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Stable growth mechanisms of ice disk crystals in heavy water
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Ice crystal growth experiments in heavy water were carried out under microgravity to investigate the
morphological transition from a disk crystal to a dendrite. Surprisingly, however, no transition was observed,
namely, the disk crystal or dendrite maintained its shape throughout the experiments, unlike the results obtained
on the ground. Therefore, we introduce a growth model to understand disk growth. The Gibbs-Thomson effect is
taken into account as a stabilization mechanism. The model is numerically solved by varying both an interfacial
tension of the prism plane and supercooling so that the final sizes of the crystals can become almost the same
to determine the interfacial tension. The results are compared with the typical experimental ones and thus the
interfacial tension is estimated to be 20 mJ/m2. Next, the model is solved under two supercooling conditions
by using the estimated interfacial tension to understand stable growth. Comparisons between the numerical and
experimental results show that our model explains well the microgravity experiments. It is also found that the
experimental setup has the capability of controlling temperature on the order of 1/100 K.
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I. INTRODUCTION

A disk or hexagonal prism shape of an ice crystal in
water is well known as a stable morphology. Under certain
supercooling conditions, however, the stable crystal becomes
morphologically unstable. First, one side of the crystal edges
begins to undulate azimuthally. Then, the undulations grow
like cellular growth and finally change to dendrites. This
process has been investigated both experimentally [1–4] and
theoretically [5–8] for a long time. The trigger of the instability,
however, is not clear yet. As a first approach, the Mullins-
Sekerka theory was applied to the azimuthal undulations but
did not agree well with the experimental results. Next, a
hypothesis of the critical thickness was proposed [3,9,10]. This
hypothesis is that the crystal becomes unstable if the crystal
thickness is larger than a certain threshold value. To verify
this, thermal convection must be sufficiently suppressed since
the convection causes temperature nonuniformity. Therefore,
we planned to carry out microgravity experiments since
1993 because microgravity suppresses the buoyancy-driven
convection [11].

From December 2008 to February 2009, we performed
microgravity experiments of ice crystal growth in heavy
water with the Japanese Experiment Module “Kibo” on the
International Space Station (ISS) [12,13]. Data from more
than 130 experiments were successfully obtained. Against
our initial expectation, however, we were unable to observe
the morphological transition from the stable disk crystal to
dendrites. Namely, the stable shape was maintained over the
experimental period, while the unstable shape was observed
from the initial stage. This means that unfortunately one of the
initial objectives of the microgravity experiment for verifica-
tion of the hypothesis was not achieved but another important
issue appeared, that is, why the transition did not occur.

*adachi.satoshi@jaxa.jp

Figure 1 shows the typical observation result under mi-
crogravity. Figure 1(a) is a snapshot of the stable growth
at a supercooling setting of 0.04 K and Fig. 1(b) shows
that of the unstable growth at a setting of 0.06 K. In
this paper, supercooling is defined as the difference the
setting temperature of the bulk heavy water from the melting
point (3.82 ◦C), that is, �T = Tm − T . Positive supercooling
means a lower temperature than the melting point. These
supercoolings are not actual supercoolings but set values.
Therefore, we use �Tset to indicate this and use �Tsim for
the simulation parameter described below. In microgravity
experiments, stable growth was achieved under conditions of
�Tset � 0.04 K, while unstable growth was observed under
conditions of �Tset � 0.06 K. In this paper, data with almost
the same thickness of about 250 μm were used in order
to compare the experimental and simulation data precisely.
Although some of the crystals observed at �Tset = 0.05 K
seemed stable, their thickness was less than that under lower
supercooling conditions. Hence, the data at �Tset = 0.05 K
were not used in this paper.

The experimental data on the ground are quite different
from those under microgravity, that is, the morphological
transition from the disk shape to dendrites is often observed
on the ground in a wide supercooling range as shown in Fig. 2.
Figures 2(a) and 2(b) show the typical results of stable and
unstable growth in a low supercooling setting of 0.02 K,
respectively, while Figs. 2(c) and 2(d) show those in a large
setting of 0.43 K, respectively. All data were obtained by using
an engineering model of an apparatus for the microgravity
experiment, which is basically the same apparatus as the flight
model described in the next section. From comparison between
the data under microgravity and those on the ground, it is
suggested that the morphological transition may be strongly
affected by thermal convection.

Therefore, we introduced a model describing the stable
growth to investigate the reasons why such a difference
occurs. The Gibbs-Thomson effect was taken into account
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(a)

(b)

FIG. 1. Typical results of microgravity experiments of ice crystal
growth: (a) �T = 0.04 K and (b) �T = 0.06 K. These supercoolings
are set values. The former and latter results show stable and unstable
growth, respectively. The difference of supercooling between the two
cases is only 0.02 K.

as the stabilization mechanism since stable growth is
almost impossible in the absence of stabilization mechanisms.
Although the Gibbs-Thomson effect requires an interfacial

(a) (b)

(c) (d)

FIG. 2. Typical results of ground-based experiments of ice crystal
growth: (a) stable growth in �T = 0.02 K setting, (b) unstable
growth after transition in the same setting as (a), (c) stable growth in
�T = 0.43 K setting, and (d) unstable growth after transition in the
same setting as (c).

tension, the value was reported as ranging widely from 15 to
33 mJ/m2 [6,14,15]. Therefore, the interfacial tension was
estimated in this paper by comparing numerical data with
experimental ones in the case of the �Tset = 0.03 K setting.
By using the estimated value, the model was solved for another
comparison with �Tset = 0.04 K. From these comparisons,
we discuss the stabilization mechanisms, estimation of the
actual supercooling in microgravity experiments, and the
supercooling limit for stable growth.

II. EXPERIMENTAL SETUP

The “Kibo” module includes several facilities for micro-
gravity experiments. In this experiment, we used the Solution
Crystallization Observation Facility (SCOF). An ice crystal
cell (ICC), which contains the small module shown in Fig. 3,
is set on a cold plate inside the SCOF. This module is called the
ice cell module (ICM) in this paper. The ICM mainly has two
components, namely, the nucleation cell and the growth cell,
between which a small capillary tube with an inner diameter of
about 300 μm is connected. The growth cell has dimensions of
26 mm in diameter and 24 mm in height. Each cell is filled with
heavy water, since the temperature dependency of its refractive
index is relatively higher than that of light water, in order to de-
tect temperature variation by interferometers more precisely.

Data shown in Fig. 1 were obtained by a bright field
microscope with a field of view of 6.4 × 4.8 mm in (a), which

(a)

(b)

FIG. 3. Schematic view of the small experimental ice cell equip-
ment used for microgravity experiments: (a) top view and (b) side
view. The cell mainly consists of two parts, namely, the nucleation
cell and the growth cell. Grains nucleated at the nucleation cell grow
and propagate inside the capillary tube. The selected grain grows in
the growth cell.
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was installed in the ICC, and 1.6 ×1.2 mm (four-times view)
in (b) since the crystal was small due to its initial phase. Here,
the ice crystal grew from right to left. A capillary tube was
set at the mid-right position in the figure, within which the
crystal propagated after nucleation so that one grain could
be selected. A thermistor was set at the lower-left corner in
Fig. 1(a) to measure the temperature of the bulk water as a
reference for the interferometric temperature measurements.

The ICC has another observation device, namely, an
interferometer with the same field of view of the microscope,
while the SCOF also has observation devices, namely, two
interferometers and one amplitude-modulation microscope.
The SCOF data are recorded via two cameras with a field of
view of 3.2 × 2.4 mm (two-times view) and four-times view
as shown in Fig. 1(b).

In the experiment, the nucleation cell was rapidly cooled to
a sufficiently low temperature at which the nucleation would
surely occur, namely, up to 10 K below the melting point,
while the growth cell was maintained at a certain supercooling
level. After detection of the latent heat at the nucleation cell,
the temperature of the nucleation cell was set higher, the same
as that of the growth cell in many cases, to prevent temperature
perturbation at the growth cell.

The ICM performs outstandingly, especially in terms of
temperature stability, as mentioned in Sec. IV in more detail.
The growth cell can maintain almost constant temperature
in the bulk water due to its large heat capacity and Peltier
devices. Unfortunately, ice crystals grow not only toward the
bulk water but also on the surface of the capillary tube toward
the growth cell wall. Once the ice crystal reaches the wall,
the ice also begins to grow on the wall. When the whole wall
is covered with ice, the supercooling is canceled out since
the temperature of the ice surface becomes the melting point
due to the release of latent heat, thus limiting the duration of
the experiment. Although this duration depends on the initial
supercooling setting, it may range from a few to several tens
of minutes under small supercooling conditions.

Although the supercooling at the growth cell was set
from 0.03 to 2 K in the experiment, stable growth was
only observed in the cases of 0.03 and 0.04 K. All the
crystals observed under conditions where �Tset � 0.06 K were
unstable. We focused on aspects such as small supercooling in
this paper to understand the stabilization mechanisms. When
the supercooling was set to 0.02 K, the crystal was melted
back, which indicates that the actual supercooling is at least
0.02 K smaller than the setting values; for example, the setting
of 0.03 K is actually about 0.01 K or less. The SCOF has
sufficient relative accuracy, on the order of 1/100 K, but lacks
sufficient absolute accuracy for 1/100 K.

III. STABLE GROWTH MODEL

The typical time evolution of crystal thickness and radial
size is shown in Fig. 4, where �Tset = 0.04 K. Here, the solid
and dashed lines represent thickness and size, respectively.
A snapshot from the side view is shown in the lower-right
corner of this figure. The shape of the side surface (prism
plane) gradually approached a flat shape with time from an
initial concave shape toward the water. Since the equilibrium
shape of the ice crystal is slightly convex toward the water,

FIG. 4. Typical time evolution of crystal thickness and radial size.
The supercooling is set to 0.04 K and a snapshot from the side view
is shown in the lower-right corner in this figure. The solid and dashed
lines represent crystal thickness and radial size, respectively. It is
found that the thickness is almost constant, while the size increases
over time.

the crystal approaches the near-equilibrium state as time
progresses. This may be the essential reason why the radial
growth rate decreases with time. To express this phenomenon,
an adhesive growth model should be applied though a kinetic
coefficient of the side surface but since this coefficient is
unknown the model cannot be solved quantitatively. From
a macroscopic point of view, however, the adhesive growth
model may be replaced with macroscopic heat and mass
balance models. Since the ice crystal is grown from the pure
melt, the mass balance can be neglected.

From Fig. 4, the thickness is almost constant, 245 ± 2.5 μm,
throughout the growth period. This indicates that the spiral
growth rate or the frequency of the two-dimensional nucleation
on the flat surface (basal plane) is negligibly small. Since the
spiral growth stops at very low supercooling, the supercooling
settings of 0.03 and 0.04 K should correspond to such low su-
percooling in our experiments. In addition, it is also indicated
that the step on the flat surface advances with a very similar rate
to the radial growth rate in those supercooling settings. Such
the step advance can occur due to no supercooling threshold
of the advance. This also suggests that the basal plane may not
have an important role in the morphological instability.

By considering all of these phenomena, we may be able to
estimate some important parameters such as the free energy
of the step, the kinetic coefficient of the step advance, and
so on in future, but these are not the topics of this paper. No
observation of the thickness increase also means that the angle
of the vicinal surface decreases with time. This may suggest
another interesting issue of the change of the step intervals on
the basal plane and related kink site density but these topics are
also for future work. Based on the almost constant thickness,
we do not consider thickness increase, that is, perpendicular
growth to the basal plane, in this paper.

Thus the governing equations taken into consideration
include thermal diffusion in the melt and the crystal and
the balance of heat flux at interfaces. In two-dimensional r-z
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coordinates, these are expressed as
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where ρ, κ , and LSL represent the density, thermal conduc-
tivity, and latent heat, respectively. The suffix i takes s or L,
which means solid or liquid regions. f is a function of z and t ,
which expresses the r coordinate of the interface shape of the
side surface (prism plane), r = f (z,t). Thus the radial growth
rate is expressed as ∂f/∂t . In Eq. (2), if LSL takes the latent
heat of solidification, ρ takes the liquid density.

To solve these equations simultaneously, the boundary-
fitted coordinate (BFC) method [16,17] is used in this paper.
In this method, the actual coordinates r-z are transformed to
the computational coordinates ξ -η. The BFC method features
automatic grid generation by solving the following equations:

αrξξ − 2βrξη + γ rηη = 0, (4)

αzξξ − 2βzξη + γ zηη = 0, (5)

where α = r2
η + z2

η, β = rξ rη + zξ zη, γ = r2
ξ + z2

ξ , and J is
the Jacobian, J = rξ zη − rηzξ . The suffixes ξ and η represent
the partial differentials by ξ and η, respectively.

In the computational space, Eqs. (1)–(3) are transformed to
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where the suffix i is eliminated in Eq. (6) to simplify
the expression. In the model, the supercooling on the side
surface (prism plane) is not considered, while that on the flat
surfaces (basal plane) is considered. By solving Eqs. (6)–(8)
simultaneously by using thermophysical properties shown in
Table I, we found that there were no stable solutions, even
though the supercooling of the bulk water was set to less
than 0.01 K. The instability is mainly due to the the same
mechanism as the Berg effect [18–20] at the edge of the
crystal; hence the Gibbs-Thomson effect is considered to be a
stabilization mechanism and is described as

Tm
′ = Tm − Tm

lsl

(
α̃1

R1
+ α̃2

R2

)
, (9)

where Tm, Tm
′, and lsl represent the melting point, a varied

melting point by the Gibbs-Thomson effect, and the latent

TABLE I. Summary of the thermophysical properties of ice and
heavy water, which were used for the numerical simulation.

Properties Solid Liquid

Thermal Conductivity [W/(m K)] 2.2 0.561
Density [kg/m3] 1.0177×103 1.1056×103

Specific Heat [J/(kg K)] 2100 4217

Latent Heat [J/kg] 3.36×105

Melting Point [◦C] 3.82

heat per unit volume, respectively. Ri and α̃i (i = 1, 2) are the
principal radii and stiffness. The principal radius is described
by using a function expressing the geodesic line g as

R = (1 + g′2)3/2

|g′′| , (10)

where the prime and double prime represent the first- and
second-order differentials, respectively. The stiffness is de-
scribed as

α̃i = σ (y) + ∂2σ

∂θi
2 , (11)

where y = tan θi , with θi and σ the angle between the normal
and datum lines and the interfacial tension, respectively.
Equation (10) is also transformed to computational coordinates
as

R =
(
rη

2 + zη
2
)3/2

|rηzηη − rηηzη| . (12)

In this paper, we assume the dependency of the interfacial
tension on the angle to be negligibly small, and thus we obtain

α̃1 = α̃2 = σ0, (13)

where σ0 is the interfacial tension of the {1010} plane.
To calculate the Gibbs-Thomson effect, the radii are

required. It is easy to obtain one radius from the experiments,
namely, the crystal radius. The other one, however, cannot be
obtained from the experiments since it is difficult to obtain suf-
ficiently magnified data near the edge. Therefore, we assume
that the curvature of the side interface has a symmetric profile
with respect to the interface of the flat surface at the edge, as
shown in Fig. 5; Fig. 5(a) shows the whole crystal shape and
Fig. 5(b) shows the magnified shape near the edge within the
dashed circle in Fig. 5(a). The principal radius is calculated
under this assumption and is often of the order of several tens
of micrometers at the edge in many cases in this research, as
shown in Fig. 5(c), though it depends on the crystal thickness
and the supercooling. In Fig. 5(c), the dashed and solid lines
represent the crystal shape and the arcs with the calculated
principal radii, respectively. This method should bring us the
largest principal radius at the edge and thus we can prevent
overestimation of the Gibbs-Thomson effect. This approach is
also regarded as the Mullins-Sekerka model applied not to the
azimuthal direction but to the thickness direction.

Figure 6 shows the typical comparison between the cal-
culation result and the experimental one under microgravity.
Figure 6(a) is the comparison of the interface shapes. The
calculation result is the same as Fig. 5(c). From Fig. 6(a), the
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(a)

(b)

(c)

FIG. 5. Schematics of the crystal shape at the edge: (a) whole
crystal shape and (b) magnified shape near the edge within the dashed
circle in (a). The line of the side interface line is assumed to be
virtually symmetric with respect to that of the flat surface. (c) An
example of the principal radius calculation. The dashed and solid
lines represent the ice boundary and arcs having radius of the principal
radius, respectively. The principal radius at the edge is of the order of
several micrometers.

difference between the calculation and experimental results
seems to be of the order of 100 μm. This difference should
be caused by the large modeling region as compared with
the crystal size, that is, 26 mm in diameter and 24 mm in
height in this paper. This means that the coordinate error
is around 0.5%. To improve this, increasing the number of
the grids may be effective but this means a much longer
CPU time. The most important point in this calculation is
the degree of the Gibbs-Thomson effect. This is dominated
by the principal radius and thus the comparison between the
calculated principal radius and the experiment is shown in
Fig. 6(b). The calculated radius is very similar to that of the
experiment. This means that the degree of the Gibbs-Thomson
effect is taken into account correctly.

(a)

(b)

FIG. 6. Typical comparison results between calculation and
experiments: (a) a comparison of the interface shapes on the side
surface and (b) the principal radius obtained from the calculation.
From (a), it is found that the shape difference between the calculation
and the experiment is of the order of 100 μm at maximum. This
should be caused by the large modeling region, that is, 26 mm in
diameter and 24 mm in height. From (b), however, it is found that the
principal radius is very similar to that of the experiment.

One example of the generated grids and a snapshot of
the temperature distribution is shown in Fig. 7. Here, all
regions of the growth cells were modeled since the reliable
fixed boundary condition was the growth cell wall made of
copper blocks. In Fig. 7(a), the region where dense vertical
and horizontal grids crisscross each other corresponds to ice
crystal. In Fig. 7(b), the bold solid line represents the shape
of the ice crystal, while the thin solid and dashed lines are the
isotherms. The temperature difference between the isotherms
is 5/1000 K in this figure. It is found that one dashed line
crosses the flat interfaces, which indicates that the basal planes
are supercooled. Although another solid line also crosses
the side interface, this does not mean supercooling but is
caused by the Gibbs-Thomson effect, and the temperature
on the this plane always remains the same as the melting
point.

IV. RESULTS AND DISCUSSION

To solve this model, although interfacial tension is required,
it is unfortunately reported as wide-ranging from 15 to
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(a)

(b)

FIG. 7. Examples of (a) generated grids and (b) temperature
distribution in the area magnified around the ice crystal. The cross in
(a) represents the grid point corresponding to the thermistor set inside
the water. All regions of the growth cell, 26 mm in diameter and 24 mm
in height, are modeled. In (b), the bold solid line represents the shape
of the ice crystal, while the thin solid and dashed lines represent the
isotherms.

33 mJ/m2 as mentioned in Sec. I. Since the wide variation is
unsuitable for this work, the interfacial tension is estimated by

FIG. 8. A comparison of the time evolution of the crystal size
between the calculation and experimental data under microgravity to
estimate the interfacial tension. Although there are more microgravity
data, the most reliable two data sets are selected as the reference. The
surface tension is varied from 15 to 30 mJ/m2 and the supercooling
is also varied so that the final size is almost the same.

comparing the calculation results with the experimental ones
under microgravity. The comparison result is shown in Fig. 8.
Open circles and open squares represents the most reliable data
under microgravity, which means that the influence of the ice
growth on the cell wall is minimal. There are four kinds of lines
in this figure; the solid, dotted, dashed, and dot-dashed lines
represent the combinations of the tension of 15, 20, 25, and
30 mJ/m2 and the supercooling of 0.0093, 0.01, 0.0105 and
0.0111 K, respectively. Larger tension needslarger supercool-
ing due to the larger Gibbs-Thomson effect. The crystal
thickness of 250 μm is used in this calculation as mentioned
previously. The experimental results shown in Fig. 8 were
obtained for �Tset = 0.03 K, while the supercooling in the
calculation is around 0.01 K by considering a supercooling
shift of 0.02 K or more. This means that the supercooling
of the calculation must be less than or equal to 0.01 K. The
surface tension satisfying this criterion is in the range from 15
to 20 mJ/m2. By careful comparison of the 15 mJ/m2 case
with the 20 mJ/m2 case, it is found that the 20 mJ/m2 case is
better at explaining the experimental result in the initial time
period within 20 min. Thus the interfacial tension of 20 mJ/m2

is used in this paper.
Calculation data near the thermistor, which is shown in

Fig. 3, are compared with measurement data as shown in
Fig. 9 to investigate the reliability of the simulation. The bulk
water temperature as measured by the thermistor is shown in
Fig. 9(a). The measured data have noise of about ±0.01 K.
Since it is slightly difficult to determine the time trend, the
noise is reduced by averaging the data points. The averaged
data are shown in Fig. 9(b) as thin lines. There are two thin
lines in this figure. One is for the data with �Tset = 0.03 K and
the other is for those with �Tset = 0.04 K. It is found that the
temperature remains almost constant during the experiment in
the 0.03 K case, while it gradually increases over time in the
0.04 K case. The bold solid and dashed lines represent the
calculation data in the cases of �Tsim = 0.01 and 0.018 K,
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(a)

(b)

FIG. 9. Temperature comparison between calculation and ex-
periments: (a) raw measurement data for �Tset = 0.03 K and (b)
comparisons in two cases of 0.03 and 0.04 K settings. In (b), thin
lines and bold solid and dashed lines represent measurement and
calculation data, respectively. �Tsim in (b) shows the supercooling,
which is used in the computation. �Tsim = 0.01 and 0.018 K
correspond to �Tset = 0.03 and 0.04 K, respectively.

respectively. This figure clearly shows that the calculation
effectively explains the measured temperature, including the
time trend.

By fixing the interfacial tension at 20 mJ/m2 and varying
the supercooling parameter of the simulation, the actual super-
cooling can be estimated. First, we change the supercooling
parameter from 0.008 to 0.01 K to estimate the supercooling
for �Tset = 0.03 K. Subsequently, the parameter is changed
from 0.016 to 0.02 K for the 0.04 K case. The comparison
results are shown in Fig. 10. It is found that the simulation
results agree well with the experimental ones until about 35 to
50 min in (a) and 20 to 30 min in (b). After those time periods,
the crystal in the experiments grows more slowly than in the
simulation or almost stops growing in some data. As mentioned
in Sec. II, these slowdowns are caused by the ice growth on
the cell wall. Therefore, the comparison is inadequate in the
regions of (a) from 50 min to the end and (b) from 30 min to
the end.

From Fig. 10, the actual supercooling for �Tset = 0.03 K
is estimated as �T = 0.009 ± 0.001 K and that in the 0.04 K
case is �T = 0.018 ± 0.002 K, which means that the temper-
ature in the growth cell is controlled with high precision, on the
order of 1/100 K. From this estimation, the temperature shift

(a)

(b)

FIG. 10. Comparison of time evolution of crystal size between
simulations by varying the supercooling conditions and experimental
results: (a) �Tset = 0.03 K and (b) �Tset = 0.04 K. Points such as
open circles represent the experimental results. Solid, dashed, and dot-
dashed lines represent the numerical results in the cases of �Tsim =
0.01, 0.009, and 0.008 K, respectively, in (a), while those represent
the results in �Tsim = 0.02, 0.018, and 0.016 K in (b).

between the setting and actual temperature should be 0.021
to 0.022 K, which is consistent with initial expectations. In
Fig. 10, the experimental data seem to be scattered by several
tens of percent. From the supercooling estimation, it is found
that this scattering is caused by temperature variation on the
order of 1/1000 K, which is out of the ICM performance
range.

Since our model is applicable to stable growth, the
calculation will diverge in the event of instability. Therefore,
the supercooling limit for stable growth is investigated by
changing the supercooling parameter. For a crystal thickness
of 250 μm, it is found that the supercooling of 0.023 K is
stable but that of 0.024 K is unstable, as shown in Fig. 11.
The bold solid and dot-dashed lines represent the numerical
results in �Tsim = 0.023 K and 0.024 K cases, respectively,
while the thin dashed line is the result in the 0.02 K case,
which is the same as that shown in Fig. 10(b). In the 0.024 K

051605-7



SATOSHI ADACHI et al. PHYSICAL REVIEW E 84, 051605 (2011)

FIG. 11. Simulation results to investigate the stability limit. Thin
dashed, bold solid, and bold dot-dashed lines represent the results for
�Tsim = 0.02 K for reference, 0.023 K, and 0.024 K. In the latter
case, the crystal size grows rapidly at about 15 min, whereupon the
calculation diverges.

case, the crystal size rapidly increases after about 15 min,
whereupon the calculation diverges. Since the rapid increase
in size means a large growth rate, the crystal morphology
should be transformed to dendrites, meaning the supercooling
limit may be 0.023 K. The temperature difference between the
calculation and experimental results is 0.021 to 0.022 K as
mentioned previously. Hence, �Tsim = 0.023 K corresponds
to �Tset = 0.045 K, which is consistent with the experimental
result. If the supercooling is just set to 0.045 K and the crystal
thickness is 250 μm, the morphological transition may be
observed but equipment capable of controlling the temperature
on the order of 1/1000 K is required. We obtained some data
in the 0.05 K setting but the crystal thickness was thinner
than 250 μm. The typical result is shown in Fig. 12. Here,
the crystal edge seems to undulate but a longer observation

FIG. 12. Typical observation data in the �Tset = 0.05 K case. The
thickness is about 170 μm. The transition may occur if the observation
period is sufficient.

period is required to clarify whether or not the transition can
be observed under microgravity.

The supercooling limit should fluctuate if the crystal
thickness varies, since the Gibbs-Thomson effect varies. This
suggests that a certain limit of the crystal thickness may
exist at a certain supercooling. This limit is called the critical
thickness [3,9]. The supercooling limit in a wider range of the
thicknesses will be investigated based on our model in the near
future.

No morphological transition was observed under micro-
gravity. Conversely, this transition is usually observed on
the ground. This suggests that the instability is strongly
affected by thermal convection, which causes the temperature
nonuniformity. Nonuniformity of as little as 1/100 K may be
sufficient to cause such instability, based on our study in this
paper.

V. CONCLUSIONS

From December 2008 to February 2009, we carried out
microgravity experiments of ice crystal growth in heavy
water. We obtained more than 130 sets of data successfully.
However, despite our initial expectation, the morphological
transition, which was the key target in the microgravity
experiments, was not observed. To understand why stable
growth was maintained throughout the experiment under
small supercooling conditions, a two-dimensional model was
introduced. In order to explain the experimental data, this
model required a stabilization mechanism, and hence the
Gibbs-Thomson effect was included in the model. To calculate
the Gibbs-Thomson effect, interfacial tension was required.
We estimated the tension by comparing the numerical results
with the experimental ones. After comparison, we decided to
use a tension of 20 mJ/m2. It is also found that the numerical
results agreed well with the time evolution of temperature near
the crystal in the bulk water, which indicates the reliability of
the model.

In addition, the actual supercooling is estimated because the
supercooling setting was shifted from the actual supercooling,
with a suggested difference of about 0.02 K from the
experiments. The simulation showed a difference of 0.021
to 0.022 K. It is also found that the SCOF has excellent
performance in terms of relative temperature control, on the
order of 1/100 K.

The instability trigger may be the temperature fluctuation
caused by the thermal convection on the ground. Small
fluctuations of the order of the 1/100 K may be enough to work
as a trigger of the instability. The microgravity environment
is suitable for such a sensitive experiment since thermal
convection can be suppressed sufficiently.
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