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The tubelike cages of stiff polymers in entangled solutions have been shown to exhibit characteristic spatial
heterogeneities. We explain these observations by a systematic theory generalizing previous work by Morse
[Phys. Rev. E 63, 031502 (2001)]. With a local version of the binary collision approximation, the distribution of
confinement strengths is calculated, and the magnitude and the distribution function of tube radius fluctuations
are predicted. Our main result is a unique scaling function for the tube radius distribution, in good agreement
with experimental and simulation data.
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I. INTRODUCTION

Entangled solutions of stiff polymers are minimal model
systems to generate a fundamental understanding of the origin
of the mechanical properties of the cytoskeleton. This complex
polymer scaffold maintains the stability and integrity of
animal cells and is composed of three types of semiflexible
biopolymers, microtubules, actin, and intermediate filaments,
with backbone diameters in the nanometer range but per-
sistence lengths on the order of 10−1–103 μm [1–3]. Single
biopolymers exhibit a rich mechanical response [4–7]. In vitro
reconstituted solutions of such biopolymers hint at how cells
can acquire a considerable macroscopic strength from a purely
topological microscopic constraint and thermal fluctuations,
utilizing a minimum amount of material. Though the individual
polymers only have to respect a simple constraint, namely the
mutual impenetrability of the polymer backbones, complex
soft-solid mechanical behavior arises at densities that would
correspond to a very dilute gas without polymerization and a
certain flexibility allowing for thermal backbone undulations.
To deform an entangled polymer, surrounding polymers need
to be pushed out of the way, as familiar from knotted
strings. This mechanism leads to confinement of the individual
polymers in effective tubelike cages, from which they only
escape very slowly by a snakelike motion called reptation
[8,9]. The suppression of chain motion perpendicular to the
tube backbone is responsible for the remarkable integrity
of the transient network. A microscopic derivation of this
confinement poses formidable theoretical challenges, and there
has so far been little progress beyond the introduction of basic
topological invariants characterizing polymer entanglement
[10,11] and a phenomenological primitive path analysis [12].

Nevertheless, self-consistent approximations for the dy-
namics of rigid [13,14] and the equilibrium statistical me-
chanics of semiflexible [15] topologically entangled chains
have been worked out, and these treatments can predict
salient properties of the reptation dynamics and the postulated
tube. For stiff but not rigid polymers, with a large but finite
persistence length lp, the tube confinement of the transverse
fluctuations of a representative test chain is implemented by a
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harmonic potential of stiffness φ. The confinement geometry
is characterized by an entanglement (or collision) length
Le � lp and the tube width R � Le [16,17], both of which are
functions of φ. The former is a measure of the average spacing
between adjacent collisions with background polymers, each
of which contribute an amount kBT to the average confinement
energy of the test chain. The latter measures the magnitude
of the confined thermal fluctuations (Fig. 1). Its mean value
R as a function of monomer concentration has been predicted
theoretically based on a binary collision approximation (BCA)
and an effective medium approximation (EMA) [15]. The
BCA focuses on the pairwise entanglement topology of a
test chain, while the EMA aims to account for the collective
network fluctuations. More recently, these mean-field type
theories have been challenged by the observation of pro-
nounced heterogeneities of the local tube width R(s) along
the tube contour, which have been systematically studied
in experiments [18–22] and in simulations [23]. The tube
heterogeneities have been statistically quantified by a broad
and skewed tube width distribution P (R), which has been
analyzed by an empirical model [21] and by a generalization
of the BCA [22].

In the following, we develop a systematic, BCA-based
theory to describe the fluctuations of the tube radius in an
entangled polymer solution on the scale of individual tube
collisions. Thereby, the local tube radius heterogeneities R(s)
and their distribution P (R) can be determined, and P (R) is
found to be a universal non-Gaussian scaling function with a
stretched tail. By comparison with the segment fluid approach
of Ref. [22], in which the entangled solution is effectively
mapped onto an ensemble of entanglement segments, we
predict the segment length L (which was previously treated as
a fit parameter). The magnitude of the tube width fluctuations
is compared with published experimental data. In Ref. [21],
P (R) was instead estimated based on an ad hoc distribution
of the local mesh size. The result turned out to be unphysical
at small values of R, however. As we show in the following,
the fluctuations of the tube radius R can be comprehensively
described without additional assumptions based on a general-
ization of the BCA.

The remainder of the paper is organized as follows. In
Sec. II, we introduce the fundamental concept of the tube
and the wormlike chain (WLC) model for a single confined
semiflexible polymer. In Sec. III, we then summarize the basic
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FIG. 1. (Color online) Test polymer in a background solution,
confined into a tube of spatially varying radius R(s). The chemical dis-
tance Le indicates the characteristic scale of the tube heterogeneities.

assumptions underlying the BCA as an approximation to the
topological problem. Subsequently, in Sec. IV, we discuss
the statistical distribution of the confinement strength, which
explains the fluctuations of the tube radius, that are derived in
Sec. V. In Sec. VI, the magnitude of tube radius fluctuations
is used as an input to the segment fluid model, which predicts
a scaling function for the tube radius distribution P (R).
The analytical results are compared to experimental data in
Sec. VII.

II. BASIC ELEMENTS OF THE TUBE MODEL

A. Time scale separation and topology

We consider a stiff test polymer in the presence of surround-
ing uncrossable polymers, which are imposing topological
constraints on its conformation. We restrict our discussion
to tightly entangled polymers that are characterized by
small transverse excursions around an average path—the
preferred contour. The tube concept concerns quantities in
an intermediate equilibrium, i.e., on time scales τe � t � τd ,
where τe is the time for the confined degrees of freedom to
equilibrate inside the tube and τd is the disengagement time
of the polymer from its initial tube. In what follows, a strong
scale separation τe � τd is assumed. Then, in the idealized
limit τd → ∞, the topological relationships of the solution
will be asymptotically conserved, and the average positions
of the background polymers and their mutual topological
relationships can be considered as effectively frozen (or
“quenched”), thus collectively giving rise to a (quasistatic)
confinement potential representing the tube. We denote the
thermal average with respect to a given quenched configuration
by angular brackets 〈· · ·〉 and the average over different
configurations and topologies of the tube by an overbar · · ·.
These ensemble averages correspond to temporal averages
over several time intervals of length τe and τd , respectively.

B. Statistical mechanics of a single entangled stiff polymer

1. Transverse distance distribution

To describe the physical properties of the test polymer, we
assume that the effect of confinement can, to leading order, be
described by a harmonic confinement potential. Hence we use
the weakly bending Hamiltonian

Hconf = lp

2

∫
ds

[
d2r⊥(s)

ds2

]2

+ 1

2

∫
ds φ(s)r2

⊥(s) (1)

for the transverse fluctuations r⊥(s) of the test polymer about
the straight ground state of a rigid rod, with a local confinement

strength φ(s) that will be determined self-consistently. We
use natural energy units (kBT = 1), such that the persistence
length lp = κ/kBT is synonymous with the bending rigidity
κ . We define the arc-length dependent tube radius R(s) via
the variance of one component of the confined transverse
fluctuations,

R2(s) ≡ 1
2 〈r2

⊥(s)〉. (2)

Approximating the free energy by an effective Hamiltonian
Hconf that is quadratic in the fluctuations r⊥(s) is equivalent to
approximating the distribution of P [r⊥(s)] in a given configu-
ration by a Gaussian. Experiments [19,21,22] and simulations
[23,24] indicate that the distribution of transverse distances is
indeed Gaussian for small transverse displacements r⊥(s) on
the order of the tube radius R. It can be shown theoretically that
this assumption is in accord with a self-consistent treatment of
the tube [15].

2. Tube radius R and entanglement length Le

As a first step, we consider the case of a test polymer in a
homogeneous (cylindrical) tube that can be characterized by
the spatial average φ of a local confinement strength φ(s), and
hence a tube radius R(s) ≡ R0 = const. The variance of r⊥(s)
[Eq. (2)] is obtained from the tube Hamiltonian Eq. (1) via
equipartition, such that

R2(s) =
∫

dq

2π

1

lpq4 + φ
(3)

= 1

2
√

2l
1/4
p φ

3/4 ≡ R2
0 (4)

is the square of the tube radius corresponding to a homo-
geneous confinement strength φ. Heterogeneities of the tube
potential and of the tube radius are discussed below (in
Secs. IV and V), where we show how small spatial fluctuations
δφ(s) ≡ φ(s) − φ lead to spatial variations of R(s) about its
average value R. We assume in what follows that the peak of
the corresponding distribution P (R) is sufficently well defined
such that the average R and the typical value R0 can be used
interchangeably.

The second characteristic quantity of the tube geometry, the
entanglement length Le, is defined by assigning a harmonic
confinement energy equal to kBT (=1 in our units) to every
collision, and identifying Le with the collision length. Writing
φ for the average confinement potential strength in Eq. (1),
equipartition yields

Le =
[ ∫

dq

2π

φ

lpq4 + φ

]−1

= 2
√

2
l
1/4
p

φ
1/4 . (5)

III. BCA

We recapitulate the essential arguments that are needed to
derive the BCA and to understand the reasoning that follows.

The BCA was designed as an approximation to the
underlying topological many-body problem, suitable for es-
timating the absolute value of the average tube radius R self-
consistently. One considers an elementary encounter (“binary
collision”) between two tubes, calculates the free energy of
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FIG. 2. (Color online) Topology of two confined polymers inside
their tubes at a collision point: for fixed preferred tube contours in the
transparent state, the polymers are found either in the “above” (+) or
“below” (−) configuration. Adapted from Ref. [15].

confinement due to the uncrossability of the chains, and
sums over possible configurations of the pair of tubes. The
key approximation consists in neglecting correlations between
multiple collisions.

The dynamic entanglement problem is cast into equilibrium
statistical mechanics language by assuming that the tube
contours are (temporarily) frozen. In such a configuration,
an arbitrarily chosen point on the tube contour associated with
the test chain is characterized by a Gaussian distribution of
transverse distances, as outlined in the preceding section. Its
standard deviation is approximated by the average tube radius
R. Consider now a second background chain passing within a
distance R from the chosen point on the test chain. We refer
to this event as a tube collision. To calculate the contribution
of the pair collision to the confinement free energy, the BCA
distinguishes between two states: a hypothetical state, in which
the test chain is transparent with respect to collisions with the
background chain and a state in which the chains are mutually
uncrossable. Due to the key assumption that the collisions
along the test chain are uncorrelated, the environment of
the collision point is completely random in the transparent
state, i.e., the distribution of transverse distances is unchanged
from the Gaussian distribution with standard deviation R. The
average free energy of confinement follows from a topological
argument. In the uncrossable state for this pair of chains,
the configuration space of transverse fluctuations is divided
into two disconnected subspaces corresponding to the above
(+) and the below (−) configuration, as depicted in Fig. 2.
The average free energy in the uncrossable state is therefore
obtained by averaging the confinement potential in each of
these subspaces over the probability for a specific topology and
collision geometry. The resulting effective potential is equated
with that of the transparent state to obtain a self-consistent
estimate of the tube radius R.

For the original mathematical implementation of the above
ideas, we refer the reader to Ref. [15]. We note that a slightly
corrected estimate for the prefactor in the scaling result for
the average tube radius R with concentration was calculated
in Ref. [22] (supplement).

IV. DISTRIBUTION P[φ] OF TUBE STRENGTHS

The original BCA is exclusively concerned with average
values R, φ. The scaling of these values with concentration ρ

has been tested experimentally [20,21,25], but the prefactor is

sensitive to the precise control of the experimental conditions
and is usually treated as a fit factor. For a more detailed
comparison of theory, experiment, and simulations, knowledge
not only of the average value but of the richer and more robust
tube radius distribution P (R) is desirable (cf. Sec. V).

As a first step toward calculating P (R), we derive the
distribution P [φ] of the local confinement strength φ(s) of
a test polymer. Morse [15] gave an explicit expression for
the confinement free energy of a test chain colliding with
a medium chain. We will explicitly adopt the mathematical
approximation of straight tube contours that was implicitly
made in the previous work, and it is shown that inconsistencies
resulting from this approximation are avoided by verifying that
the calculated quantities do not depend on the overall chain
length. Let the distance of shortest approach between two
preferred contours with orientations u, u′ and centers of mass
r, r′ be x = (r − r′) · ex , where ex = u × u′/|u × u′| is the
direction perpendicular to both preferred contours; then the
free energy of the test polymer whose preferred contour has
been uniformly displaced by a vector h = heh is

F±(h) = − ln �

(
±x − h cos ψ

R

)
. (6)

Here the sign ± refers to the specific topology (cf. Fig. 2) and
cos ψ = eh · ex . The function �(y) is given by the restricted
partition sum of the Gaussian fluctuations of the test polymer
in the presence of an uncrossable test chain [15],

�(y) = 1

2
erfc

(
−y

2

)
. (7)

It can be interpreted as the probability p±(x) = �(±x/R) of
finding a specific topology.

From Eq. (6), we obtain the confinement strength φ in a
given configuration of preferred contours and topology as the
second derivative of the free energy,

φ±(x) = d2

dh2
F±(h)

∣∣∣∣
h=0

= −cos2 ψ

R
2

d2

dy2
ln �(y)

∣∣∣∣
±x/R

. (8)

To derive the distribution of confinement strengths φ(s),
we now turn back to the central BCA approximation that the
collisions between the test polymer and the background poly-
mers are independent localized events. Due to the requirement
R � Le, we may, without loss of generality, even treat them as
pointlike and express the confinement potential φ(s) per unit
length at a point s on the test polymer as

φ(s) =
N∑

i=1

χ (ri ,ui ,u)δ(s − zi)φ±(xi). (9)

Here χ (ri ,ui ,u) is a characteristic function of overlap between
the colliding tubes, which takes on the value one whenever
a tube collision occurs, and zero otherwise (for a graphical
definition, see Fig. 3). We introduce it here merely as a
convenient tool to facilitate the formal manipulation of the
following expressions. The coordinate zi in the argument of
the δ function is the point of shortest approach (the collision
point) between the two tubes on the test polymer.

The distribution P [φ] of confinement strengths that follows
from Eq. (9) is of the Holtsmark type [26,27] and describes
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FIG. 3. (Color online) Overlap area (parallelogram) of two tubes
of length L, represented by their preferred contours with orientations
u, u′ enclosing an arbitrary angle, and characteristic function χ .

the total confinement potential of the test chain as a sum
of contributions resulting from uncorrelated collisions with
medium chains. Explicitly, its moment-generating functional
is given by (cf. Appendix A)

P [w(s)] = exp

[
n

2π

∑
±

∫
dr′

∫ ′
du′ χeiw(z′)φ±(x ′)p±(x ′)

]
.

(10)

From this, we obtain the average of φ(s) by functional
differentiation of the logarithm of Eq. (10) with respect to
the field w(s) (cf. Appendix A),

φ = nLπ

8R

∫
dy

�′2(y)

�(y)
. (11)

The integral in Eq. (11) is numerically evaluated and gives
φ = αnL/R, with α = 0.502, in agreement with earlier results
[15] (applying the slight numerical correction discussed in
Ref. [22], supplement).

We proceed analogously to obtain the second cumulant
(cf. Appendix A), the correlation function

φ(s)φ(s ′) = β
nL

R
3 δ(s − s ′), (12)

where β = 0.0941. The uncorrelated character of the collisions
is apparent from the δ function on the right-hand side of
Eq. (12). Both should be understood in the coarse-grained
sense, assuming φ(s)φ(s ′) = 0 when s − s ′ � R.

V. GAUSSIAN APPROXIMATION TO THE TUBE RADIUS
DISTRIBUTION P(R)

We can now turn the distribution P [φ], which we character-
ized by its first two cumulants, into a Gaussian approximation
to the tube radius distribution P (R), by calculating the linear
response of the local tube radius R(s) to spatial changes
(heterogeneities) in φ(s). We begin with the observation
that the correlation function of the (projected) transverse
fluctuations, C(s,s ′) = 〈r⊥(s) · r⊥(s ′)〉/2, obeys the following
differential equation (cf. Appendix B):

−lp∂4
s C(s,s ′) − φ(s ′)C(s,s ′) = δ(s − s ′). (13)

The tube radius is given by R(s) = [C(s,s)]1/2 and the
linear response expression for this quantity is calculated in
Appendix B as

R(s) = R − 1

2R

∫
ds ′ G2(s − s ′)δφ(s ′). (14)

The variance of the tube radius R(s) at a randomly chosen
point s on the test polymer is now calculated from Eq. (14) as

δR2 ≡ [R(s) − R]2

= 1

4R
2

∫
ds ′ds ′′ G2(s − s ′)G2(s − s ′′)φ(s ′)φ(s ′′).

(15)

Within the BCA, with its trivial spatial correlations of the
confinement potential φ(s), Eq. (12), this reduces to

δR2 = β
nL

4R
5

∫
ds ′G4(s − s ′). (16)

The integral Eq. (16) is numerically evaluated using an explicit
expression for G(s) [Eq. (B5)],∫

ds G4(s) = γR
8
Le, (17)

where γ = 0.5125, which yields the final result for the
variance of P (R),

δR2 = 1
4βγnLR

3
Le. (18)

Using the self-consistent solutions for R =
(4α)−3/5(nL)−3/5l

−1/5
p and Le = (α/8)−2/5(nL)−2/5l

1/5
p [15],

mean and variance of the Gaussian approximation to the
tube radius distribution P (R) are completely determined
in terms of the contour length concentration nL and the
persistence length lp. In particular, the coefficient of variation
cv = [δR2]1/2/R turns out to be a concentration-independent
constant,

cv = 1

2

√
βγ

α
= 0.155. (19)

VI. SEGMENT FLUID APPROXIMATION

In Ref. [22], a broad distribution P (R) of the tube radius
was found. The derivation of an analytical result for this
distribution was also based on a Holtsmark-type distribution
for the confinement strength φ resulting from uncorrelated
collisions, but the latter were averaged over the characteristic
length L of entanglement segments (which is why the approach
was called a “segment-fluid”approximation). It was argued that
this length is on the order of Le. We now show that this choice
is indeed justified and predict the precise value of the segment
length.

The tube radius distribution P (R) was given as an analytical
approximation in Ref. [22],

P (R) = 8

3R�(k)
exp(−y)yk, y ≡ 0.01325

LR
2

�
1/3
p R8/3

, (20)
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FIG. 4. Reduced distribution RP (R) of the tube radius R. The
solid line is the segment-fluid prediction; the dashed line is a Gaussian
approximation with coefficient of variation cv given by Eq. (19).
Inset: Coefficient of variation c′

v of the segment fluid approximation
vs reduced segment length ε = L/Le, and the predicted value.

where k = 4.013n′L2R, n′ is the number density of entan-
glement segments, and �(x) is the � function. It was noted
[22] that P (R) can be written as a scaling function P (R) =
(1/R)f (R/R,n′L2R). This implies that the coefficient of
variation is given by a constant, c′

v = g(n′L2R). If we make the
ansatz L = εLe, with an undetermined dimensionless constant
ε and use the self-consistent values for R and Le given above,
we get c′

v = g(ε/α). The function g(x) is easily evaluated
numerically and is shown in Fig. 4 (inset). To fix ε and thus
the length L of entanglement segments, we require c′

v = cv

and obtain numerically ε = 0.85.
Evaluating the tube radius distribution P (R) [Eq. (20)] at

this value of the reduced segment length L/Le, we obtain
k = y(R/R)8/3 = 6.79 and hence all parameters occurring in
P (R) are now fully specified, giving

P (R) = N exp

[
− 6.79

(
R

R

)8/3]
(R/R)8/3, (21)

with a normalization constant N = 2.434 × 103. The corre-
sponding unique reduced distribution RP (R) is shown in Fig. 4
and compared to the Gaussian distribution with the same cv .
Beyond what was achieved in Ref. [22], the functional form
of P (R) is now fully determined. As can be seen in Fig. 4, the
distribution P (R) is positively skewed and has a broad tail at
large values of R.

VII. COMPARISON TO EXPERIMENT

The functional form of P (R) was compared to experimental
data in Ref. [22], and very good qualitative agreement was
found, using the value of the segment length L as a fit
parameter. Remarkably, also our above prediction of a constant
value for the coefficient of variation cv , which can be checked
against a whole set of independent measurements, is nicely
confirmed by the data (Fig. 5).

The figure summarizes literature data for cv against
monomer concentration c from various experiments and
simulations of semidilute actin solutions. The dashed line is

FIG. 5. (Color online) Comparison of tube radius fluctuations
in different experiments and simulations of semidilute solutions

of F-actin. Shown is the coefficient of variation cv =
√

δR2/R

for the fluctuations of R. Symbols correspond to data taken from
the literature. Circles: experimental data taken from Ref. [22]
(Fig. 3, inset); squares: experimental data from Ref. [28]; diamonds:
experimental data from Ref. [19] for the fluctuations of the response
coefficient α⊥, converted to fluctuations of the tube radius R; upright
triangles: experimental data from [21] (Fig. 2); downward facing
triangles: simulation data from Ref. [23] (Fig. 9). The solid dashed
line is the prediction of Eq. (19).

our prediction from Eq. (19). Two results are evident from
this plot. First, the data scatter within a band of cv = 0.2–0.4.
Second, the theoretical prediction lies below most of the data
points and thus provides a lower bound for the observed tube
radius fluctuations. This suggests that a constant value for the
coefficient of variation is indeed consistent with the reported
data, but that the heterogeneities are actually about twice as
strong as predicted.

This is not entirely unexpected, since the BCA, on which
our theoretical derivation relies, is not meant to describe
the absolute value of the tube radius quantitatively. In fact,
the BCA alone is well known to underestimate the tube
fluctuations, since it does not take into account the collective
fluctuations of the surrounding medium into which the tube
is embedded [15]. Corresponding quantitative discrepancies
with experiments have been reported before [25].

VIII. CONCLUSION

We have calculated the fluctuations of the tube radius in
entangled solutions of semiflexible polymers, based on the
binary collision approximation (BCA). We predict that the
shape of the tube radius distribution is given by a universal
(concentration-independent) scaling function, for which we
gave an analytical approximation in Eq. (21). Our results
provide a quantitative characterization of the local packing
structure of entangled biopolymer solutions in terms of
distribution functions, which are at the same time a more
sensitive and more robust means for comparing data and
theory than average values alone. We hope that the methods
of analysis established here may find application in future
experimental studies, e.g., in microrheology [29,30], or in the
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interpretation of simulation data [23,31]. Further theoretical
questions, such as the characterization of the distribution of
tube contours [20,32], are currently under study.
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APPENDIX A: CALCULATION OF THE DISTRIBUTION
OF CONFINEMENT STRENGTHS P[φ]

The distribution of the local confinement strength is for-
mally obtained as the average P [ϕ(s)] = δ[φ(s) − ϕ(s)] over
all possible configurations of tube contours and topologies.
The corresponding characteristic functional, P [w(s)], follows
from a functional Fourier transform and Eq. (9) as

P [w(s)] = exp

(
i

N∑
i=1

χ (ri ,ui ,u)w(zi)φ±(xi)

)
. (A1)

Here tangents to the test and the background chains’ tube
backbones are denoted by u and ui , and the vector ri

connects the tubes’ center of mass of the test chain with
that of the background chain i. Its coordinates xi , yi , and
zi are defined along the directions ex,i = (u × ui)/|u × ui |,
ey,i = u × ex,i , and ez,i = u. The quenched average · · · is
implemented as the simultaneous average over the probability
p±(xi) = �(±xi/R) of finding a specific topology “+” or “−”
[defined after Eq. (7)] and over the uniformly distributed
centers of mass and orientations of the tubes. Since the
chains’ preferred contours are assumed to be uncorrelated,
the average over the N preferred contours and the topology of
the background chains relative to the test chain factorizes as

P [w(s)] =
[∑

±

∫
dr′

V

∫ ′ du′

2π
eiχ(r′,u′,u)w(z′)φ±(x ′)p±(x ′)

]N

.

(A2)

Here the integral over orientations extends over the half-sphere
(indicated by a prime). Exploiting the formal definition of χ as
a characteristic function of overlap, which amounts to setting
the factor in the brackets for nonoverlapping chains to unity
[since the probability p±(x ′) is normalized], we get

P [w(s)]

=
{

1 +
∑
±

∫
dr′

V

∫ ′ du′

2π

[
eiw(z′)φ±(x ′)p±(x ′) − 1

]
χ

}N

.

(A3)

Using n = N/V for the polymer number concentration and
performing the limit N → ∞, Eq. (10) in the main text is
obtained.

The first cumulant is obtained by functional differentiation
of the characteristic functional Eq. (10) with respect to the
field w(s),

φ(s) = −i
δ

δw(s)
ln P [w(s)]

∣∣∣∣
w(s)=0

(A4)

= nL

2π

∑
±

∫ ′
du′

∫
dr′ δ(z′ − s)χp±(x ′)φ±(x ′). (A5)

Using the fact that the integral of χδ(z′ − s) over dy ′ and dz′
is the height L sin θ of the overlap area (Fig. 3), carrying out
the second derivative of − ln � and the angular integrals, and
using

∑
± �(±y) = 1, one arrives at Eq. (11) in the main text.

Analogously, we obtain the second cumulant, the correlation
function

φ(s)φ(s ′) (A6)

= − δ2

δw(s)δw(s ′)
ln P [w(s)]

∣∣∣∣
w(s)=0

(A7)

= nL

2π

∑
±

∫ ′
du′

∫
dr′ δ(z′ − s)δ(z′ − s ′)χp±(x ′)φ2

±(x ′).

(A8)

Applying a similar reasoning as above to simplify the equation
and numerically evaluating the remaining x integral, we obtain
Eq. (12) in the main text.

APPENDIX B: HETEROGENEOUS TUBE RADIUS R(s)

The fluctuation-response relation Eq. (13) for the cor-
relation function C(s,s ′) is derived from the free energy
− ln Z[f⊥(s)] of a confined WLC in the presence of an external
transverse force f⊥(s). The corresponding Hamiltonian is
H = Hconf + ∫

ds f⊥(s)r⊥(s). Since

〈r⊥(s)〉 = δ ln Z

δf⊥(s)
, (B1)

〈r⊥(s)r⊥(s ′)〉 = δ ln Z

δf⊥(s)δf⊥(s ′)

∣∣∣∣
f⊥(s)=0

(B2)

= δ〈r⊥(s)〉
δf⊥(s ′)

∣∣∣∣
f⊥(s)=0

, (B3)

it follows that C(s,s ′) ≡ 〈r⊥(s)r⊥(s ′)〉 is the functional inverse
of C(s,s ′)−1 = δf⊥(s)/δ〈r⊥(s ′)〉. Since the force f⊥(s) =
−〈δHconf/δr⊥(s)〉 producing an average displacement 〈r⊥(s)〉
is given by −lp∂4

s 〈r⊥(s)〉 − φ(s)〈r⊥(s)〉, Eq. (13) follows by
partial integration.

A solution of Eq. (13) would exactly describe the tube
heterogeneities that follow from a heterogeneous confine-
ment potential φ(s). However, no such solution is available
for arbitrary φ(s). Therefore, we write φ(s) = φ + δφ(s)
with small fluctuations δφ(s) about the average confinement
strength φ. A simple first-order perturbation scheme for
C(s,s ′) = C(0)(s,s ′) + δC(s,s ′) is set up by requiring C(0)

to be the response function in the homogeneous case,
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where δφ(s) = 0,

C(0)(s − s ′) = G(s − s ′) =
∫

dq

2π

eiq(s−s ′)

lpq4 + φ
. (B4)

The explicit expression for the Fourier transform in Eq.
(B4) can be obtained analytically and written [using Eqs. (4)
and (5)] as

G(s − s ′) = R2
0e

−2|s|/Le

[
cos

(
2

s

Le

)
+ sin

(
2
|s|
Le

)]
. (B5)

The leading-order response δC(s,s ′) to the perturbation
δφ(s,s ′) is obtained from Eq. (13) if small terms O(δCδφ)
are neglected,

δC(s,s ′) = −
∫

ds ′′G(s − s ′′)δφ(s ′′)G(s ′ − s ′′). (B6)

Equation (14) in the main text is obtained by writing R(s) =
R + δR(s) with δR(s) = δ(R2)/2R = δC(s,s)/2R0.

[1] F. Gittes, B. Mickey, J. Nettleton, and J. Howard, J. Cell Biol.
120, 923 (1993).

[2] H. Isambert, P. Venier, A. Maggs, A. Fattoum, R. Kassab,
D. Pantaloni, and M. Carlier, J. Biol. Chem. 270, 11437 (1995).

[3] M. Schopferer, H. Bär, B. Hochstein, S. Sharma, N. Mücke,
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