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A molecular statistical theory of the smectic A phase is developed taking into account specific interactions
between different molecular fragments which enables one to describe different microscopic scenario of the
transition into the smectic phase. The effects of nanoscale segregation are described using molecular models with
different combinations of attractive and repulsive sites. These models have been used to calculate numerically
coefficients in the mean filed potential as functions of molecular model parameters and the period of the
smectic structure. The same coefficients are calculated also for a conventional smectic with standard Gay-Berne
interaction potential which does not promote the segregation. The free energy is minimized numerically to
calculate the order parameters of the smectic A phases and to study the nature of the smectic transition in
both systems. It has been found that in conventional materials the smectic order can be stabilized only when
the orientational order is sufficiently high, In contrast, in materials with nanosegregation the smectic order
develops mainly in the form of the orientational-translational wave while the nematic order parameter remains
relatively small. Microscopic mechanisms of smectic ordering in both systems are discussed in detail, and the
results for smectic order parameters are compared with experimental data for materials of various molecular
structure.
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I. INTRODUCTION

Smectic liquid crystals are characterised by both orien-
tational and translational ordering of anisotropic molecules
with an intimate relationship between different types of
order. Smectic soft matter systems are very interesting from
the fundamental point of view because of their rich phase
diagrams, unique sequences of phase transitions, and a broad
variety of different types of ordering which may coexist in the
same phase.

In simple smectic phases (i.e., in smectics A and C) the
translational ordering is one dimensional, and the direction
of the wave vector of the corresponding density wave is
either parallel or tilted with respect to the director which
specifies the predominant orientation of primary molecular
axes.

The existing molecular theory of smectic phases, starting
from the pioneering works of McMillan [1] and Kobayashi [2],
is based on a simple interpretation of the smectic ordering,
which is mathematically very similar to the one-dimensional
crystallization. It is assumed that for a sufficiently high orien-
tational order of elongated molecules the system undergoes a
transition from the fluid (nematic) phase into a smectic phase
due to attraction and repulsion between molecules as a whole,
similarly to the case of molecular crystals. It should be noted,
however, that there exists a different microscopic mechanisms
of smectic ordering which manifests itself, for example, in
lyotropic lamellar phases. In lamellar systems, individual
layers are formed as a result of a nanoscale segregation

between hydrophilic molecular heads, hydrophobic tails, and
water, while the long range periodic structure appears for
entropic reasons.

It has also been recognized long ago that an element of
nanoscale segregation (e.g., between polarizable cores and
alkyl tails of typical mesogenic molecules) may be important
even in the case of conventional thermotropic smectic liquid
crystals. This idea is supported by recent discovery of a new
family of smectic materials of de Vries type that tilt without
a significant layer contraction [3–6]. The new materials are
composed of molecules which usually possess a fluorinated
or a siloxane chain, and thus the tendency for a nanoscale
segregation between different molecular fragments is strongly
enhanced. Smectic phases in these materials are characterized
by abnormally weak orientational order, and as a result there
is almost no layer contraction at the smectic A to smectic C
phase transition [7,8]. In these materials the smectic ordering
is to a large extent stabilized by the nanoscale segregation,
while the orientational ordering is less important than in
conventional smectics. Thermotropic ionic liquid crystals
[9] may represent another class of materials in which the
mechanism of smectic ordering differs significantly from
that in conventional smectics. Anisotropic ionic fluids do not
exhibit nematic phases, and are not mesogenic at all if the ions
are removed. Thus the liquid crystalline properties of these
materials are dominated by the smectic ordering which is deter-
mined by a segregation of charged molecular fragments. There
exist also few flexible mesogens which exhibit thermotropic
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smectic phases with very low values of the orientational order
parameter [10].

The existing molecular theory of smectic liquid crystals
(LCs) is mainly based on the McMillan-Kobayashi approach
which has been used by many authors (see, for example,
Refs. [11–14]), and this simple theory yields a number of
results which are in qualitative agreement with experiment.
At the same time, it cannot be used to distinguish between
different mechanisms of smectic ordering because it is based
on an oversimplified phenomenological interaction potential.
It has been noticed by several authors [15–19] that the model
potential used in McMillan-Kobayashi theory does not include
terms which describe a coupling between the intermolecular
vector and long molecular axes. These terms, however, make
a particular contribution to the stabilization of the smectic
order [15,16]. Another limitation of the theory is related to
the treatment of the period of smectic ordering, which is not
determined self-consistently but is considered as an additional
parameter.

More advanced molecular theories have been developed
[15–17] which take into account the additional terms in the
interaction potential and enable one to determine the smectic
periodicity by minimization of the free energy. However, these
theories also employ model interaction potentials which only
reflect the overall anisotropy of the interacting molecules and
do not describe an interaction between different molecular
fragments.

In this paper we develop a molecular-statistical theory of
smectic ordering using two different types of intermolecular
interaction potentials. The first potential is the popular Gay-
Berne (GB) potential which describes a smooth repulsion and
attraction between anisotropic ellipsoidal molecules and does
not account for any specific interactions. The second inter-
action potential explicitly takes into account strong repulsion
and/or attraction between particular molecular fragments. The
theory is then developed by expanding these potentials in
orthogonal invariants where the expansion coefficients are
calculated numerically as functions of molecular model pa-
rameters. Both translational and orientational order parameters
of the smectic A phase are calculated numerically for different
temperatures by direct minimization of the free energy. The use
of the interaction potentials of different types enables one to
consider in detail the two different microscopic mechanisms
of smectic ordering including the conventional one related
to one-dimensional crystallization and that dominated by
nanoscale segregation between different fragments. We also
present the experimentally determined smectic order parame-
ter profiles for a number of LC materials of different molecular
structure and discuss the nanosegregation effects in these
materials.

The paper is arranged as follows. In Sec. II we present the
general mean-field theory of the smectic A phase in which
the effective interaction potential and the final expression for
the free energy depend on generally unknown coefficients
which are functions of the smectic wave periodicity. These
coefficients are then calculated numerically for two different
types of the model interaction potential in Sec. III. In Sec. IV
we consider the phase transition into the smectic A phase and
present the order parameter profiles calculated numerically
by direct minimization of the free energy. These results

are compared with experimental data in Sec. V. Finally the
discussion is presented in Sec. VI.

II. MOLECULAR-FIELD THEORY OF
SMECTIC ORDERING

In the so-called generalized van der Waals approximation
[20,21], the intermolecular attraction interaction is taken into
account in the mean-field approximation, while the repulsion is
supposed to be infinitely strong, that is, molecules are assumed
to possess hard elongated cores. Such a steric repulsion gives
rise to steric cut-off effects and is taken into account in the
second virial approximation. The corresponding free energy
of a LC composed of uniaxial molecules can then be expressed
in the form

F = 1

2
ρ2

∫
f (r1,a1) �(|r1 − r2| − ξ 1,2)

×Uatt(a1,a2,r1 − r2) f (r2,a2) dr1 dr2 da1 da2

+ 1

2
kBTρ2

∫
f (r1,a1) [1 − �(|r1 − r2| − ξ 1,2)]

× f (r2,a2) dr1 dr2 da1 da2

+ kBTρ

∫
f (r1,a1) ln[f (r1,a1)] dr1 da1, (1)

where ρ is the molecular number density, and the one-particle
distribution function f depends on the molecule position and
orientation of its long axis a. The distribution function f is
normalized as ∫

f (r,a) dr da = V, (2)

where V is the volume of the LC.
In Eq. (1) the first term is the internal energy of the

system which is determined by the attraction interaction
potential Uatt(a1,a2,r1 − r2) modulated by anisotropic steric
repulsion. The second term is the packing entropy which is
determined by hard core repulsion. Here the step-function
�(|r1 − r2| − ξ 1,2) = 0 if the molecular cores penetrate each
other and �(|r1 − r2| − ξ 1,2) = 1 otherwise.

One notes that the free energy (1) can be expressed in a
standard mean-filed form with the effective potential which
is the sum of the attraction interaction potential modulated
by the anisotropic shape, and the contribution from the steric
repulsion. Such a generalized mean-field approximation yields
reasonable qualitative results in the description of thermotropic
liquid crystals where the material undergoes a transition into
the smectic phase with a decreasing temperature, and there is
no coexistence of phases with different density. In contrast, in
the case of hard body systems dominated by steric repulsion,
the second virial approximation is not sufficient to describe
smectic phases [22].

In the smectic A phase the one-particle distribution function
f (r,a) possesses the one-dimensional periodicity, that is, it is a
periodic function, with a period d, of the coordinate z along the
wave vector k of the smectic density wave, and is independent
of the transverse coordinates:

f (r,a) = f (z,a) = f (z + d,a). (3)
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Then, the free energy density (1) per unit area A of a smectic
layer can be expressed as

F/A = 1

2
ρ2

∫
f (z1,a1) f (z2,a2)

×
∫

Ueff{a1,a2,[r⊥ + k(z1 − z2)]}
× dr⊥ dz1 dz2 da1 da2

+ kBTρ

∫
f (z1,a1) ln[f (z1,a1)] dz1 da1, (4)

where we have introduced the following effective potential:

Ueff(a1,a2,r) = Uatt(a1,a2,r)�(|r| − ξ 1,2)

+ λkBT [1 − �(|r| − ξ 1,2)]. (5)

Minimizing the functional (4) with respect to the distribu-
tion function f (z,a), one obtains the self-consistence equation
for the distribution function

f (z,a) = 1

Z
exp

[
−UMF(z,a)

kBT

]
, (6)

where

Z = A

V

∫
exp

[
−UMF(z,a)

kBT

]
dz da, (7)

and where the mean-field potential reads

UMF(z,a) = ρ

∫ ∫
f (z − z′,a2)

×
∫

Ueff[a,a2,(r⊥ + kz′)]dr⊥ dz′ da2. (8)

One notes that if the one-particle distribution function is
periodic, the mean-field potential (8) is also a periodic function
of z with the same period d. Thus one can expand UMF in cosine
Fourier series (taking the phase to be zero when z = 0) keeping
for simplicity only the first z-dependent term:

UMF(z,a) = U
(0)
MF(a) + U

(1)
MF(a) cos

2πz

d
, (9)

where

U
(0)
MF(a) = 1

d

∫ d/2

−d/2
UMF(z,a) dz (10)

and

U
(1)
MF(a) = 2

d

∫ d/2

−d/2
UMF(z,a) cos

2πz

d
dz. (11)

Substituting Eqs. (9)–(11) into Eq. (8) one obtains

U
(0)
MF(a) = ρ

d

∫ ∫ d/2

−d/2
f (z′,a2) dz′

∫
Ueff(a,a2,r)dr da2,

(12)

and

U
(1)
MF(a) = 2ρ

d

∫ ∫ d/2

−d/2
f (z′,a2) cos

2πz′

d
dz′

×
∫

Ueff(a,a2,r) cos(q · r) dr da2, (13)

where q = 2πk/d

One can readily see that the mean-field potential is
determined by the following integrals:

I0(a1,a2) = ρ

∫
Ueff(a1,a2,r) dr, (14)

I1(a1,a2,k,q) = 2ρ

∫
Ueff(a1,a2,r) cos(q · r) dr. (15)

Here the function I0(a1,a2) depends only on the angle γ1,2

between the molecular axes a1 and a2. Taking into account
that a is statistically equivalent to −a, the function I0 can be
expanded in Legendre polynomials of even rank:

I0(a1,a2) = I0(γ1,2) =
∞∑

n=0

I
(n)
0 P2n(a1 · a2). (16)

Truncating the series at n = 2 one obtains in the first
approximation

I0(a1,a2) ≈ const + u
[

3
2 (a1 · a2)2 − 1

2

]
, (17)

where

u = 5ρ

16π2

∫ ∫ ∫ [
3

2
(a1 · a2)2 − 1

2

]
Ueff(a1,a2,r) drda1da2.

(18)

In contrast to I0, the function I1(a1,a2,k,q) depends also
on the wave vector k and can be expanded as

I1(a1,a2,k,q) =
∞∑

n=0

∞∑
l=0

min(n,l)∑
m=0

C
(m)
ln (q)

×P (m)
n (a1 · k) P

(m)
l (a2 · k) cos(mφ), (19)

where φ is the difference of the azimuthal angles of the vectors
a1 and a2 in the plane perpendicular to k. The equivalence of
a and −a enables one to exclude the terms with odd n and
l from (19). The permutational symmetry 1 ↔ 2 yields the
relationship C

(m)
ln = C

(m)
nl .

Truncating the series and keeping the harmonics with l,n �
2, and also implying that the LC in nematic and smectic A
phases is microscopically uniaxial (the mean-field potential
is independent of φ) one obtains the following approximate
expression:

I1(a1,a2,k,q) = w0(q) + w1(q)[P2(cos γ1) + P2(cos γ2)]

+w2(q) P2(cos γ1) P2(cos γ2), (20)

where the constants are given by the integrals

w0(q) = ρ

4π

∫ π

0
dγ1 sin γ1

∫ π

0
dγ2 sin γ2

×
∫ 2π

0
dφ

∫
Ueff(a1,a2,r) cos(q k · r) dr, (21)

w1(q) = 5ρ

4π

∫ π

0
dγ1 sin γ1 P2(cos γ1)

∫ π

0
dγ2 sin γ2

×
∫ 2π

0
dφ

∫
Ueff(a1,a2,r) cos(q k · r) dr, (22)
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w2(q) = 25ρ

4π

∫ π

0
dγ1 sin γ1 P2(cos γ1)

∫ π

0
dγ2 sin γ2

×P2(cos γ2)
∫ 2π

0
dφ

∫
Ueff(a1,a2,r) cos(q k · r) dr,

(23)

Note that u = w2(0)/2.
Substituting now Eqs. (16) and (20) into Eqs. (12) and (13),

one obtains the following expression for overall the mean-field
potential:

UMF(z,γ,ϕ) = uSP2(cos γ ) + w0(q)ψ cos qz + w1(q)

× [ψP2(cos γ ) cos qz + 
 cos qz]

+w2(q)
P2(cos γ ) cos qz, (24)

where the scalar order parameters of the smectic A phase are
given by the equations

ψ = 〈cos qz〉, (25)

S = 〈P2(cos γ )〉, (26)

and


 = 〈P2(cos γ ) cos qz〉, (27)

and where the averaging is defined as

〈•〉 = 1

d

∫ ∫ d/2

−d/2
f (z,a) • dz da. (28)

The order parameters S, ψ , and 
, which have been introduced
by McMillan, describe different types of molecular ordering
in the smectic A phase. The order parameter ψ characterizes
the positional ordering of molecular centres regardless of
the degree of orientational order. In contrast, the parameter

 characterizes simultaneous positional and orientational
ordering of anisotropic molecules. In certain simple cases, the
orientational order may be approximately decoupled from the
translational one, and the the parameter 
 may be factorized
approximately as 
 ≈ Sψ [14]. Then 
 is expected to be
rather small since both S and ψ are noticeably smaller than 1.
On the other hand, large values of 
 indicate that there exist
significant correlations between positions and orientations
of the molecules in the smectic phase. For example, the
orientational order may be significantly higher for molecules
located in the smectic planes (i.e., in the vicinity of the maxima
of the density wave). In this case the order parameter 
 may
be large while the average orientational order parameter S is
small.

Substituting the expression for the mean-field potential into
Eq. (6) for the one-particle distribution function and then into
Eq. (4), one obtains the final expression for the free energy of
the smectic A phase:

F/V = − 1
2ρuS2 + w0(q)ψ2 + 2w1(q)ψ


+w2(q)
2 − kBTρ ln Z, (29)

One notes that in this form of the free energy, the coupling
constants w0(q),w1(q), and w2(q) are some functions of the
smectic wave vector q, which, in principle, should be found
by minimization of the total free energy of the smectic phase
together will all order parameters. It can be shown, however,

that in the mean-field type approximation, used in this paper,
the minimization of the total free energy (29) is equivalent to
that of the averaged pair interaction potential

U (q) = w0(q)ψ2 + 2w1(q)ψ
k + w2(q)
2
k . (30)

At the same time, the minimization of the averaged potential
(30) with respect to q = 2π/d cannot be performed in the
general case because the dependence of the coupling constants
w0(q),w1(q), and w2(q) on q is not known in any generic
form. In fact, the dependence of the coupling constants on the
wave vector q can only be derived using a particular model
of the intermolecular interaction potential. One notes that in
McMillan type theories the smectic wave vector q is treated
as a parameter of the theory and the coupling coefficients
are assumed to be constants during minimization of the free
energy. In this way it is only possible to provide a qualitative
description of the transition into the smectic phase and, in
particular, it is impossible to distinguish between different
microscopic mechanisms of smectic ordering.

In the following section the coefficients w0(q), w1(q), and
w2(q) are calculated numerically as functions of q using
two different types of the model intermolecular interaction
potential. We first employ the popular GB model potential
which is very smooth and can be used to describe an averaged
intermolecular interaction without distinguishing between
particular molecular fragments. The second model is based
on a sum of the background GB interaction and specific
interaction potentials between different molecular fragments
including both local attraction and repulsion.

III. INTERMOLECULAR INTERACTION POTENTIALS

A. Gay-Berne potential

The GB model interaction potential is a generalization
of the Lennard-Jones potential to the case of anisotropic
molecules [23–25]:

UGB(a1,a2,r) = 4 ε(a1,r̂,a2){[r/r0 − σ (a1,r̂,a2) + 1]−12

− [r/r0 − σ (a1,r̂,a2) + 1]−6}, (31)

where the orientation-dependent range is expressed as

σ (a1,r̂,a2)

=
{

1 − χ

2

[
(r̂ · a1 + r̂ · a2)2

1 + χ a1 · a2
+ (r̂ · a1 − r̂ · a2)2

1 − χ a1 · a2

]}−1/2

(32)

and where the anisotropic interaction strength reads

ε(a1,r̂,a2)

= ε0[1 − χ2(a1 · a2)2]−1/2

×
{

1 − χ ′

2

[
(r̂ · a1 + r̂ · a2)2

1 + χ ′ a1 · a2
+ (r̂ · a1 − r̂ · a2)2

1 − χ ′ a1 · a2

]}2

.

(33)

Here r0 is the width of the molecule, and the constants
χ = (κ2 − 1)/(κ2 + 1) and χ ′ = (κ ′1/2 − 1)/(κ ′1/2 + 1) are
determined by the relative elongation of the molecule κ as
well as by the ratio κ ′ of the well depths for side-to-side and
end-to-end molecular orientations. The steric cutoff here can
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FIG. 1. (Color online) Nondimensional coefficients vn calculated
using the (a) attractive and the (b) repulsive parts of the GB potential
with κ = 4 (molecular elongation) and κ ′ = 8 as functions of the
smectic layer thickness d = 2π/q.

be introduced by ξ1,2 = r0 σ (a1,r̂,a2), and both attraction and
steric repulsion are defined self-consistently.

The corresponding coupling constants (21)–(23) (which
enter the expression for the free energy) can then be expressed
as

wn(q) = 2ρr3
0 ε0

[
vatt

n (q) + λkBT

ε0
vrep

n (q)

]
, (34)

where the parameters v are nondimensional and are determined
solely by the molecular geometry, that is, by the parameters
r0, κ , and κ ′.

The dependence of the coefficients vn on the smectic layer
thickness d = 2π/q calculated numerically using the GB
potential with representative parameters is shown in Fig. 1.

B. Interactions of molecular centers and tails

In this paper we model the effects of nanoscale segregation
by assuming that the elongated molecules possess additional
interacting centers including the c centers located at the
centers of hard ellipsoids and a symmetric pair of the tail
t centers located at the ends of the molecule. The interaction
between these groups is mainly determined by the overlapping
of localized electron clouds, and we approximate it by
the spherical Gaussian potential with characteristic radius
equal to a half of molecular breadth, that is, two centers
α and β located in different molecules contribute to the

(a)  (b)                   (c) 

D

FIG. 2. (Color online) A molecular model which includes inter-
actions between molecular center and tail groups responsible for the
nanoscale segregation: (a) attraction of molecular tails, (b) attraction
of molecular centers, and (c) repulsion between tails and centers.

potential as

Uαβ(rαβ) = εαβ exp
(−4r2

αβ

/
r2

0

)
, (35)

where rαβ is the distance between the interacting groups and
εαβ is the strength of the corresponding interaction.

As illustrated in Fig. 2, generally there are three kinds
of specific interactions between different groups: tail-tail (tt),
center-center (cc), and center-tail (ct). Then the contributions
from the interaction between center and tail fragments are
expressed as

Ufrag(a1,a2,r) = εcc exp
(−4r2/r2

0 ) + εtt

[
exp

(−4r2
++

/
r2

0

)
+ exp

(−4r2
−−

/
r2

0

) + exp
(−4r2

+−
/
r2

0

)
+ exp

(−4r2
−+

/
r2

0

)] + εct

[
exp

(−4r2
+c

/
r2

0

)
+ exp

(−4r2
−c

/
r2

0

) + exp
(−4r2

c−
/
r2

0

)
+ exp

(−4r2
c+

/
r2

0

)]
, (36)

where the distances are r±± = |r ± a1D ∓ a2D|, rc± = |r ∓
a2D|, and r±c = |r ± a1D|.

The nanoscale segregation between molecular fragments is
promoted by repulsive tc and attractive tt and cc interactions.
Therefore, we assume that the constant εct is positive while the
constants εtt and εcc are negative.

The corresponding contribution to the parameters wn of the
mean-field potential can be written as 2ρr3

0 ε0v
f
n(q), where the

dimensionless parameters vf
n can generally be written as sum

of three parts:

vf
n(q) = εcc

ε0
vcc

n (q) + εtt

ε0
vtt

n(q) + εct

ε0
vct

n (q). (37)

Similarly to the previous section, we calculate numerically
the integrals in (21)–(23) and obtain the parameters of the
mean-field potential. Representative data are given in Fig. 3.

IV. SMECTIC ORDER AND PHASE TRANSITIONS

Introducing the nondimensional temperature

τ = kBT

ε0ρr3
0

, (38)

and the nondimensional density

ν = 2λρr3
0 , (39)
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FIG. 3. (Color online) Nondimensional coefficients vn calculated
using (a) center-center and (b) tail-tail attraction interaction as well
as (c) tail-center repulsion for κ = 4 (molecular elongation) and D =
1.5r0 as functions of layer thickness d = 2π/q.

one can proceed from (29) to the nondimensional free energy
defined as F = F/(ε0ρ

2V r3
0 ), which then reads

F = − 1
2

(
vS2 + v0ψ

2 + 2v1ψ
 + v2

2
) − τ ln Z, (40)

and where

Z =
∫ 1

−1
dζ

∫
da exp

[
−U(a,ζ )

τ

]
. (41)

Here the nondimensional mean-field potential

U(a,ζ ) = vSP2(cos γ ) + v0ψ cos πζ

+ v1[P2(cos γ )ψ cos πζ
 cos πζ ]

+ v2
P2(cos γ ) cos πζ (42)

depends on the parameters

vn(d) = vatt
n (d) + ντvrep

n (d), n = 0, 1, 2, (43)

while v = v2(d → ∞)/2. The smectic layer thickness d

should be determined by minimization of the following
expression:

u(d) = v0(d)ψ2 + 2v1(d)ψ
 + v2(d)
2. (44)

A. Smectic ordering of molecules interacting via
the Gay-Berne potential

First we minimize numerically the free energy (40) with
the parameters v determined by the GB attraction and steric
repulsion. It has been found that the intermolecular attraction
can stabilize the nematic order, but a substantial contribution
from the steric repulsion is also needed to obtain the stable
smectic phase and to stabilize the layer thickness in the region
slightly larger than the molecular length. In fact, the number
density of the molecules has to be closely below the critical
value, above which the nematic order may occur due to steric
repulsion alone. For molecules with the elongation κ = 4 this
critical density is νc ≈ 0.79. Minimization of the free energy
reveals a distinctive first order transition from the isotropic
to the nematic phase and then a second transition into the
smectic phase at lower temperature for densities 0.75 < ν <

0.79. A typical example of the temperature variation of order
parameters in these phases is presented in Fig. 4(a).

At the density ν = 0.75 and lower, the system undergoes a
direct transition from the isotropic into the smectic phase.
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FIG. 4. (Color online) Temperature variation of the order param-
eters in the isotropic, nematic, and smectic A phases, composed of
molecules interacting via the GB potential with κ = 4, κ ′ = 8, and
ν = 0.77, calculated by (a) minimization of the original free energy
(40), and (b) that with decoupled orientational and translational
order (52).
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Σ

ψ

τ

FIG. 5. (Color online) Temperature variation of the order pa-
rameters and the smectic layer periodicity (see the inset) at the
direct isotropic-smectic A phase transition in the system of molecules
interacting via the GB potential with κ = 4, κ ′ = 8, and ν = 0.75.

The corresponding order parameter profiles are presented
in Fig. 5.

There are two important features characteristic for the order
parameters profiles in the system of molecules interacting via
the GB potential. First, one notes that all order parameters
grow rather slowly with the decreasing temperature both
in the nematic and in the smectic A phase. The obvious
reason for this is the dominance of steric repulsion in the
total intermolecular potential. The smectic layer periodicity,
presented in the inset, increases slightly with the decreasing
temperature in the smectic A phase, which is in agreement with
a typical behavior observed in conventional smectics.

Second, the calculated values of the order parameter 
 ap-
pears to be very close (with few percent accuracy) to the prod-
uct ψS, that is, 〈P2(cos γ ) cos qz〉 ≈ 〈P2(cos γ )〉〈cos qz〉 at all
temperatures, which suggests that the positional and orienta-
tional orders are almost statistically independent in this case.
This enables one to use a simple approximate model in which
the orientational order is decoupled from the positional one.

The decoupling approximation can be made self-consistent
by assuming that the original one-particle distribution function
is a product of the orientational and the positional distributions:

f (r,a) = fa(a)fz(z). (45)

Then the free energy (4) can be minimized separately with
respect to both fa and fz using the potential (5). Such a
procedure yields

fz(z) = 1

Zz

exp

[
−Uz(z)

kBT

]
, (46)

fa(a) = 1

Za

exp

[
−Ua(a)

kBT

]
, (47)

where the separate mean-field potentials are

Uz(z) = ψ cos qz(w0 + 2w1S + w2S
2), (48)

Ua(a) = uSP2(cos γ ) + ψ2{w0 + w1[P2(cos γ ) + S]

+w2SP2(cos γ )}, (49)

and the partition functions are expressed as

Zz = A

V

∫
exp

[
−Uz(z)

kBT

]
dz, (50)

Za =
∫

exp

[
−Ua(a)

kBT

]
da. (51)

Substituting the distributions back into the free energy
one obtains the following nondimensional free energy of the
smectic A phase:

F = − 1
2 [vS2 + 3ψ2(v0 + 2v1S + v2S

2)] − τ ln Z, (52)

where

Z =
∫ 1

−1
exp

[
−Uz(z)

τ

]
dz

∫
exp

[
−Ua(a)

τ

]
da, (53)

and where the dimensionless mean-field potentials are ex-
pressed as

Uz(z) = ψ cos πz[v0 + 2v1S + v2S
2], (54)

Ua(a) = vSP2(cos γ ) + ψ2{v0 + v1[P2(cos γ ) + S]

+ v2SP2(cos γ )}. (55)

Here the parameters vn are to be evaluated at the thickness
d which corresponds to the minimum of the following
expression:

v0(d) + 2v1(d)S + v2(d)S2. (56)

It is reasonable to expect that the latter is mainly determined
by the steric repulsion of molecular cores, that is, by the v

rep
n (d)

parts of wn(d). Corresponding representative curves are shown
in Fig. 6. One can readily see that the layer thickness increases
with increasing S.

Minimization of the free energy (52) with the interaction
constants calculated for the GB potential indeed yields the
order parameters close to those obtained by minimizing the
more accurate energy (40) as can be seen from comparing
Figs. 4(a) and 4(b). As one expects, both approaches also yield

FIG. 6. (Color online) Repulsive contribution to the coupling
constants [vrep

0 (d) + 2v
rep
1 (d)S + v

rep
2 (d)S2] as a function of the layer

spacing d for various values of S calculated for the GB potential with
parameters κ = 4 (molecular elongation) and κ ′ = 8.
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FIG. 7. (Color online) Typical terrain with a shallow minimum
at S ≈ 0.734, ψ ≈ 0.622, of the nondimensional approximate free
energy (52), calculated using the GB interaction potential as a
function of the order parameters. The temperature T = 15 and
concentration ν = 0.77 correspond to the smectic phase below the
transition in Fig. 4(b). The layer thickness is taken to be equal to the
minimizer of (56) for each combination of the order parameters.

the same results in the nematic phase. Although the tempera-
ture of the transition into the smectic phase is underestimated
in the decoupling approximation, the temperature variation of
the order parameters in the smectic A phase is qualitatively the
same.

It is interesting to note that both the accurate mean-field
free energy and the approximate free energy in the decoupling
approximation are generally nonconvex functions of the order
parameters. In fact, if one neglects the dependence of the
parameters v on the layer thickness, no minima of the free
energy can be found. It is due to the variation of vn with d,
which minimizes (30), and, therefore, depends on the order
parameters that there appears a shallow minimum of the free
energy. A representative complex terrain of the free energy is
illustrated in Fig. 7.

B. Smectic phase stabilized by microphase separation

Next we consider the smectic A phase promoted by specific
interaction of particular molecular fragments. The latter cannot
stabilize the nematic order on their own, and thus we add the
attractive part of the GB interaction. However, even in this
case the nematic phase cannot be stabilized at temperatures
above the smectic A, and as a result the system undergoes only
the direct transition from the isotropic to the smectic A phase.

In fact, there are many possibilities to stabilize the smectic
A phase combining various terms εcc,tt,ct in the interaction
potential (36), that is, changing the constants (37). In this
paper we consider two different simple cases: positional order
induced by mutual attraction of molecular tails, and that
induced by the repulsion between molecular centers and tails.

ψ

Σ

τ

ψ

Σ

FIG. 8. (Color online) Temperature variation of the order parame-
ters (main) and the smectic layer periodicity (insets: numerical points
as dots and polynomial fits as solid lines) at the direct isotropic-
smectic A phase transition promoted by the interactions of specific
molecular fragments: (a) repulsion between molecular centers and
tails εct = 100ε0, (b) attraction of molecular tails εtt = −100ε0. The
tail groups are located at D = 1.5r0, the GB parameters are κ = 4,
κ ′ = 8, and the packing entropy is neglected.

One notes that the contribution from the interaction of the
localized molecular fragments to the total mean-field potential
is much smaller than that from the GB attraction, which is
spread over the whole molecular core. Therefore, relatively
large values of the interaction constants εct and εtt are required
to stabilize the smectic order. We present two typical examples
of the isotropic-smectic A phase transition in such a system in
Fig. 8.

One can readily see that in this case the relationship between
the three order parameters of the smectic A phase is very
different compared with the system of molecules interacting
via the pure GB potential. In particular, the orientational-
translational order parameter 
 is as large as S and may even
become the largest order parameter in the smectic phase. In
contrast, the purely translational order parameter ψ is smaller
than both S and 
, which obviously means that 
 exceeds
substantially the product ψS. As a result, the orientational
and translational degrees of freedom cannot be decoupled in
this case. Indeed, we were unable to reproduce any of the
accurate results using the approximate free energy (52). Thus
one concludes that in a system with nanoscale segregation
the primary smectic order parameter is the orientational-
translational order parameter 
, and hence the smectic A
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phase emerges as an orientational-translational wave, which
is different from the one-dimensional crystallization.

It should be noted that in the general case the primary order
parameter of a particular phase transition is determined using
symmetry arguments, that is, by considering the symmetry
groups of the corresponding high and low symmetry phases.
For example, the primary order parameter of the smectic
A*-smectic C* transition is the tilt pseudovector while the
polarization and the biaxiality are the secondary order param-
eters which are induced by the tilt (see, for example, [26]). It
is important that in this case the secondary order parameters
possess a different symmetry compared to the primary one. In
contrast, the two smectic order parameters ψ and 
 possess the
same symmetry, and thus the primary smectic order parameter
cannot be selected using symmetry arguments alone. At the
same time, as discussed above, the parameters ψ and 


describe different types of smectic ordering, and thus the
largest order parameter indicates the primary ordering in a
given material.

The temperature variation of the smectic layer periodicity
is presented in the insets in Fig. 8. The layer periodicity is
approximately constant in this case, that is, the variations
are smaller than the accuracy of the performed numerical
calculations. A very weak temperature variation of the layer
spacing in the smectic A phase is indeed observed in some
de Vries type materials with nanoscale segregation (see, for
example, [4,7]). At the same time, in some other de Vries type
materials the layer spacing slowly increases in the smectic
A phase with decreasing temperature [27,28] similarly to
conventional smectics. This means that the smectic periodicity
may be affected also by other intermolecular interactions
which have not been taken into consideration in the present
paper. In particular, the effects of molecular biaxiality may be
important [29].

The qualitative difference between the smectic order
promoted by nanoscale segregation and that, determined by
smooth GB intermolecular interaction, can be outlined by
considering the spatial distribution of the order parameters
across the smectic layer. For this purpose we evaluate the
profile of the local density defined as

ρ(z) =
∫

f (a,z) da, (57)

and the profile of the local nematic order parameter

S(z) =
∫

P2(cos γ )f (a,z) da∫
f (a,z) da

. (58)

Figure 9 shows representative profiles of the number density
and the local nematic order parameter below the nematic-
smectic A transition in three systems described above: (a) the
system of molecules interacting via GB potential, (b) the
system with strong repulsion between centers and tails, and
(c) the system with strong tail-tail attraction.

One can readily see that the local nematic order profile
in the system of molecules interacting via the GB potential
is rather similar to the picture assumed in simple molecular
theories and, in particular, in phenomenological models. The
density of the molecular centers is cosine-like modulated, and
their local nematic order is higher in the center of the layers
and slightly lower in the region between the layers which is
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FIG. 9. (Color online) Profiles of the local number density
(dashed) and local nematic order parameter (solid) in the smectic A
phase: (a) for GB intermolecular interaction as in Fig. 5 at τ = 13.5;
(b) for the repulsion between centers and tails as in Fig. 8(a) at
τ = 1.4; and (c) for the tail-tail attraction as in Fig. 8(b) at τ = 5.5.

statistically occupied by a smaller fraction of molecules. This
explains why the decoupling approximation, which implies the
nematic order approximately constant throughout the layer,
can be used in this case.

A qualitatively different type of smectic ordering is ob-
tained in the system with nanoscale segregation of molecular
fragments. The positional ordering of molecular centers in this
case is much closer to the perfect order than to a cosine-like
wave. The peaks of the density are much sharper, and a
much smaller fraction of molecules can statistically be found
between the layers. Moreover, those rare molecules, which
occupy the region between the layers, are characterized by
a negative local nematic order parameter S ≈ −0.5, that is,
those molecules are aligned in the direction perpendicular to
the layer normal.
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These different types of smectic ordering on the molecular
level can be understood by taking into consideration different
relationships between the three order parameters in the
smectic A phase discussed above. In a liquid crystal with GB
intermolecular interaction potential (see Fig. 5) S and ψ are the
largest order parameters, while 
 plays a secondary role being
effectively just a product of S and ψ . In contrast, in the smectic
phase with nanoscale segregation, the order parameter 
 is the
primary order parameter and plays an independent role. One
notes that for sufficiently large values of 
 the local nematic
order parameter S(z) has to be substantially modulated. In
particular, to provide large 
, the local nematic order S(z)
must be negative between the layers in order to sustain the
positive values of the product S(z) cos qz in that region, where
the density wave cos qz is negative.

C. Higher order parameters 〈P4(cos γ )〉
The values of the higher order orientational parameters

can be very useful for distinguishing the main features of
orientational ordering in nematic phase and in the discussed
two types of smectic phases. In particular, it is interesting
to consider the order parameter 〈P4(cos γ )〉 which can be
measured experimentally and to compare it with the results
obtained using the simple Maier-Saupe orientational distri-
bution function valid for nematic phase. As be shown in the
Appendix, using the Maier-Saupe distribution function one
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FIG. 10. (Color online) Temperature variation of the calculated
order parameter 〈P4(cos γ )〉 (solid) and the results for the Mayer-
Saupe distribution function (dashed) for liquid crystal with GB
intermolecular interactions: (a) with ν = 0.75 as in Fig. 5 and (b) with
ν = 0.7.

can obtain the following simple relationship between the order
parameters S = 〈P2(cos γ )〉 and 〈P4(cos γ )〉:

〈P4(cos γ )〉 = 1
12 (7 + 5S − 35 0.223 T/TN ), (59)

where TN is the isotropic-nematic transition temperature
and the orientational distribution function is assumed to be
proportional to ∼exp[−JSP2(cos γ )/kBT ].

Equation (59) can be used to compare the actual value of the
order parameter 〈P4(cos γ )〉, calculated in the context of the
present theory for different types of intermolecular interaction
potential, with the values which correspond to a simple Maier-
Saupe orientational distribution in the smectic A phase. The
corresponding results are presented in Figs. 10 and 11.

One concludes that none of the molecular models of the
smectic A phase under investigation is characterized by a
simple Maier-Saupe orientational distribution. However, one
can readily see that the actual values of 〈P4〉 are closer to
the ones obtained from Eq. (59) in the phases composed
of molecules interacting via the GB potential. The worst
agreement is found in the smectic phase with strong attraction
between molecular tails. This deviation is related to the specific
profile of S(z) in Fig. 9(c), which is strongly modulated in
space.

It is also not surprising that the agreement is not good even
for conventional smectics, which can be well described in the
decoupling approximation. In this approximation, the mean-
field potential (55) contains an extra term ψ2v1P2(cos γ ),

1.0 1.1 1.2 1.3 1.4 1.5 1.6
0.0

0.2

0.4

0.6

4.0 4.5 5.0 5.5 6.0
0.0

0.2

0.4

0.6

0.8

O
rd

er
 p

ar
am

et
er

s

(a)

(b)

O
rd

er
 p

ar
am

et
er

s

Dimensionles temperature 

FIG. 11. (Color online) Temperature variation of the order pa-
rameter 〈P4(cos γ )〉 (solid) and the results for the Maier-Saupe
distribution function (dashed) for (a) molecules with the center-tail
repulsion as in Fig. 8(a), and (b) molecules with tail-tail attraction as
in Fig. 8(b).
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which is specific for the smectic phase and which plays the
role of the additional ordering field. This term is responsible
for the deviation from the results of the Maier-Saupe theory.

V. SMECTIC ORDER PARAMETERS FOR DIFFERENT
LIQUID CRYSTAL MATERIALS

One notes that all existing methods which are used to
measure the smectic order parameter (see, for example,
Refs. [30,31] and references therein) do not enable one to
distinguish between parameters ψ and 
 because they possess
the same symmetry and thus give similar contributions to major
macroscopic quantities. For example, the simple expression
for the smectic order parameter proposed by Leadbetter [32] is
formally exact only in the limit of very high orientational order
when ψ ≈ 
. In realistic cases the experimental results are
rather qualitative, and the measured effective order parameter
appears to be a mixture of the purely translational order
parameter ψ and the orientational-translational parameter 
.
On the other hand, if the measured smectic order parameter is
very large (i.e., of the order of 0.8–0.9), the measurement
should be dominated by the order parameter 
 which is
the largest parameter in smectic materials with nanoscale
segregation between different molecular fragments.

Experimentally determined temperature variation of the
smectic order parameter is presented in Fig. 12 for a number
of LC materials with different molecular structure which is
shown in Fig. 13. The smectic order parameter was determined
experimentally by an extrapolation to zero temperature of the
temperature-dependent intensity I of the fundamental (001)
smectic layer peak, observed in small-angle x-ray scattering
experiments. Details of the extrapolation method can be found
in Ref. [30]. For the x-ray scattering experiments Ni filtered
CuK radiation (wavelength 1.5418 Å) was used. Small angle
scattering data from unaligned samples (filled into Mark

FIG. 12. (Color online) Temperature variation of the smectic
order parameter in the smectic A phase for a number of materials
with nanoscale segregation including de Vries type LCs with siloxane
[Silox 2(8) and Silox 3(5)] and fluorinated (3m) groups, LC with
large terminal dipole (CBOOA), and a material with generally
nonmesogenic structure and pronounced charge distribution (Diol).
See text for a discussion of the molecular structure.
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FIG. 13. Schematic molecular structure of the smectic liquid
crystal materials CBOOA, Diol, 3M, Silox 2(8), and Silox 3(5)
which have been studied experimentally. Temperature variation of the
smectic order parameter for these materials is presented in Fig. 12.

capillary tubes of 0.7 mm in diameter) were obtained using
a Kratky compact camera (Paar) equipped with a temperature
controller (Paar) and a one-dimensional electronic detector
(Braun).

One can readily see that completely different LC materials
may exhibit very large values of the smectic order parameter.
In addition, all these materials are characterized by a specific
temperature variation of the smectic ordering. The order
parameter grows fast below the transition into the smectic A
phase and then rapidly saturates. As shown in this paper, such
a temperature variation is typical for smectic materials with
strong nanoscale segregation (see Fig. 8). In general, nanoscale
segregation is strong when the constituent molecules possess
specific groups which strongly repel or attract each other.

In this case there may be a very large energy difference be-
tween some mutual configurations of the two molecules. This
is apparently the case for the materials Silox 2(8), Silox 3(5),
and 3M [30], which possess terminal siloxane or fluorinated
groups (see Fig. 13 for the molecular structure). These groups
tend to aggregate together promoting the smectic ordering
even at low values of the orientational order parameter. These
materials are also characterized by de Vries behavior [7,33].

Nanoscale segregation may also be determined by electro-
static interactions between large point molecular dipoles or
local charges. For example, the material CBOOA is composed
of molecules with large longitudinal dipoles determined by
the terminal CN group (see Fig. 13). In this case, however,
the interpretation is not straightforward because a very similar
LC material, which differs only by not having the CN group
between the two aromatic rings, is characterized by a much
lower value of the smectic order parameter [30]. A similar
effect can also be observed comparing the two materials Silox
2(8) and Silox 3(5) which both contain the siloxane group and
differ mainly by the chlorine atom at the end of the terminal
chain (see Fig. 13) [33]. For a yet unknown reason the material
with the chlorine is characterized by a much lower value of
the smectic order parameter. This indicates that sometimes the
nanoscale segregation is a complex phenomenon determined
by interactions between multiple molecular fragments which
may partially compensate each other.
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Another interesting example is the material Diol [10,30]
which is composed of molecules that do not possess a typical
mesogenic structure (see Fig. 13). The Diol molecules are
very flexible and do not exhibit the nematic phase. Even in the
smectic A phase the orientational order parameter is low [10],
and the smectic ordering is apparently stabilized mainly by
strong hydrogen bonding between the terminal OH groups and
partially by a strong interaction between polar heads which
may tend to segregate from the weakly polarizable parts of
the molecules. Similar behavior is typical also of ionic liquid
crystals [9] which only exhibit smectic phases. Ionic liquid
crystals are composed of very flexible molecules which are
not mesogenic at all if charges are removed. Smectic ordering
can then be stabilized only by strong interaction between local
charges and ions.

VI. DISCUSSION

On the molecular level the ordering in the smectic A phase
is characterized by three order parameters: the orientational
order parameter S, the translational order parameter ψ , and
the mixed orientational-translational order parameter 
. One
notes that in the existing theories of smectic LCs the role
of the order parameter 
 is not emphasized. Indeed, the
phenomenological theory is developed in terms of the order
parameters S and ψ only [34], while in the molecular theory
the parameter 
 is often decoupled as Sψ . However, it
has been shown in this paper that there exist two different
microscopic scenario of the transition into the smectic phase
which correspond to different relationships between the mixed
order parameter 
 and the parameters S and ψ .

In the model LC composed of molecules interacting via
the popular GB potential, the transition into the smectic
A phase is found to be very close to the “conventional”
picture. One notes that the GB potential is very smooth and
cannot account for any specific interactions between particular
molecular fragments. It has been shown in Sec. III that such
a system undergoes a transition into the smectic phase only
at sufficiently large value of the nematic order parameter S,
that is, the orientational order plays the leading role. In this
case the translational order parameter ψ is smaller than S in
a broad temperature range below the transition point. At the
same time, the mixed order parameter 
 is smaller than both
S and ψ and can approximately be decoupled as 
 ≈ Sψ .
As shown in Sec. III, the thermodynamical properties of the
smectic A phase in this case can be described considerably well
using this decoupling approximation, that is, it is sufficient to
use the parameters S and ψ while the third order parameter

 plays a secondary role. In this case the transition indeed
resembles the one-dimensional crystallization (at least from
the mathematical point of view) and is consistent with the
“conventional” scenario.

In contrast, in LC materials with strong nanosegregation
between different molecular fragments (determined by specific
interactions between these fragments), the order parameter 


plays the leading role at the transition, that is, the smectic
phase emerges as an orientational-translational wave. In this
case the order parameter 
 is as large as S and can even
be large already a few degrees below the transition. At the
same time, the purely translational order parameter ψ remains

smaller than both 
 and S, which means that 
 cannot be
decoupled, and one needs all three order parameters to describe
the smectic phase. Relatively low values of S in the smectic A
phase can be explained qualitatively taking into account that
nanoscale segregation promotes the smectic ordering, to some
extent, regardless of the degree of orientational order. The
system then undergoes the transition into the smectic phase
at lower values of S. The transition is governed by the order
parameter 
 which rapidly grows directly below the transition
point and then saturates at a very high value of about 0.8–0.9.
This behavior is observed experimentally for a number of
smectic LC materials with nanosegregating groups. At the
same time, the parameter ψ is smaller and its behavior is
typical of a secondary order parameter which is mainly induced
by 
.

It should be noted that the analysis of different microscopic
mechanisms of smectic ordering can only be performed by
using particular models for the intermolecular interaction
potential and establishing a direct relationship between the
parameters of these potentials and the parameters of the
statistical theory. In this paper the coefficients of the mean-field
free energy of the smectic A phase have been calculated
numerically for different types of the intermolecular potential
as functions of the smectic layer period d. Both the smectic
period and all three order parameters have then been calculated
numerically as functions of temperature by direct minimiza-
tion of the free energy.

One notes that the nanoscale segregation model of a smectic
LC considered in this paper can be used to explain some
properties of de Vries like smectic materials including, in
particular, the combination of low orientational and high
translational order, and the absence of the nematic phase. On
the other hand, the present model is not expected to describe the
transition into the smectic C phase because it does not take into
consideration specific intermolecular interactions [8] which
are responsible for the tilt of the director. A detailed description
of the smectic A-smectic C transition in the framework
of a more general model may be a subject of a separate
study.
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APPENDIX: EXPRESSION FOR 〈P4(cos γ )〉 WITHIN THE
MAIER-SAUPE DISTRIBUTION

Mier-Saupe orientational distribution function of the polar
angle γ of long molecular axis reads

f (γ ) = e−JSP2(cos γ )/kBT∫ π

0 dγ sin γ e−JSP2(cos γ )/kBT
. (A1)
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Accordingly, S obeys the equation

S =
∫ 1
−1 dx P2(x) e−JSP2(x)/kBT

∫ 1
−1 dx e−JSP2(x)/kBT

, (A2)

which can be reduced to

S = 3

2

∫ 1
−1 dx x2 e−3JSx2/2kBT

∫ 1
−1 dx e−3JSx2/2kBT

− 1

2
. (A3)

Integrating by parts one obtains

S = kBT

2JS
− 1

2
− kBT e−3JS/2kBT

JS
∫ 1
−1 dx e−3JSx2/2kBT

. (A4)

On the other hand, the average 〈cos4 γ 〉 reads

〈cos4 γ 〉 =
∫ 1
−1 dx x4 e−3JSx2/2kBT

∫ 1
−1 dx e−3JSx2/2kBT

, (A5)

and after integrating by parts this yields

〈cos4 γ 〉 = 2kBT

3JS

(
S + 1

2

)
− 2kBT e−3JS/2kBT

3JS
∫ 1
−1 dx e−3JSx2/2kBT

,

(A6)

where we have introduced S from Eq. (A3).
Combining Eqs. (A4) with (A6) and excluding the last terms

it is easy to get the simple relation

〈cos4 γ 〉 = 2kBT

3J
+ 2

3
S + 1

3
. (A7)

Accordingly, the higher order parameter reads

〈P4(cos γ )〉 = 35

12

kBT

J
+ 5

12
S + 7

12
. (A8)

Finally, taking into account that the Maier-Saupe interaction
constant J is related to the temperature of the transition
from isotropic to orientationally ordered liquid crystal phase
kBTN = 0.223J , one obtains the relation (59).
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