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Modeling kinetics of diffusion-controlled surface wrinkles
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Nonlinear wrinkling of a compressed film on a soft substrate in the presence of inhomogeneous swelling
actuation strain caused by solvent diffusion is studied. The simulation relies on a continuum model which
integrates phase field microelasticity and Föppl–von Kármán plate theory. We show that the wrinkling
morphologies developed in the diffusive domain exceeding a critical compression are confined and become shape
and size dependent. A rich variety of wrinkling patterns observed in experiments including hexagonal ordered,
dimple, or peanut structures, are numerically recovered, depending on the distribution of diffusion-mediated
actuation strain. A cascade feature of the diffusion-coupled wrinkle is demonstrated as well: There are two
ranges of solvent concentration within which the sequences of wrinkling pattern are different.
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I. INTRODUCTION

A compressive thin film (sheet or layer) on soft substrates
may release stress by developing surface wrinkles through
Euler-type buckling instability [1–3]. The wrinkling morphol-
ogy is determined by the balance between the decreasing
stretch energy of the film and the increasing energies due
to film bending and substrate distortion. To form ordered
wrinkling patterns, various strategies have been explored to
regulate distribution of in-plane compression in the film,
including a prepatterned substrate [4], an elastomeric mold [5],
a cracked film [6], capillarity [7], and thermally, mechanically,
or osmotically induced compression [8–12]. Application of
such surface wrinkles has been found not only in measuring
the elastic modulus of thin films [13] and understanding
their hierarchical morphogenesis [14–16], but also in guiding
three-dimensional microfabrications of smart adhesion devices
[17,18], microlens arrays [19], self-assembled gears [20],
flexible electronics [21], etc. Recent experiments demonstrate
that the wrinkling instability can be mediated by mass diffusion
which produces a spatiotemporal swelling actuation strain
(eigenstrain). The nonuniformity of the eigenstrain may lead to
more interesting controllable wrinkling morphologies such as
hexagonal ordered, and dimple or peanut structures [22–26],
which are all beyond the previously observed straight wrinkles,
labyrinths, herringbone, and chessboardlike patterns in the
absence of diffusion. Exploring the phenomena and the
underlying dynamics is obviously of important significance for
developing versatile approaches to generate hierarchical [27]
or multicomponent [28] polymer patterns.

Wrinkling of thin films in the absence of mass diffusion has
been extensively studied previously, where the compressive
stress before buckling onset is usually assumed to be uniform.
Under uniaxial compression, a film may buckle with straight
wrinkles, and the critical strain, equilibrium wavelength, and
amplitude can be predicted by a set of simple scaling laws
[29–31]. Similar results based on energy minimization are
obtainable for the cases of herringbone and checkerboard
wrinkling patterns [32–34]. The cubic anisotropic elasticity of
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the film is found to alter the orientation of the wrinkle and de-
crease the values of the equilibrium wavelength and amplitude
[35,36]. In addition, finite-deformation analysis of buckling
indicates that the wavelength is strain dependent rather than
constant in the small-deformation theory [37]. A series of
nonlinear analyses utilizing the relaxation method [38–44], the
finite-element method [45–47], and the iteration method [48]
are developed to investigate other problems. These involve
wrinkle growth and coarsening on viscous substrates [38–42],
orientational ordering of wrinkles [44], and postwrinkling
patterns under different boundary conditions [45–48].

In contrast, little is known about wrinkling of thin films
coupled with diffusion. In this case the compressive stress
before buckling is in general not uniform because the diffusion-
induced swelling is heterogeneous. Wrinkles may appear
only in diffusive domains with compressive stress exceeding
certain critical values, and thus are confined due to diffusion.
Since the process of diffusion usually is much slower than
that of wrinkling, the development of wrinkles depends on
when and where the compressive stress exceeds the buckling
threshold. This paper studies nonlinear evolution of diffusion-
coupled wrinkles. The main goal is to explore the effect
of diffusion-mediated actuation strain on the formation and
transition mechanisms of such wrinkling patterns as hexagonal
ordered, dimple, or peanut structures. To this end, we propose
a continuum model integrating phase field microelasticity
(PFM) [49] and the Föppl–von Kármán plate theory [50]
to track the temporal evolution of a film-substrate system
driven by an arbitrarily distributed diffusion-mediated swelling
actuation strain. Our numerical simulations show how and why
the interplay between diffusion and buckling can lead to a rich
variety of wrinkling patterns.

II. MODELING

As shown in Fig. 1, we consider an elastic thin film of
thickness h on a soft elastic substrate. It is assumed that a
certain solvent may be adsorbed and may diffuse in the film,
causing the film to swell. Such an effect of solvent adsorption
can be characterized by a hydrostatic actuation strain (swelling
strain). In general, the distribution of the actuation strain is
both position and time dependent, inducing inhomogeneous
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FIG. 1. (Color online) A sketch of a surface wrinkle in a
film-substrate system with inhomogeneous actuation strain (in-plane
expansion εT

αβ and eigencurvature kT
αβ ) induced by solvent absorption:

(a) a flat configuration, (b) a locally wrinkled configuration.

stress in the film. Therefore, when the compressive stress
somewhere in the film exceeds the critical value, wrinkles
appear there due to elastic buckling. The goal of this section
is to formulate a dynamic model for the diffusion-mediated
wrinkling phenomenon. For convenience, a coordinate system
is introduced as in Fig. 1, and the usual summation convention
is adopted for repeated indices, with greek and latin indices
running from 1 to 2 and 1 to 3, respectively. A comma stands
for differentiation with respect to the suffix index.

We model the film as an isotropic von Kármán plate
and the substrate as an elastically isotropic half space. At
any time t , the actuation strain at a point x in the film is
denoted by ε∗

αβ(x,t). Since the film is very thin, one can
expand ε∗

αβ(x,t) with respect to the thickness coordinate up to
the first order, i.e., ε∗

αβ(x,t) = εT
αβ (x1,x2,t) + x3k

T
αβ(x1,x2,t).

Clearly, εT
αβ(x1,x2,t) is the in-plane eigenstrain in the midplane

x3 = 0, and kT
αβ(x1,x2,t), possessing the dimension of reversed

length, is interpreted as the eigencurvature induced by solvent
adsorption. We assume that both εT

αβ(x1,x2,t) and kT
αβ(x1,x2,t)

are proportional to the solvent concentration c(x1,x2,t) in the
midplane, and thus express ε∗

αβ(x,t) by

ε∗
αβ(x,t) =

(
ε0 + ε′

0
x3

h

)
c(x1,x2,t)δαβ, (1)

where ε0 and ε′
0 are two constants related to the hydrostatic

actuation strain, and δαβ is the Kronecker delta which equals 1
for α = β and vanishes for α �= β. The total strain in the film is
the sum of the elastic strain ēαβ and the actuation strain ε∗

αβ , i.e.,

ε̄αβ = ēαβ + ε∗
αβ. (2)

According to the Kirchhoff hypothesis, the displacement
components at any point in the thin film ūi (i = 1–3) can be

written as

ūα = uα − x3w,α,
(3)

ū3 = w(x1,x2).

in which uα and w are, respectively, the in-plane and out-
of-plane displacement components of the midplane. The total
strain in the Föppl–von Kármán sense reads

ε̄αβ = 1
2 (ūα,β + ūβ,α) + 1

2 ū3,αū3,β . (4)

The substitution of Eqs. (1)–(3) into (4) gives the elastic
strain

ēαβ = 1

2
(uα,β + uβ,α) + 1

2
w,αw,β − x3w,αβ

−
(

ε0 + ε′
0
x3

h

)
δαβc(x1,x2,t). (5)

We now consider the energy of the system. The energy of
the film consists of the concentration-dependent chemical free
energy and the strain energy, and can be represented by

F film =
∫ h/2

−h/2

∫ ∞

−∞

∫ ∞

−∞

[
f (c) + βc(∇c)2

+ 1

2
σ̄αβ ēαβ

]
dx1 dx2 dx3. (6)

In the integrant of the above equation, the first term f (c)
is the chemical energy density. Treating the film with solvent
absorption as a binary solid solution and using the regular
solution approximation, we have

f (c)=�kBT {�c(1 − c)+[c ln c + (1 − c) ln(1 − c)]}, (7)

in which � is a dimensionless parameter characterizing the
atom exchange interaction energy in terms of �kBT , � denotes
the number of atoms per unit volume, kB is Boltzmann’s con-
stant, and T stands for the absolute environment temperature.
The second term, βc(∇c)2, is the gradient chemical energy due
to the nonuniform concentration, with βc being the gradient
coefficient. The third term is the elastic energy density, where
the stress σ̄αβ relates to the elastic strain by the Hooke law

σ̄αβ = 2μf

1 − vf

[(1 − vf )ēαβ + vf ēγ γ δαβ], (8)

with μf and vf being, respectively, the shear modulus and
Poisson ratio of the film. With the aid of Eqs. (5) and (8),
Eq. (6) becomes

F film = h

∫ ∞

−∞

∫ ∞

−∞
[f (c) + βc(∇c)2]dx1dx2 + Efilm

s + Efilm
b ,

(9)

in which Efilm
s is the stretching energy given by

Efilm
s = μf h

1 − vf

∫ ∞

−∞

∫ ∞

−∞

[
e2

11 + e2
22 + 2vf e11e22

+ 2(1 − vf )e2
12

]
dx1 dx2, (10)

with

eαβ = 1
2 (uα,β + uβ,α) + 1

2w,αw,β − ε0cδαβ, (11)
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and Efilm
b is the bending energy expressed by

Efilm
b = μf h3

12(1 − vf )

∫ ∞

−∞

∫ ∞

−∞

{(

w + 2ε′

0c

h

)2

− 2(1 − vf )

[(
w,11 + ε′

0c

h

)(
w,22 + ε′

0c

h

)

−(w,12)2

]}
dx1 dx2. (12)

The elastic energy of the substrate can be written by using
the Gauss divergence theorem as

F sub = 1

2

∫ ∞

−∞

∫ ∞

−∞
T s

i us
i dx1 dx2, (13)

where T s
i and us

i are, respectively, the interfacial traction
and displacement components at the film/substrate interface.
For simplicity, we assume that the substrate is elastically
incompressible, with the Poisson’s ratio vs = 0.5. By invoking
the Green’s function for a semi-infinite elastic half space, the
expression of T s

i can be obtained as

T s
i = 1

(2π )2

∫
M̃ij ũ

s
j e

iξαxα dξ1 dξ2, (14)

where μs is the shear modulus, ξα is the component of the
Fourier vector, M̃ij is a matrix defined by

M̃ij = μsξ

⎡
⎣ 1 + n2

1 n1n2 0
n1n2 1 + n2

2 0
0 0 2

⎤
⎦ , (15)

with

ξ = (
ξ 2

1 + ξ 2
2

)1/2
, n1 = ξ1/ξ, n2 = ξ2/ξ, (16)

and ũs
j denotes the Fourier transform of us

j :

ũs
j (ξ ) =

∫ ∞

−∞

∫ ∞

−∞
us

j (x1,x2)e−i(ξ1x1+ξ2x2) dx1 dx2. (17)

Obviously, if there is no interfacial debonding during
the wrinkling process, the displacement vector is continuous
across the film/substrate interface, i.e.,

us
i = ui. (18)

The total energy of the system has the form

F tot = F film + F sub. (19)

At mechanical equilibrium, the variation of F tot with
respect to uα and w must vanish. The condition δF tot/δuα = 0
gives the in-plane equilibrium equation

σαβ,β = T s
α , (20)

where σαβ , defined in the following, is the component of
membrane force in the film:

σαβ = 2hμf

1 − vf

[(1 − vf )eαβ + vf eγ γ δαβ]. (21)

By using Eqs. (11), (14), (18), and (21), it is inferred from
Eq. (20) through Fourier transformation that

ũα = C̃−1
αβ ρ̃β, (22)

in which

ũα(ξ ) =
∫

uα(x1,x2)e−i(ξ1x1+ξ2x2) dx1 dx2, (23)

C̃αβ =
[

hμf

1 − vf

(1 − vf )ξ 2 + μsξ

]
δαβ

+
[

hμf

1 − vf

(1 + vf )ξ 2 + μsξ

]
nαnβ, (24)

ρ̃β =
∫

σ 0
βk,ke

−iξαxα dx1 dx2 − M̃3βw̃, (25)

σ 0
βk,k = hμf

1 − vf

[−2(1 + vf )ε0c,β + (1 + vf )w,βkw,k

+ (1 − vf )w,kkw,β]. (26)

This result, when inserted in Eq. (11), leads to the
expression of in-plane elastic strain

eαβ(x1,x2) = 〈eαβ〉 + 1

2

∫
| ξ∼ |�=0

i(ξαG̃βk + ξβG̃αk)ρ̃ke
iξ ·r

(2π )2
d2ξ

−
(

ε0cδαβ − 1

2
w,αw,β

)
, (27)

where 〈eαβ〉 = 0 for the case of the thin film bonded on a thick
substrate, and G̃αβ = C̃−1

αβ is given by

G̃αβ = δαβ

hμf ξ 2 + μsξ

− [hμf (1 + vf )ξ 2 + (1 − vf )μsξ ]nαnβ

2(hμf ξ 2 + μsξ )[hμf ξ 2 + (1 − vf )μsξ ]
. (28)

In the meantime, the condition δF tot/δw = 0 is reduced to
the out-of-plane equilibrium equation of the film

D
2w + (1 + vf )Dε′
0

h

c − (σαβw,α),β + T s

3 = 0, (29)

with D = μf h3/[6(1 − vf )] being the bending rigidity.
The coupled integral equations (27) and (29) determine the

deformations of the film and substrate at equilibrium, but they
are very difficult to be solved directly. For this reason, we
replace Eq. (29) by the Ginzburg-Landau kinetic equation

∂w

∂t
= −�

δF tot

δw
, (30)

where � is a kinetic coefficient which characterizes the
relaxation rate of the wrinkling process in the overdamped
dynamics. Apparently, Eq. (30) recovers Eq. (29) in the steady
state, and governs the equilibrium solution of the out-of-
plane displacement w(x1,x2,t). To determine the concentration
c(x1,x2,t), two diffusion processes with conservative and
nonconservative solvent mass must be distinguished. The
evolution of c(x1,x2,t) is described by

∂c

∂t
= ∇M∇ δF tot

δc
(31)
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in the former case, while it is described by

∂c

∂t
= −�c

δF tot

δc
(32)

in the latter case. Here M and �c are the related kinetic
coefficients. Once w(x1,x2,t) and c(x1,x2,t) are obtained, the
equilibrium in-plane deformation can be solved numerically
from Eq. (27) with the help of the fast Fourier transform
technique.

III. SIMULATIONS AND RESULTS

A. Size- and shape-dependent wrinkles

We will presume mass conservation of the solvent and solve
the coupled equations (27), (30), and (31) numerically by using
a spectral method [51]. These equations are scaled so that all
physical lengths are measured in unit l (r ′ = r/ l, l = h) and
the time t in unit τ (t ′ = t/τ , τ = h/�μs). The size of the
periodic computational domain is set as 512 l × 512 l. The
semi-implicit algorithm is adopted, and the iterative schemes
of Eqs. (30) and (31) are written as

w̃(n+1) = w̃(n) + 
t ′
[
Aε′

0ξ
2c̃(n) + iξβ(σαβw,α/hμs)

(n)
ξ

]
1 + 
t ′(2ξ + D∗ξ 4)

, (33)

c̃(n+1) =
c̃(n) − 
t ′M∗ξ 2

[(
1
μs

∂f

∂c

)(n)

ξ
− σ̃ (n)

αα ε0

hμs
+ Aε′

0(−ξ 2w̃(n) + 2ε′
0c̃

(n))
]

1 + 2
t ′β∗M∗ξ 4
, (34)

where the notation ( )ξ or tilde (˜) stands for the Fourier
transform, 
t ′ is the scaled time increment, D∗ = μf /

[6(1 − vf )μs], A = (1 + vf )D∗, β∗ = β/(μsh
2), and

M∗ = M/�. Throughout the paper, the values of the input
parameters are taken as vf = 0.3, β∗ = 1, �kBT/μs = 6,
� = 2.4, μf /μs = 525, 
t ′ = 0.2, and M∗ = 0.01 (unless
otherwise noted). The choice of M∗ 	 1 reflects the fact
that wrinkling usually takes place much faster than solvent
diffusion.

To test our modeling, we consider sinusoidal wrinkling
of the film bearing a uniform and constant actuation strain
ε∗
αβ = εpreδαβ . The problem has been studied analytically, with

the equilibrium wavelength λc, critical buckling strain εc, and
amplitude of out-of-plane displacement δ given by [48]

λc

2πh
=

[
μf (1 − vs)

3μs(1 − vf )

]1/3

, εc = 1

4(1 + vf )

(
2πh

λc

)2

,

δ

h
∼=

(
εpre

εc

− 1

)1/2

. (35)

Setting c = 1, ε0 = εpre, ε′
0 = 0, and M∗ = 0, we simulate

the wrinkling phenomenon based on Eqs. (27) and (30). It is
found that εc = 0.0077 and λc/h = 31.6, which are very close
to the analytical predictions. As plotted in Fig. 2, equilibrium
amplitudes of sinusoidal wrinkles at compressive strains larger
than εc are also obtained numerically and compared with the
analytical results. The good agreement manifests the capability
of the present model in the simulation of nonlinear wrinkles.

We then turn our attention to the case when the film is
under inhomogeneous compression. Assume that a constant
swelling strain εpre is prescribed within a circular domain of
radius R in the film. In this situation wrinkling can only initiate
in the domain as εpre exceeds a critical value ε′

c, because
outside that region the film is under tension. Figure 3 plots
the simulated critical strain ε′

c for the confined wrinkling

as a function of the reduced domain size R′ = R/λc. It is
found that, for R′ < 1, the critical strain ε′

c is significantly
higher than that for the sinusoidal wrinkling εc. The wrinkling
patterns under various domain sizes at εpre = ε0 = 3εc are
shown in Fig. 4. With the decrease of R′, the pattern becomes
severely confined, leading to a size-dependent morphology
ranging from the labyrinth form, to the checkerboard, to
dimple structures. These simulated morphologies are very
close to the observation in Ref. [19]. Usually, the shape of
the compressive domain can be changed by solvent diffusion.
Figure 5 illustrates wrinkling patterns as well as the strain
distributions induced by uniform swelling strains given in
a square or a rectangular domain in the film. We see that,
close to the boundary, the maximum compression always

FIG. 2. The amplitudes of an equilibrium sinusoidal wrinkle as a
function of the reduced eigenstrain εpre/εc from numerical simulation
and analytical solution.
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FIG. 3. The critical confined wrinkling strain ε′
c/εc as a function

of the reduced domain size R/λc.

appears in the direction parallel to the boundary, and the
wrinkles tend to be aligned perpendicularly to the direction
of maximum compression. This may provide an explanation
for experimental observations that the wrinkles tend to grow
perpendicular to the diffusion front [22,27]. In addition,
Fig. 5(c) also shows the formation of a stripe wrinkle along
the y axis because in most parts of the domain the maximum
compression is along the x axis, as marked in the lighter shade
in Fig. 5(d). This demonstrates a shape-dependent wrinkle:
A large aspect ratio of the diffusion domain promotes a
uniaxial compression, and thus is favorable for stripe wrinkle
formation.

B. Formation of hexagonal wrinkling pattern

Previous analyses indicate that a chessboardlike wrinkle
will be formed when the film undergoes equal-biaxial homo-
geneous compression slightly above the critical value [47].
When the wrinkling is coupled to diffusion, however, a
hexagonal pattern is observed at the value of εpre/εc just above
unity [23,25,26]. In our simulation, a checkerboard pattern is
recovered, as shown in Fig. 6(a), when the input parameters
c = 0.4, ε0 = 0.02, εpre = ε0c = 0.008, εc = 0.0077, ε′

0 = 0,
and M∗ = 0 are chosen so that the film is under homogeneous
precompression slightly above the critical value. If, however,
diffusion is allowed (M∗ = 0.01) and εpre/εc = 0.008/0.0077
is fixed, then the simulated wrinkling patterns in Figs. 6(b)–
6(f) deviate significantly from the checkerboard. Figure 6(b)
corresponds to the vanishing eigencurvature (i.e., ε′

0/h = 0)
induced by solvent absorption is zero, and no hexagonal
pattern is formed in this case. Figures 6(c)–6(f) illustrate
wrinkling patterns formed at eigencurvatures ranging from
ε′

0 = 0.001 to 0.05. It is apparent that increasing positive
eigencurvature promotes the formation of hexagonally arrayed
islands. A similar wrinkling pattern of hexagonal order has
been observed in Refs. [25] and [26]. The concentration
profiles corresponding to the diffusion-coupled wrinkles in
Figs. 6(a)–6(f) with a miscibility gap (� > 2) are plotted in
Fig. 7. We see that the wrinkles occur only in the concentration-
rich area where the compressive stress exceeds the buckling
threshold. The inhomogeneous distributions of concentration
and out-of-plane displacement tend to be commensurate with
each other to reach a low-energy configuration. In particular,
the eigencurvature induced by solvent diffusion is found to
play an important role in the formation of hexagonal wrinkle
patterns. Figure 8 further demonstrates the result for a film
with a negative eigencurvature (ε′

0 = −0.05). Very close to
the experimental observation [23] which is also shown in
Figs. 8(a) and 8(b) reveals that the negative eigencurvature
facilitates formation of a hexagonal dimple structure. Previous

FIG. 4. The simulated wrinkling pattern as a function of the reduced diffusive domain size R′ = R/λc under ε0 = 3εc, ε′
0 = 0, at t ′ = 104,

with the black to white shading mapping the value of w from negative to positive.
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FIG. 5. Simulated shape-dependent wrinkling pattern at t ′ = 104

in (a) a square domain L = 3λc long, (c) a rectangular domain with
Lx = 3λc, Ly = 1.2λc. (b), (d) Visualization of the corresponding
profile of the reduced (|σxx | − |σyy |)/μs in the domains before the
onset of wrinkling, respectively, with the darker to lighter shading
mapping its value from negative to positive.

studies indicate that, in the absence of mass diffusion, the
wrinkling pattern of the film evolves from a chessboard to a
herringbone pattern with increasing equal-biaxial supercritical
compression [45]. Nonetheless, recent experiments show
that, if the compression is induced by solvent diffusion, the
wrinkling pattern appears in the sequence from hexagonal
order, to a peanut structure, and finally to a herringbone
pattern with the increase of solvent absorption [25,26]. Similar
transitions of such wrinkling patterns are confirmed in Fig. 9,
where the simulated wrinkles and concentration profiles are
visualized under different average solvent concentrations at

(a) (b) (c)

(d) (e) (f)

FIG. 6. Simulated wrinkling patterns in the film obtained at
t ′ = 104 for all cases with c0 = 0.4, ε0 = 0.02, and with addi-
tional parameters (a) M∗ = 0, ε′

0 = 0, (b) ε′
0 = 0, (c) ε′

0 = 0.001,
(d) ε′

0 = 0.005, (e) ε′
0 = 0.01, (f) ε′

0 = 0.05.

(a) (b) (c)

(d) (e) (f)

FIG. 7. (a)–(f) are the corresponding simulated concentration
profiles of the cases in Figs. 6(a)–6(f), respectively.

ε0 = 0.02 and ε′
0 = 0.02. When the average compression

induced by solvent absorption is slightly above the buckling
threshold, finite concentration fluctuation driven by diffusion
leads to an inhomogeneous wrinkle in the diffusive domain
with the compression exceeding a critical value, as shown in
Figs. 9(c) and 9(f). If the average compression is significantly
higher than the critical value, the diffusion-induced concentra-
tion fluctuation becomes less important because the wrinkle
can occur almost everywhere. This is why the simulated
wrinkling pattern in Fig. 9(a) is very close to a herringbone
structure, although there is a finite concentration fluctuation
due to diffusion.

C. Cascade evolution of diffusion-controlled wrinkles

Before the onset of buckling, the membrane strain in the
film is determined by the solvent concentration. Thus there
exists a critical concentration ccri of solvent absorption, above
which the membrane strain is larger than the critical buckling
strain and the film wrinkles. In other words, whether the film is
wrinkled or not can be tracked by probing the concentration-
dependent free energy of the film-substrate system. For the
sinusoidal wrinkling [48] mentioned before, the total free

(a) (b)

FIG. 8. (Color online) Comparison between the observed wrin-
kling pattern in Ref. [23] with the simulated dimple pattern under the
parameters c0 = 0.4, ε0 = 0.02, and ε′

0 = −0.05 (reproduced with
permission).
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(a) (b) (c)

(d) (e) (f)

FIG. 9. Simulated patterns of surface wrinkles and concentration
profiles in the film with different levels of solvent absorption. The top
and bottom rows indicate the profiles of the out-of-plane displacement
and the concentration at t ′ = 2 × 103, ε0 = 0.03, ε′

0 = 0.02 under (a)
c = 0.95, (b) c = 0.6, (c) c = 0.4, respectively.

energy in Eq. (5) becomes

F tot

hS
= �kBT {�c(1 − c) + [c ln c + (1 − c) ln(1 − c)]}

+2μf (1 + vf )

(1 − vf )

[
ε2

pre − (1 + vf )

2
(εpre − εc)2

×H (εpre − εc)

]
, (36)

where S is the area of the film, εpre = ε0c, εc is the critical
buckling strain defined in Eq. (35), and H (εpre − εc) is
the Heaviside function. The flat configuration of the film
possesses similar form of total energy as in Eq. (36), except
the second term on the right-hand side is replaced by
2μf (1 + vf )ε2

pre/(1 − vf ). Figure 10 plots the variations of the
total energies for the flat and wrinkled film configurations with
solvent concentration. It is found that there are two concentra-

FIG. 10. (Color online) Typical total energy curves as a function
of solvent concentration for the flat and sinusoidally wrinkled
configuration in the film-substrate system.

tion ranges A and B, separated by a critical concentration ccri.
The value of ccri is determined by equating the total energy of
the flat configuration to that of the sinusoidally wrinkled one:

ccri = 1

4(1 + vf )ε0

[
3μs(1 − vf )

μf (1 − vs)

]2/3

. (37)

In range A, c < ccri, the free energy of the flat configuration
is lower than that of the wrinkled configuration. As a result, the
system can reduce the free energy only by diffusion-controlled
concentration separation, i.e., phase separation. After the
concentration in the solvent-rich area exceeds the critical
concentration ccri, local wrinkling can develop. However, in
range B, where c > ccri, the film can spontaneously evolve
into a wrinkled configuration without concentration changes.
This is the first step of system equilibration to reduce the free
energy. The second step can start by concentration separation
in the wrinkled configuration. Such a step takes a much
longer time than the first one because it involves long-range
diffusion. Therefore, we can see that the evolution process of
the diffusion-coupled wrinkle has a cascade feature, analogous
to the discussion of the transformation sequences in the cubic

tetragonal decomposition [52–56]. There are two ranges
of solvent concentration, within which the sequences of the
formed wrinkling pattern are different. Figure 11 shows the
evolution sequence of the wrinkling pattern and concentration
profile in range A, where the computing parameters are taken
as ε0 = 0.015, εc = 0.0077, ε′

0 = 0, ccri = 0.51, and c = 0.4.
The evolution involves two stages. In the first one, diffusion-
driven concentration separation occurs but the film remains
flat. The second stage starts when a concentration-rich domain
attains a critical size through growth and coarsening. A domain
of sufficiently large size undergoes a confined wrinkling
transition as c > c′

cri = ε′
c/ε0. ε′

c is a size-dependent critical
wrinkling strain with ε′

c > εc and c > c′
cri > ccri = 0.51 (see

the related result in Fig. 3). This is confirmed by the simulation
result in Fig. 11, where the localized wrinkling occurs when
the size of the concentration-rich domain is above a critical
value. Another evolution sequence of the wrinkling pattern
and concentration profile in range B with c > ccri is shown in

FIG. 11. Evolution sequence of the wrinkling pattern (top row)
and concentration profile (bottom row) in mode A under the
parameters c = 0.4, ε0 = 0.015, and ε′

0 = 0.
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FIG. 12. Evolution sequence of the wrinkling pattern (top row)
and concentration profile (bottom row) in mode B with the parameters
c = 0.4, ε0 = 0.05, and ε′

0 = 0.

Fig. 12, where ε0 = 0.05, ε′
0 = 0, ccri = 0.154, and c = 0.4

are taken. The system first evolves into a labyrinth wrinkle
without a concentration change. The wrinkle significantly
influences the subsequent concentration separation, resulting
in a concentration profile commensurate with the wrinkling
morphology.

IV. DISCUSSIONS AND CONCLUSIONS

In the current model, the coupling between solvent diffusion
and wrinkling originates from heterogeneous actuation strain
caused by solvent diffusion, similar to the case of thermal
expansion. Driven by an osmotic pressure, the solvent ab-
sorption may be inhomogeneous along both the direction of
the film thickness and its lateral direction. The overall effect
of any variation of the actuation strain induced by solvent
absorption through the direction of the film thickness can be
always specified as eigenstrain εT

αβ and eigencurvature kT
αβ on

the middle plane [50]:

εT
αβ = 1

h

∫ h/2

−h/2
ε∗
αβ(x)dx3,

(38)

kT
αβ = 12

h3

∫ h/2

−h/2
x3ε

∗
αβ(x)dx3,

If the inhomogeneity of the solvent concentration along
the direction of the film thickness is small or symmetrically
distributed across the middle plane, kT

αβ = 0. Otherwise, there
is a nonzero kT

αβ . For a film with gradient elastic moduli on soft
substrates, i.e., a confined hydrogel layer with gradient cross-
linking density, the solvent concentration along the direction

of the film thickness increases with the decrease of the shear
modulus in the film since the distribution of the solvent
through the thickness is roughly determined by the balance
between the osmotic pressure and the compressive stress by
solvent swelling in the film. Thus a positive (negative) stiffness
gradient along the x3 direction induces a negative (positive)
kT
αβ . In the experiment of Ref. [23], the solvent absorption in

the film with increasing stiffness from the bottom to the top
of the film corresponds to producing a negative kT

αβ , while
in the experiments of Refs. [25] and [26], solvent diffusion
occurs in the film with increasing stiffness from the top to the
bottom of the film, and there is a positive kT

αβ . As we have
shown in Figs. 6 and 8, positive kT

αβ facilitates formation of the
hexagonal island array and negative kT

αβ favors the hexagonal
dimple structure. The simulated results are consistent with ex-
perimental observations [23,25,26]. Although it seems that the
assumption made in Eq. (1) could capture the main feature—
that solvent diffusion creates spatiotemporal actuation strain
and results in confined wrinkling instability comparable to
experimental observations—the real situation between the
swelling actuation strain and solvent concentration is much
more complicated, and further quantitative study requires
a nonlinear theory of coupled diffusion and finite swelling
deformation in the film-substrate system, similar to the theory
of polymeric gels [57,58].

In summary, nonlinear wrinkling of a thin film on a soft
elastic substrate with diffusive solvent is explored through
numerical simulation based on a continuum model. The
results indicate that the solvent diffusion affects the wrinkling
process in the following ways: (1) The diffusion-controlled
actuation strain can regulate the distribution of the membrane
stress, leading to size- and shape-dependent wrinkles. (2) The
interplay between diffusion and wrinkle processes gives rise to
spatiotemporal frustrations, where a rich variety of wrinkling
patterns with nonuniform concentration, such as hexagonal
order and peanut-shaped structures, can be formed, especially
when the diffusion-controlled compression is slightly above
the critical buckling strain. (3) The diffusion-controlled wrin-
kling process has a cascade feature. We hope that our study may
be useful for engineering optimal surface wrinkles through the
manipulation of the diffusion process.
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