation. For a highly dense background,
these methods result in a rejection rate that makes it impossible
to create enough configurations to compute observables,
yielding a diverging autocorrelation time.

A. Method 1: Chain-growth algorithm

Following the approach proposed by Garel and Orland
[16], we generate ensembles of pinned polymers by placing

M ∼ 105 seeds at a randomly chosen site and simultaneously
growing them, monomer by monomer, until the desired degree
of polymerization is reached. After each growth step, we
attain thermal equilibration by replicating or deleting chains
according to their Boltzmann weight (0 if the chain happens
to collide with a background obstacle, 1 otherwise). To avoid
an exponential decline in the chain population, a population
control parameter is introduced that keeps the total number of
ensemble members approximately constant (see Fig. 2). Prior
to the proper growth process, the overall number of chains in
this step is estimated. The population control parameter is the
ratio of the initial number of seeds and the estimated number of
chains in the next step. The weight for each chain is multiplied
by the population control parameter. Other types of polymer
interaction such as bending energy can be treated similarly by
using different Boltzmann weights.

B. Method 2: Multicanonical Monte Carlo algorithm

In order to avoid trapping problems of the polymer in a
system with hard disks, we can treat the excluded areas as
finite potentials. That way, the polymer is allowed to access
the previously forbidden disks with the Boltzmann probability,
depending on the energy penalty from monomers located on
the disks. This approach allows for a multicanonical simulation
[21,22] in the amplitude parameter of the disk potential,
opening the possibility of reproducing the limiting cases of
a free polymer (zero amplitude) and a polymer in hard-disk
disorder (infinite amplitude).

In general, the total energy of a polymer may be defined
as the sum of the intrapolymer energy Epoly and the potential
energy kEpot, where Epot is the sum of monomers located on
disks and k is the amplitude of the disk potential in energy units.
While the intrapolymer energy is a continuous quantity, the
potential energy is discrete. The canonical partition function
is given as the sum over all polymer configurations {xi}:

Zcan =
∑
{xi }

e−β[Epoly({xi })+kEpot({xi })]. (2)

In our case, this simplifies even more as we only consider
a flexible polymer with vanishing intrapolymer energy Epoly,
but the method also works for polymers with interactions. It is
possible to separate the Boltzmann factor into contributions
of the intrapolymer energy and of the potential energy.
Replacement of the Boltzmann factor of the potential energy by

)e()d()c()b()a(

FIG. 2. (Color online) (a) Initial growth in four different directions corresponds to four different polymer chains of length 1 starting from the
seed marked by the red open circle. (b) Each of the chains is grown by one monomer. Two of the chains overlap with a disk of the background
potential. The weight of these chains is 0. (c) The chains with weight 0 are removed from the population. (d) The population control parameter
keeps the overall number of chains approximately constant. On average each of the remaining chains is thus replicated and now exists twice in
the population. (e) Each of the chains is grown independently by one more monomer.
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a variable weight factor results in our multicanonical partition
function

Zmuca =
∑
{xi }

e−βEpoly({xi })W [Epot({xi})]. (3)

Independent of the choice of the weights, the canonical
expectation values can always be recovered by

〈O〉can = 〈OW−1[Epot({xi})]e−βkEpot({xi })〉muca

〈W−1[Epot({xi}]e−βkEpot({xi })〉muca
. (4)

Now, the weights may be adjusted such that states that
initially occur frequently are suppressed, while states with
rarely occurring potential energies are amplified. The weights
are iterated in equilibrium simulations until the resulting
histogram of the potential energy, H (Epot), is flat, and thus
configurations with different numbers of monomers located
on hard disks appear with the same rate, allowing the polymer
to cross over previous barriers of hard disks. This may be
achieved in different ways [23]. In our case we start with
the Boltzmann weights in Eq. (2) with βk = 1 and after each
equilibrium simulation we recalculate the weights with

W (n+1)(Epot) = W (n)(Epot)

H (n)(Epot)
. (5)

This simple weight update already leads to a quick
convergence to flat histograms. As the first histogram may
be narrow, it is of advantage to begin with small statistics,
increasing the number of updates in each iteration upon a
chosen threshold.

In the end, the resulting weights are used to perform a
final simulation. The desired observables are obtained by
reweighting the final time series, meaning that the weights
with which the observables were measured are replaced by
the weights with which they would appear in the canonical
ensemble. With proper normalization this gives

〈O〉can ≈ Ocan =
∑

i
e
−βkEpot,i

W (Epot,i )
Oi∑

i
e
−βkEpot,i

W (Epot,i )

. (6)

C. Simulation parameters

We simulate in a square of fixed area A = 1 with periodic
boundary conditions. The diameter of the disks is set to σ1 =
0.045, σ2 = 0.05, and σ3 = 0.051. The disks are placed onto
the sites of a square lattice with 20 × 20 sites and lattice con-
stant a = 0.05. The site occupation probabilities of the lattice
include p = 0,0.13,0.25,0.38,0.51,0.64,0.76,0.89,1.00. For
σ = a, these densities correspond on average to the area frac-
tions ρ = 0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.785. The number
of monomers—except for some scaling considerations—per
polymer chain is N + 1 = 30. The monomers are considered
pointlike. The bond length is set to 0.01. Accordingly, the
only constraints are the fixed length of the bonds and the
fact that a monomer is not allowed to be placed on a disk
of the background potential. If we look more closely, we
realize that for σ1 there is a channel of half the bond length
between neighboring disks [see Fig. 3(a)]. For σ2 [Fig. 3(b)],
neighboring disks of the background potential touch each other

σ 1

b

2

b

3

b

(a) (b) (c)

σ σ

FIG. 3. (Color online) Sketch of the different disk sizes σi for
the background potential. b is the bond length. For case (a), which
belongs to σ1, there is a finite channel between neighboring disks.
(b) shows the case where neighboring disks touch each other at one
point (case σ2). As there are no bond and no monomer volume, there
is still a small probability of crossing this touching point. For (c) this
is no longer possible as the overlap width of neighboring disks is
larger than the bond length (case σ3).

at one point. The bonds of the polymer can overlap with the
disks of the background potential. As there are no monomer
and no bond volume, there is a small probability of the polymer
getting through the touching point of two neighboring disks.
For σ3 [Fig. 3(c)] this is no longer possible, as the overlap
width of neighboring disks is larger than the bond length of the
polymer. This was chosen in order to compare the algorithm’s
ability to explore narrow channels in a high-density disorder
landscape. For the case of thirty monomers, the polymer has a
length of about six disk diameters if it is completely stretched.

IV. RESULTS AND DISCUSSION

In our analysis we focus on three observables: the end-
to-end distribution P (r), the tangent-tangent correlations
〈t(0)t(s)〉, and the mean squared end-to-end distance 〈R2

ee〉(N ).
The end-to-end distribution gives the probability for finding
a certain end-to-end distance r . For a free flexible polymer,
the end-to-end distribution is of the form P (̂r) ∝ r̂e−r̂2/2σ 2

,
where r̂ = r/L with L = bN . The tangent-tangent correlation
function shows the average correlation of two bonds t(i) and
t(i + s). In our case it is defined by

〈t(0)t(s)〉 =
N−1−s∑

i=0

t(i)t(i + s)

N − 1 − s
. (7)

The tangent-tangent correlation function is a measure of the
stiffness of the polymer. For a completely flexible polymer,
the correlations are zero. The surrounding disorder can lead
to both correlations and anticorrelations, as can be seen in
Fig. 4(c).

The last observable that we consider is the mean square
end-to-end distance in dependence on the polymer length
counted in numbers of bonds. In order to compare to the
literature, we consider the mean square end-to-end distance
without normalization. For free polymers it grows linearly
in N .

The statistical errors are estimated in the standard way by
calculating the variance over the disorder realizations, which
are uncorrelated. In the plots we omitted the error bars as they
turned out to be smaller than the plot markers.
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FIG. 4. (Color online) (a) shows a distribution of disks with two exemplary pinpoints for polymers. All sides are continued with disks.
The boundary conditions are periodic. (b) is the corresponding end-to-end distribution and (c) the tangent-tangent correlation function (single
simulation; no disorder average). ◦ shows the data from the growth algorithm; + from the multicanonical simulation. The double-peaked curves
[dotted (blue) and short-dashed (red)] in (b) as well as the single-peaked curve [dashed (green)], which is shown in full y range in the inset,
belong to pinpoint 1. The double-peaked curves belong to σ1 [short-dashed (red)] and σ2 [dotted (blue)]. The strongly peaked curve [dashed
(green)] belongs to σ3. The solid (black) curve with the broad single peak belongs to pinpoint 2 for σ2. The curves for σ1 and σ3 are not shown
for pinpoint 2 as they behave similarly to σ2. The line coding is the same for the tangent-tangent correlations (c).

Figure 4 is a showcase of different scenarios that can occur
during the disorder averaging. Pinpoint 1 is in a small cavity
that is entropically unfavorable for the polymer compared to a
larger space such as can be seen around pinpoint 2. As long as
the polymer has the chance to explore a larger area by escaping
from a small cavity through a channel, this will happen even
if the channel is extremely narrow (Fig. 5).

The end-to-end distribution P (r) for σ1 and σ2 shows this
behavior, which is the same for both algorithms. It is reflected
by the double-peak structure of P (r) in Fig. 4(b). The small
peak comes from the cavity where the polymer is pinned and
the big one from the nearby free space region, which is entropi-
cally much more favorable. For the case of σ3—no channel left
between neighboring disks—the distribution is characterized
by a single peak, which corresponds to the exploration of
the tiny hole containing pinpoint 1. The broad single-peaked
curve (solid black) in Fig. 4(b) belongs to pinpoint 2. For
all three cases of the diameter of the background potential,
the behavior is qualitatively the same. The large area around
the pinpoint is sampled by polymer configurations, leading
to a broad end-to-end distribution. Figure 4(c) shows the
tangent-tangent correlations for the different pinpoints. While
pinpoint 2 leads to quick decorrelation of the tangents, which
is characteristic for a free polymer, things are completely

different for pinpoint 1. σ1 and σ2 show a correlation that
is due to the fact that the polymer stretches to the entropically

FIG. 5. Sketch of a polymer that finds its way through a narrow
channel to explore the large space behind.
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FIG. 6. (Color online) (a) End-to-end distribution function for site occupation p = 0 (—, black), 0.13 ,(− − −, green), 0.25 , (- - - ·, red),
0.38 , (· · · · · · ··, blue), and 0.51, (− - −, black) for increasing peak height. The curves are interpolating lines through the data (whose markers
have been omitted for better visibility). The results of the two algorithms agree within the line thickness. The influence of the disk diameter σi

is negligible in this density regime and chosen here to be σ2. (b) and (c) are the corresponding plots for the tangent-tangent correlations and the
mean square end-to-end distance (in units of squared bond length b2).

favorable region next to pinpoint 1 through the channels
between the disks. This leads to a correlation on short to
intermediate lengths along the polymer. For σ3, where no
channels are left, the polymer coils up in the cavity where
it is pinned. This leads to strong anticorrelations on short
length scales. For both pinpoints, the two employed simulation
algorithms yield consistent results. This is reassuring since
neither continuum chain-growth algorithms nor our special
multicanonical method has been applied and tested before
extensively.

After having looked at a single disorder realization that
exhibits two exemplary cases, we move on to the case
of averaging over disorder. We take about 1500 disorder
realizations for the quenched average. We define the equality
of the mean free path between neighboring disks and the mean
end-to-end distance of the free chain to mark the crossover
between a low- and a high-density regime. The effective free
area per disk Aeff that is accessible for the polymer is

Aeff = A − pMσ 2π/4

pM
, (8)

with A, p, and σ as described in Sec. III C and M the number
of lattice sites (this is strictly valid only for σ � a, where
neighboring disks do not overlap). The square root of Aeff gives
the average free path per occupied site, x(p). The occupation
p0 where x(p) equals the mean end-to-end distance of the
polymer, which is

√〈R2
ee〉 = √

Nb for the free flexible case,
marks the crossover

p0 = (a/b)2 1

1 + π
4 (σ/b)2/N

1

N
. (9)

For the case considered here (a = 0.05,b = 0.01,N = 29),
this gives p0 ≈ 0.56 for σ = 0.045 and p0 ≈ 0.51 for σ =
0.05 and 0.051. Figure 6 shows the observables for a freely
jointed chain for low densities of the background potential. In
this regime (p � p0), where the disorder landscape consists
of free space and some randomly distributed obstacles [see
Fig. 7(a)], the cases of different disk diameters σ1,2,3 are
similar. The end-to-end distribution [Fig. 6(a)] is characterized
by a single peak that is shifted to the left and becomes

more pronounced for increasing density of the background,
which can be interpreted as compression of the polymer by
the background potential. The tangent-tangent correlations
[Fig. 6(b)] show an anticorrelation for increasing density of the
background potential, which goes quickly to zero correlation.
This is characteristic for the free polymer. The strength of
the anticorrelation is one order of magnitude weaker than for
the case of high densities. The deviation of the mean square
end-to-end distance from the behavior of the free case [dashed
line in Fig. 6(c)] shows the influence of the potential on the
polymer in reducing the space to spread out. The magnitude of
the deviation from the free case is again insignificant compared
to the high-density case. Computationally, we observe in the
low-density regime perfect agreement of the two simulation
methods at the level of the line thickness in Fig. 6.

If we increase the density, the lattice structure dominates
more and more, which leads to a structure consisting of holes
of different sizes [Fig. 7(b)] that finally ends in a fully occupied
lattice where only tiny holes of space are left [Fig. 7(c)]. The
case of intermediate and high densities (p > p0) is shown in
Figs. 8–10 for the three observables. The effect of cavities
and channels dominates this regime and leads to deviations
depending on the choice of the diameter of the disks of the
background potential σi .

All three cases (σ1,2,3) are determined by an interplay
between configurations where the pinpoint is inside a small

(b)(a) (c)

FIG. 7. Disorder realizations for increasing density of the back-
ground potential from left to right. (a) Low densities consist of single
disks distributed in space. (b) In the intermediate- and high-density
regimes there are holes of different sizes, whereas for a fully occupied
lattice (c) there are only tiny holes left that cannot be occupied by
further disks.
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FIG. 8. (Color online) End-to-end distribution function for site occupation p = 0.64 (− − −, green), 0.76 (- - - -, red), 0.89 (· · · · · · ··,
blue), and 1 (− - −, black). The black solid curve is the end-to-end distribution of the free polymer as reference. The data marked by ◦ are
from the growth algorithm and + are from the multicanonical algorithm. The different plots are made for σ1,2,3. The inset shows in each case
the regime p = 0.64,0.76,0.89 (the black solid curve is again the case p = 0 as reference), where both the influence of the low-density regime
and the influence of the small cavities play a role.

cavity and configurations whose pinpoint is in a larger area.
For p = 1 there finally are only small cavities left. The case of
σ3, where the disks can overlap, is somewhat special. For one
thing, the occupation p = 0.59 could play an important role,
as this is the site percolation threshold of the square lattice. At
this point, there is a percolating cluster in one direction which
limits the space for chain elongation. Furthermore, a polymer
whose pinpoint is inside a cavity cannot escape from it, while
this is possible for σ1 and σ2. This effect can be well observed
in the distribution of end-to-end distances. For p = 0.64
(long-dashed green curve in the plots of Fig. 8), σ1 and σ2 still
show the low-density behavior, which is a single peak shifted
to shorter lengths compared to the free polymer. For σ3, a
small bulge next to the main peak can be seen. The position
of the bulge in the end-to-end distribution corresponds to an
extension of the chain of the order of 1–2 bond lengths, which
is the extent of the tiny holes [Fig. 7(c)]. For intermediate
densities it is very probable that there is a larger free area
next to a small cavity. A polymer pinned inside a small cavity
thus tries to escape from that region in order to reach the
entropically much more favorable space. Consequently, there
is no strong contribution from polymer configurations in small
cavities. This is of course different for σ3.

For p = 0.76 (short-dashed red curves), this effect enters
also the case for σ1 and σ2 as there is less large space next
to cavities. This reduces the gain in entropy when leaving a
cavity. This is more pronounced for σ2 as there the channels
for escape are much smaller. For p = 1, all three cases yield
qualitatively the same results again. In this case there is no
more benefit in escaping a small cavity, as there are only
small cavities left. For the cases of σ1 and σ2 the polymer
thus stays in the cavities whereas for σ3 it cannot leave the
cavity at all. The tangent-tangent correlations, Fig. 9, confirm
the findings for the end-to-end distribution. For high densities
the polymer is coiled up in a small region and therefore in a
strongly folded state. This leads to an anticorrelation of the
tangents on very short length scales, as in a highly folded state
it is more probable to have large angles between neighboring
bonds. However, this quickly averages out on longer length
scales. This effect gains importance with increasing density.
A further effect, which is hardly seen in the distributions of
Fig. 9 as the quenched disorder average combines and thus
smears different effects, is a stiffening of the polymer—that
is, a positive correlation of bonds—on short length scales for
intermediate densities with σ1 and σ2. It can well be seen for
the single disorder configuration analysis in Fig. 4(c) (short-
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FIG. 9. (Color online) Tangent-tangent correlations for p = 0.64 (− − −, green), 0.76 (- - - -·, red), 0.89 (· · · · · · ··, blue), and 1 (− -
−, black). The black solid curve is for p = 0 as reference. The data marked by ◦ are from the growth algorithm, whereas + come from the
multicanonical algorithm. (a)–(c) differ in the disk diameter. The larger the disk diameter the stronger the anticorrelations on short length
scales.
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FIG. 10. (Color online) Mean square end-to-end distance (in units of squared bond length b2) for p = 0.64 (− − −, green), 0.76 (- - - ·,
red), 0.89 (· · · · · · ··, blue), and 1 (− - −, black) from top to bottom. The data marked by ◦ are from the growth algorithm; + come from the
multicanonical algorithm. The black solid curve shows the free polymer case which scales as [〈R2

ee〉] ∝ N .

dashed red and dotted blue curves) and is already explained
there. A polymer that is pinned to a small hole that is next to
larger space stretches out to reach the entropically beneficial
region, which leads to the above described positive correlations
of tangents. Cates and Ball [6] find similar effects due to
energy instead of entropy (tadpole configurations) with pinned
polymers.

The last thing to be discussed here is the mean square
end-to-end distance in dependence on the number of bonds
N , which is shown in Fig. 10. The chain-growth algorithm
produces results in each step of growth which reduces
the computational effort for estimating the scaling of the
mean square end-to-end distance. By comparison with the
multicanonical method, we found that the potential risk of
systematic errors due to correlations of shorter and longer
chains can be neglected within our parameter range. For the
multicanonical method, the data for each polymer length have
to be generated separately. This leads to a higher computational
effort in estimating the scaling of the mean square end-to-end
distance. For this reason we generated fewer data points for
the multicanonical method in Fig. 10.

For the intermediate densities in Fig. 10, both algorithms
again show the same behavior as described above. The
surrounding obstacles limit the extension of the polymer.
This effect increases for increasing disorder density, which
leads to a plateau in the mean square end-to-end distance. This
has also been found by Baumgärtner and Muthukumar [4].
This effect dominates for the case of σ3 where neighboring
disks leave no space for the polymer to escape [Fig. 10(c)].
Things are different for the cases of σ1 and σ2 [Figs.
10(a) and 10(b)]. While the first part of the curves shows
the same behavior, an increase of the mean square end-
to-end distance for increasing number of bonds with a
slope m < 1, this suddenly changes to a steep slope with
m > 1. The slope m larger than 1 is due to the reduced
angular interval that is available after the polymer has left
a small cavity through a narrow channel. Accordingly, the
polymer is forced in a certain direction, which increases its
extension.

After having described the phenomenology of the problem,
we want to comment briefly on the algorithms for the above

described problem. For the cases of σ1 and σ2 the two
algorithms produce fully consistent results. While for shorter
chain lengths the two algorithms also agree for σ3 for high
density, they start showing small deviations from each other
for N = 29, which is barely visible only in Fig. 10(c). In
analyzing the deviations, we found that this effect increases
for increasing chain length. The deviations occur if a pinpoint
is in a corner of a small cavity next to a larger free area. The
growth algorithm explores the nearby region, building up a
dense network of polymers by growing them in parallel. The
multicanonical routine, however, explores space by updating
an existing configuration, thereby taking into account overlaps
with the surrounding disks. Afterward, these overlapping
configurations are calculated out by the reweighting process.
In a case as depicted in Fig. 11 there are some difficulties with
this process. The space for configurations that are allowed is
relatively small. As the multicanonical routine is not restricted
to the allowed region, the sampling in the allowed region is
very rare, which leads to convergence problems for the case of
small cavities.

1

FIG. 11. (Color online) Hard-disk configuration and pinpoint 1
for σ3. For those cases the multicanonical method hardly converges
as it mainly explores the area outside the cavity.
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V. CONCLUSION AND OUTLOOK

We investigated the phenomenology of a flexible polymer
exposed to a quenched disorder landscape consisting of hard
disks placed on the sites of a square lattice. We recovered
the result found by Baumgärtner and Muthukumar [4] that the
polymer shrinks in the presence of obstacles, which is reflected
in a high probability for chains with a short end-to-end distance
in the end-to-end distribution function. For high densities we
found a dependency of the characteristics of the polymer on
the microscopic structure of the disorder. Obstacles that leave
no channels between neighboring sites lead to a plateau for all
densities in the scaling of the mean square end-to-end distance
for increasing numbers of bonds. This effect is inverted for the
case of channels between neighboring disks. The mean square
end-to-end distance shows a steep slope for intermediate to
high densities as long as the polymer benefits from the channels
by being able to explore entropically favorable regions.

We cross-checked our findings by applying two con-
ceptually very different simulation algorithms: a continuum
chain-growth algorithm with population control and the mul-

ticanonical method based on Markov chains in a generalized
ensemble. In doing so we found very good agreement in almost
all situations. Only for certain cases of high densities and subtle
structures did we encounter problems with the multicanonical
method.

After having checked our methods within a system that
could be well controlled, we mean to apply them to more
sophisticated disorder landscapes such as hard-disk fluids.
Also, the polymer model can be adapted such that it includes
bending terms, which makes it applicable to biological
polymer systems. Those are often modeled by the wormlike
chain.
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(DFH-UFA) under Grant No. CDFA-02-07.

[1] G. Guillot, L. Leger, and F. Rondelez, Macromolecules 18, 2531
(1985).

[2] D. S. Cannell and F. Rondelez, Macromolecules 13, 1599 (1980).
[3] M. T. Bishop, K. H. Langley, and F. E. Karasz, Phys. Rev. Lett.

57, 1741 (1986).
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