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Simulation study of the polarizable Stockmayer fluid in an external field
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Gas-liquid phase coexistence curves of the polarizable Stockmayer fluid in external electric fields are computed
using molecular dynamics computer simulation. We study in particular the critical-point shift dependence on
polarizability and external electric field distinguishing the cases of fixed charge density and fixed potential.
The results are compared to a previously developed mean-field theory for the polarizable Stockmayer fluid in
an external field. We also investigate the behavior of the isochoric heat capacity near gas-liquid criticality via
finite-size scaling depending on polarizability and external field.
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I. INTRODUCTION

The Stockmayer potential, which consists of a Lennard-
Jones (LJ) potential plus a point dipole–point dipole
interaction, where the dipole moments are located on the
Lennard-Jones sites, is one of several early potentials invented
as models for small polar molecules [1]. Subsequently,
numerous computer simulations have revealed its perhaps
unexpectedly complex phase behavior. It does not reproduce
real fluids of small polar molecules very well, e.g., its ferro-
electric ordering transition appears to have no analog in real
low molecular weight liquids [2], but it is still useful because
its simplicity allows insight into the role of dipolar interactions
for many structural, dynamic, and thermodynamic properties
of liquids [3,4]. Here we present computer simulation results
for the Stockmayer potential in an electric field including an
induced point polarizability as continuation of a previous study
of the nonpolarizable Stockmayer (ST) fluid in an electric field
near criticality [5].

Although a simulation algorithm for the polarizable Stock-
mayer (pST) model is described in the early papers by Vesely
[6,7], initially this model and related dipolar fluid models
were not studied frequently due to the complexity of the
calculations. Carnie and Patey [8] derived a self-consistent
mean-field theory to study polarizable hard-sphere particles
with embedded point dipoles and tetrahedral quadrupoles.
Subsequently Caillol et al. [9] and Patey et al. [10] compared
this theory to molecular dynamics (MD) results for thermody-
namic and dielectric properties of polarizable Lennard-Jones
particles with permanent dipole and quadrupole moments. At
the same time Neumann and Steinhauser [11] developed a
set of equations describing the dependence of the dipole-
moment fluctuations on boundary conditions in computer
simulations of isotropically polarizable polar systems. Mooil
and co-workers [12,13] reported results of MD simulations
of mixtures containing nonpolarizable ST and polarizable LJ
particles using the Ewald summation to evaluate the dipolar
interactions. They presented thermodynamic and structural
properties, including the dielectric constants of the polarizable
polar fluids obtained via the polarization fluctuations of the
simulation cell. Similarly thermodynamic properties of the
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pST fluid were studied via MD simulations and perturbation
theory by Kriebel and Winkelmann [14]. Millot et al. [15]
performed extensive MD studies, comparing different methods
for the evaluation of the long-range interactions, of the static
dielectric constant in the pST fluid. Valiskó [16,17] reported
the studies of the dielectric constant of the pST and dipolar
hard-sphere (DHS) fluids using the Monte Carlo (MC) sim-
ulation in conjunction with renormalized perturbation theory.
Most recently Moučka [18] developed a biased multiparticle
MC scheme to study systems with nonadditive interactions
using the pST fluid as the test system. Only a few studies have
focused on gas-liquid phase coexistence of polarizable polar
fluids. Kriebel and Winkelmann [19] studied the gas-liquid
equilibria of ST fluids with fixed and polarizable dipoles using
a perturbation theory. They conclude that the critical densities
increased slightly as polarizability increases. Using grand
canonical MC, Kiyoharaet et al. [20] investigated the phase
coexistence properties of pST fluids with dipole moments
μ = 1,2 and point polarizabilities α = 0.00, 0.03, and 0.06,
but in the absence of an external field. They find that the
critical temperature as well as the critical density increase
with increasing polarizability.

In this paper we present our simulation results for the
pST systems with dipole moments μ from 0.5 to 2.0 and
point polarizabilities α from 0.0 to 0.08 (the conversion to SI
units is explained at the beginning of the results section) in
external electric fields. Using the MD simulation technique
we compute gas-liquid phase coexistence curves. We study, in
particular, the critical-point shift dependence on polarizability
and external electric field distinguishing the cases of fixed
external charge density or fixed potential. The results are
compared to a previously developed mean-field theory for the
polarizable Stockmayer fluid in an external field. In addition,
we study the isochoric heat capacity near gas-liquid criticality
via finite-size scaling, depending on polarizability and external
field. For vanishing external field we find Ising behavior,
whereas for nonvanishing external fields we find a significantly
reduced (enhanced) critical exponent ratio α/ν when the
potential (charge density) is fixed.

II. METHODOLOGY

The general MD simulation method for the pST fluid in an
external electric field is described in Ref. [5]. However, for
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reasons of transparency, we reproduce the key equations. The
total potential energy of the system is

U = ULJ − 1

2
�miTij �mj − 1

2
�mi · g �Mi + 1

2

�pi
2

α
− �mi · �Eext

i

(1)

(making use of the summation convention). Here ULJ includes
all LJ pair potentials between ST particles i and j . The
other terms describe the interactions between point dipole
moments �mi = �μi + �pi located on every site i. �μi is a
permanent point dipole moment, and �pi = α �Ei is an induced
point dipole moment, where α is a site polarizability and
�Ei = Tij �mj + g �Mi + �Eext

i is the total electric field at site i.
The quantity Tij is the dipole tensor, and �Eext

i is the external
field as it is felt at site i. The external field is assumed to be
constant throughout the volume V of the system. However,
we keep the index i as a reminder that the relation between
a true external field �Eext, e.g., generated by capacitor plates
between which the system is placed, and �Eext

i does depend on
how long-range interactions are handled in the simulation.

We use a cutoff rcut centered on each particle. Inside the
cutoff all pair interactions are computed explicitly. In the
case of the LJ interactions we employ the usual continuum
approximation for the interaction of the central site with
particles outside the cutoff. The electrostatic effects on dipole
i due to dipoles beyond rcut are included in the reaction field
approximation via the terms − 1

2g �mi · �Mi in Eq. (1) and g �Mi

in the formula for �Ei . Here g = 2(ε−1)
(2ε+1)

1
r3

cut
and �Mi is the total

dipole moment of the cutoff sphere surrounding particle i.
ε is the static dielectric constant in the system under given
conditions computed via

(ε − 1)(2ε + 1)

9ε
�Eext

i = 1

r3
cut

〈 �Mi〉. (2)

The reaction field method here has the particular appeal that
it may be compared to analytic results if there is only one
dipole in the spherical cutoff. For instance, Eq. (1) may by
rationalized by considering a single point dipole at the center
of a spherical cavity in a dielectric medium. For a permanent
dipole moment the potential energy consists of −�μ · �Ecav

plus −(1/2) �μ · �Ereac, where �Ecav = 3ε �E(∞)/(2ε + 1) is the
cavity field and �Ereac = g �μ is the reaction field. �E(∞) is the
average electric field far from the cavity (Maxwell field).
This calculation can, for instance, be found in Fröhlich’s
book [21]. If a polarizability α is added to the dipole
moment then a third term −(1/2) �p · ( �Ecav + �Ereac) must be
added to the dipole’s potential energy, i.e., uD = −�μ · �Ecav −
(1/2) �μ · �Ereac − (1/2) �p · ( �Ecav + �Ereac). Rearrangement of
terms yields uD = −(1/2) �m · g �m + (1/2) �p2/α − �m · �Ecav—
the one-dipole analog of Eq. (1).

In particular, we note that �Eext
i corresponds to �Ecav. In the

present simulation the cavity is the cutoff sphere embedded
in a homogenous slab of dielectric material. This dielectric is
thought to fill the space between the perpendicular (infinite)
plates of a capacitor. And thus

�Eext
i = 3ε

2ε + 1
�E(∞). (3)

The average field inside the dielectric in turn is related to an
external field via �Eext = ε �E(∞). �Eext is the field in a narrow
(and therefore otherwise negligible) gap between one of the
capacitor plates and the dielectric. Notice that two scenarios
are particular relevant: (i) fixed charge density on the capacitor
plates and (ii) fixed potential. Case (i) corresponds to �Eext

held constant. This follows from Gauss’s law applied to the
boundary between the capacitor plates and the adjacent gap.
Case (ii) corresponds to �E(∞) held constant. This follows
directly via �E(∞) = −�∇ϕ, where ϕ is the scalar potential.

Additional quantities derived via the total potential energy
are the force and the torque on particle i [see Eqs. (9) and (10)
in Ref. [5]] and the pressure P = PLJ − 1

2V
〈 �miTij �mj 〉 + Pε ,

where Pε is given by

Pε = −3ρ

V

〈
1

(2ε + 1)2

(
�mi · �Ai + �mi · �Mi

r3
cut

)
∂ε

∂ρ

〉
, (4)

with �Ai = �E(∞) if E(∞) is held constant and �Ai = −2 �Eext if
Eext is held constant instead. We note that potential energy,
force, torque, and virial, in the absence of the external
field, were worked out by Vesely [6]. We note also that our
expression for the reaction field contribution to the pressure
differs from the corresponding contribution in Vesely’s work,
because of the neglect of the density dependence of ε in the
aforementioned reference.

The equations of motion are integrated using the velocity
Verlet algorithm. Temperature, which is in LJ units here,
is controlled via the weak-coupling method of Berendsen
et al. [22]. Induced dipole moments are calculated at every
MD step using the iteration scheme �pi

(k+1) = α �Ei( �pi
(k)). The

dielectric constant is calculated via Eq. (2). Gas-liquid (g-l)
phase coexistence curves are obtained by the same method
as introduced previously [23,24], i.e., phase coexistence is
established using the Maxwell construction method applied to
simulation isotherms at different temperatures. The number of
Stockmayer particles N and the long-range cutof, rcut are 900
and 5.5, respectively, unless explicitly noted otherwise. Notice
that tests with larger cutoffs up to 7.5 do not yield significantly
different results.

In the following the simulation results are compared to a
simple mean-field description of the g-l transition developed
previously [5]. The relevant free energy is �F = �FD +
�FvdW, with

�FD

NT
= − ln

(
sinh[K]

K

)
− 1

2(1 − αg)T

(
gμ2 + αE2

cav

)
,

(5)

where K = μEcav/[(1 − αg)T ], and

�FvdW

NT
= ln

(
ρ/

(
3ρo

c

)
1 − ρ/

(
3ρo

c

)
)

− 9

8

ρ/
(
3ρo

c

)
T/

(
3T o

c

) . (6)

Here the first term in Eq. (5) accounts for the entropy loss due
to orientation in the field, and ρo

c and T o
c in Eq. (6) refer to the

critical point of the pure LJ system (ρo
c = 0.3 and T o

c = 1.32).
Notice that the dielectric constant entering through the quantity
g is computed via Eq. (A13) in Ref. [5]. Notice also that the
quantity rcut in g has two different meanings. In the simulation
rcut is the usual cutoff distance, whereas in the mean-field
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FIG. 1. Top: Static dielectric constant ε vs dipole number density
ρ for μ = 0.5, T = 1.40, and Eext

i = 0. Symbols: simulation results
(circles: α = 0; squares: α = 0.01; diamonds: α = 0.02; up triangles:
α = 0.04; down triangles: α = 0.08); lines: mean-field theory. Bot-
tom: ε vs field strength E for μ = 0.5, T = 2.50, and ρ = 0.313. The
correspondence between symbol shapes and α is the same as above.
Note that ε at E = 0 is computed using Eq. (9) in Ref. [25]. The lines
are computed via mean-field theory. Solid symbols and solid lines:
E = E(∞); open symbols and dashed lines: E = Eext.

theory rcut is the radius of the cavity containing just one dipole.
In this latter case we use rcut = 0.8 (as used previously in
Ref. [5]).

III. RESULTS

The upper panel in Fig. 1 shows an example of the density
dependence of the static dielectric constant ε obtained from
the simulations compared to corresponding mean-field results.
The static dielectric constant increases, as expected, when the
point polarizability of the ST particle increases. Notice that, for
example, the polarizability of water is ∼1.45 × 10−24 cm3. We
may convert this number to the current units by multiplication
with σ−3, where σ is the LJ parameter, which, depending on
the water model used, varies between 3.154 Å in the case of the
simple point charge/extended (SPC/E) water model to 2.65 Å
for an older Stockmayer water model. For α one obtains either

0.046 or 0.08, values in the α range considered here. The
same is true for other small molecules. The permanent dipole
moment in SI units may be obtained via μ

√
4πεoεσ 3. Here εo

is the vacuum permittivity and ε and σ are LJ parameters.
For example, choosing μ = 1, ε/kB = 380 K, and σ =
2.65 Å (Stockmayer water) yields ≈1D. Finally, the electric
field in SI units expressed via the electric field in this work E

is
√

ε/(4πεoσ 3)E.
The lower panel in Fig. 1 compares external field effects for

nonpolarizable ST and four different pST fluids when either
E(∞) = const or Eext = const. The temperature and density
are close to the respective critical values for nonpolarizable
ST with μ = 0.5 at zero field. The mean-field theory is a good
description of the electric field dependence of ε. Significant
discrepancies only occur at the highest polarizability, where
structural correlations in the liquid are much stronger. One
example is the formation of reversible aggregates, as chains
(cf., for instance, Ref. [23]), which we try to avoid here due to
the additional complexity.

Figure 2 shows the critical temperature ratio Tc/T α=0
c and

the critical density ratio ρc/ρ
α=0
c as functions of polarizability

α for different values of the permanent dipole moment μ

at zero-field strength. Increasing α or μ shifts the critical
temperature to higher values. Our results are in very good
agreement with the older values obtained in Ref. [20], where
the authors use the histogram reweighting method to determine
the critical parameters. The star symbols show results obtained
via the renormalized perturbation theory in Ref. [19] for
μ = √

2. Even though no simulations were carried out with
this μ value, the result appears to be at least consistent with the
simulations. Our own mean-field theory describes Tc/T α=0

c vs
α only qualitatively. In the case of the critical density ratio
ρc/ρ

α=0
c the results are less straightforward. This is because

computational errors are quite substantial. Nevertheless, for
the dipole moments 1.0 and 2.0 the critical density increases.
This is consistent with the theoretical result in Ref. [19]. It also
appears consistent with the simulation results in Ref. [20], even
though the errors of the critical density values are considerable.
In the case of our smallest μ value, μ = 0.5, we find a slight
decrease of the critical density with increasing polarizability.
This is in accord with our mean-field theory, which in this
case also yields a good prediction of the Tc shift. However,
our mean-field theory fails to describe the apparent increase
of ρc for the larger dipole moments. Because this is the only
case where thus far we have found a qualitative discrepancy
between the simulation and this simple mean-field theory,
including also our previous results for α = 0 in Ref. [5], we
conclude that structural correlations, absent in the mean-field
description, are a likely cause for the disagreement. Notice
that the numerical data of Fig. 2 are compiled in Table I.

Figure 3 shows selected gas-liquid coexistence curves ob-
tained via MD simulations in conjunction with the Maxwell’s
construction method described in Ref. [5] for μ = 0.5, α =
0.01 and μ = 1.0, α = 0.04. A complete listing of our values
for �Tc = Tc(μ,E,α) − Tc(μ,0,α) and �ρc = ρc(μ,E,α) −
ρc(μ,0,α), where E = E(∞) or E = Eext, is compiled in
Tables II and III for μ = 0.5 and 1.0, respectively. Notice
that the overall comparison of the critical temperature shifts
between the simulation results and the mean-field theory is
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FIG. 2. Top: Simulated critical temperature Tc in units of the
critical temperature of the corresponding nonpolarizable system T α=0

c

vs polarizability α. Open circles: μ = 0.5; open squares: μ = 1.0;
open triangles: μ = 2.0; solid squares and solid triangles: μ = 1.0
and μ = 2.0 from Ref. [20]; stars: μ = √

2 from Ref. [19]; lines:
mean-field theory. Bottom: Corresponding critical density ρc in units
of the critical density of the corresponding nonpolarizable system
ρα=0

c vs α.

quite good. An example plot of the reduced mean-field critical
temperature and the critical density shift for μ = 0.5 is shown
in Fig. 4, together with corresponding simulation results.

TABLE I. The simulated critical temperatures and densities for
pST systems with μ = 0.5, 1.0, 2.0, and zero external field.

α 0 0.01 0.02 0.04 0.08

μ = 0.5 Tc 1.346 1.348 1.347 1.355 1.370
ρc 0.310 0.309 0.308 0.307 0.306

μ = 1.0 Tc 1.445 1.463 1.466 1.490 1.564
ρc 0.309 0.309 0.309 0.310 0.313

μ = 2.0 Tc 2.087 2.152 2.217 2.372 –
ρc 0.269 0.278 0.281 0.286 –

FIG. 3. Gas-liquid coexistence curves in the temperature-number
density-plane based on simulated isotherms. Top: μ = 0.5, α = 0.01;
bottom: μ = 1.0, α = 0.04. Stars denote critical points. Crosses:
zero external field; triangles: E(∞) is held constant; squares: Eext

is held constant. The statistical error is comparable to the size of the
symbols.

Simulation results for E = Eext at large field strengths are
not included, because the simulation snapshots appear rather
inhomogeneous, indicating the formation of reversible aggre-
gates and possible structure formation thereof (such as bundle
formation). We note that the signs of �Tc and �ρc depend on
which field, E = E(∞) or E = Eext, is held constant. This is
explained in detail in our previous paper [5]. For constant Eext,
the orientation contribution to free energy forient increases with
increasing density, which in turn diminishes the van der Waals
loop in comparison to the zero-field case, i.e., �Tc is negative.
On the other hand, when E(∞) is held constant, forient decreases
with increasing density, which in turn enhances the van der
Waals loop in comparison to the zero-field case, i.e., �Tc is
positive. An example of the average projection of �μ/μ onto
the direction of the electric field for μ = 0.5 with α = 0.02
at T = 1.10 is shown in Fig. 5, together with the mean-field
result.
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TABLE II. �Tc and �ρc at constant E(∞) or Eext for μ = 0.5:
Simulation results and mean-field (MF) theory.

α E(∞) �T sim
c �T MF

c �ρsim
c �ρMF

c

1.0 0.007 0.006 −0.002 −0.001
2.0 0.013 0.017 −0.002 −0.001

0.01 3.0 0.032 0.035 −0.004 −0.002
6.0 0.100 0.099 −0.004 −0.004

10.0 0.162 0.181 −0.007 −0.005

1.0 0.009 0.006 < 0.001 0
2.0 0.023 0.023 −0.002 −0.001

0.02 3.0 0.049 0.047 −0.003 −0.002
6.0 0.136 0.139 −0.005 −0.004

10.0 0.245 0.272 −0.010 −0.007

1.0 0.010 0.010 0.001 −0.001
2.0 0.039 0.037 < 0.001 −0.002

0.04 3.0 0.075 0.077 −0.003 −0.003
6.0 0.217 0.240 −0.012 −0.009

10.0 0.433 0.511 −0.016 −0.013

1.0 0.018 0.020 0.002 −0.002
2.0 0.074 0.077 0.002 −0.005

0.08 3.0 0.163 0.162 −0.006 −0.010
6.0 0.462 0.532 −0.015 −0.022

10.0 1.101 1.231 −0.027 −0.030

α Eext �T sim
c �T MF

c �ρsim
c �ρMF

c

1.0 −0.006 −0.006 −0.003 0.001
0.01 2.0 −0.023 −0.025 −0.003 0.003

3.0 −0.051 −0.056 0.004 0.005

1.0 < 0.001 −0.007 0.001 0.001
0.02 2.0 −0.025 −0.029 0.002 0.004

3.0 −0.067 −0.067 0.010 0.007

1.0 −0.008 −0.010 0.002 0.001
0.04 2.0 −0.040 −0.038 0.008 0.005

3.0 −0.102 −0.087 0.019 0.012

0.08 1.0 −0.013 −0.013 0.005 0.003
2.0 −0.057 −0.052 0.017 0.011

At this point a discussion about errors affecting our results
thus far is in order. The critical parameters are obtained in
several steps, contributing differently to the overall error: (i)
Acquisition of isotherms via standard NVT MD—the results
are affected by system size and interaction cutoff; (ii) fitting
of isotherm data with a phenomenological equation of state
to obtain the densities at coexistence; and (iii) scaling law
fitting of coexistence data using the exponents of the Ising
universality class. Mainly due to the intermittent fitting, it is
difficult to compute a standard mean error in the sense that the
attendant error bar brackets the true value to within a certain
probability.

An alternative is the explicit inspection of coexistence
data, i.e., the scatter of the data points for independent
conditions and/or different parameter values, for different field
strengths and/or polarizabilities (as in Fig. 3). This type of
data provides a measure for the resolution of the method
in terms of field strength and polarization. On the level of
the coexistence curves the error is comparable to the symbol
size, which means ∼0.3% in case of the critical temperature.

TABLE III. �Tc and �ρc at constant E(∞) or Eext for μ = 1.0:
Simulation results and mean-field theory.

α E(∞) �T sim
c �T MF

c �ρsim
c �ρMF

c

1.0 0.022 0.025 −0.006 −0.001
2.0 0.067 0.084 −0.017 −0.004

0.01 3.0 0.106 0.153 −0.025 −0.006
6.0 0.248 0.344 −0.032 −0.006

10.0 0.428 0.548 −0.037 −0.004

1.0 0.016 0.029 −0.010 −0.001
2.0 0.070 0.097 −0.021 −0.006

0.02 3.0 0.125 0.178 −0.031 −0.008
6.0 0.311 0.416 −0.039 −0.010

10.0 0.542 0.699 −0.043 −0.006

1.0 0.031 0.037 −0.010 −0.004
2.0 0.088 0.126 −0.025 −0.010

0.04 3.0 0.166 0.234 −0.037 −0.013
6.0 0.440 0.581 −0.052 −0.016

10.0 0.855 1.056 −0.057 −0.014

1.0 0.032 0.060 −0.018 −0.008
2.0 0.135 0.202 −0.044 −0.016

0.08 3.0 0.287 0.382 −0.059 −0.021
6.0 0.884 1.015 −0.076 −0.024

10.0 1.962 2.027 −0.074 −0.021

α Eext �T sim
c �T MF

c �ρsim
c �ρMF

c

0.01 1.0 −0.015 −0.014 0.010 0.004
2.0 −0.078 −0.055 0.024 0.019

0.02 1.0 −0.016 −0.014 0.008 0.007
2.0 −0.059 −0.056 0.028 0.022

0.04 1.0 −0.011 −0.015 0.006 0.002
2.0 −0.062 −0.056 0.035 0.019

0.08 1.0 −0.017 −0.015 0.011 0.005
2.0 −0.048 −0.056 0.034 0.025

The respective error for the critical density is larger—∼1% to
2%—due to the flatness of the coexistence curve. Nevertheless,
Fig. 2 (top) shows that the critical temperatures of completely
independent simulations for different polarizations at a fixed
permanent dipole moment show little scatter and are in very
good agreement with results from other groups using other
computational methods (and system sizes). The attendant
critical densities are less certain, but our own independent
results for fixed permanent dipole moments but with variable
polarizabilities may still be represented by a smooth curve to
within the width of the symbols. Here the deviation from the
literature data, which are not entirely consistent, might be due
to a systematic error either in our own analysis or that of the
literature data.

The finite-size scaling analysis for the heat capacity in
Fig. 7 (bottom panel), discussed below and, not to be confused
with the effect due to the cutoff of critical fluctuations as
shown in the top panel, shows that the result for N = 900, the
standard size, differs from the extrapolation to infinite system
size by ∼0.5% in the worst case. If we carry this over to
the critical temperature and the critical density, which should
behave similarly, we obtain errors comparable to the numbers
quoted above. The finite-size error, however, will be essentially
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FIG. 4. Top: Mean-field critical temperature in units of the LJ
critical temperature vs E (specified for each curve). Bottom: Mean-
field critical density shift vs E. Both are plotted for μ = 0.5 and
α = 0.04 with rcut = 0.8; LJ critical density ρ0

c = 0.3; LJ critical
temperature T 0

c = 1.32. Symbols are simulation results. Solid circles:
E = E(∞); open circles: E = Eext. The statistical error again is
comparable to the size of the symbols.

subtracted out of the differences tabulated in Tables I, II, and
III. Overall we conclude that the differences given in the tables
are subject to considerable uncertainty for small polarizability
and small field strength, but the trends described by this set of
data as a whole are reliable.

Figure 6 shows the isochoric heat capacity per particle
CV /N versus number density ρ for the nonpolarizable
ST system with μ = 1.0 in the absence of an external
field at selected temperatures. As an independent check
of our simulation data we use the thermodynamic rela-
tion ∂CV /∂V |T = T ∂2PV /∂T 2 |V to obtain the low-density
approximation CV − C ideal

V = −NρT [2 ∂
∂T

BST
2 + T ∂2

∂T 2 B
ST
2 ].

Here BST
2 is the second virial coefficient of the ST fluid

(cf. the Appendix of Ref. [24]). The inset in Fig. 6 shows
the comparison between our simulations and this theoretical
result.

cos

FIG. 5. Average orientation of the dipoles relative to the electric
field direction 〈cos θ〉 vs density ρ for μ = 0.5, α = 0.02, and
T = 1.10. Solid lines: mean-field theory; solid circles: simulation
result for E(∞) = 10; open circles: simulation result for Eext = 10.

It is interesting to study finite-size dependence of the peak
at criticality. The expected scaling is

ln
CV

N
= 1

3

α

ν
ln N + const. (7)

This follows via CV ∼ |T − Tc|−α in conjunction with N1/3 ∼
ξ ∼ |T − Tc|−ν , where ξ is the (energy-energy) fluctuation
correlation length and α and ν are critical exponents. Figure 7
shows a plot of ln Cv/N vs ln N with a slope ≈0.060. This
is in rather good accord with the expected three-dimensional
(3D) Ising value α/(3ν) = 0.058 (e.g., Ref. [26]). However,
our value of 0.060 should be corrected for the finite-size

FIG. 6. Isochoric heat capacity per particle CV /N vs particle
number density ρ in the absence of an external field. The symbols
(joined by dashed lines) are simulation results for μ = 1, α = 0,
rcut = 4.0. From top to bottom: T = 1.3, 1.445, 1.6, 1.8, 2.0. For the
subcritical temperature the curves terminate on the coexistence curve.
The inset shows a low-density comparison between the simulation
results and a second-order virial expansion (solid lines).
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FIG. 7. Top: Critical finite-size scaling for CV /N of a ST
system with μ = 1.0. Symbols are simulation results. Crosses:
E = 0 (T = 1.445, ρ = 0.309); solid circles: E(∞) = 2 (T = 1.502,
ρ = 0.297); open circles: Eext = 2 (T = 1.388, ρ = 0.331). Lines
are least-squares approximations. Bottom: Scaling of CV /N vs N−1

for the ST system with μ = 1.0 at T = 2.0, which is far from the
respective critical temperatures. The meaning of the symbols and
lines is the same as above.

dependence of CV far from criticality. The bottom part shows
a plot CV /N vs 1/N , i.e., the expected dependence on N in
this case. If the same data are plotted in the form of the upper
panel (not shown here), one finds that the resulting slope is
∼10% of 0.060, which would mean that our resulting estimate
of α/(3ν) is close to 0.054. Similar numbers are obtained for
nonzero polarizability.

The presence of an external field alters this behavior. The
two results in Fig. 7 for �E(∞) = 2 and �Eext = 2 show distinctly
different slopes. For E(∞) = 2 the ST fluid exponent α/(3ν)
is ∼40% smaller than the 3D Ising value. In the other case,
i.e., Eext = 2, we obtain an exponent for the ST fluid which
exceeds the 3D Ising value by a factor of 2.5. We emphasize
that we still talk about the gas-liquid critical point and not
about the ferroelectric transition also observed on the ST fluid.
However, we are not aware of a discussion of (electric) field

effects on critical exponent values in the case of gas-liquid
criticality in the presence of (electric) fields.

Exponent values essentially depend on order parameter
symmetry, space dimension, and range of interactions (long
versus short) (e.g., Ref. [27]). The range of interparticle
interactions may be affected by the formation of reversible
aggregates, i.e., possibly long chains, commonly observed in
dipolar fluids depending on thermodynamic conditions (e.g.,
Ref. [23]). However, the (small) mean aggregation numbers,
using a simple distance criterion, are identical to within
the scatter in the cases E = 0 and E(∞) = 2. It is slightly
increased in the case Eext = 2. Therefore, in the present case
is not likely that aggregate formation significantly increases
the interaction range and causes an attendant approach to
mean-field behavior. The latter would lead to a strongly
decreased or (ideally) zero slope, which would be in line with
the E(∞) = 2 result but certainly not with the Eext = 2 result.
We note that we have monitored clustering or aggregation
throughout this paper and have only included results when
we could not detect aggregation (e.g., the case μ = 2.0,
α = 0.08 is excluded from Table I for this reason). Another
thought might be the following. Anisotropic interactions (in,
for instance, magnetic systems) lead to an effective decrease of
dimension. The orientational ordering imposed by a nonzero
field certainly causes anisotropy. Even though the resulting
anisotropy is different for E(∞) > 0 in comparison to Eext > 0,
as shown in Fig. 5, this effect appears insufficient to cause
the opposite deviation of slopes relative to the E = 0 result.
Because this is a simulation, where critical parameters are
determined approximately (and rather crudely), unaccounted
for corrections to the leading scaling behavior may affect
the observed slopes and cause opposite deviations from the
zero-field slope.

IV. CONCLUSION

Using the MD technique we compute gas-liquid phase
coexistence curves for the pST fluids in external fields. In
order to avoid the formation of reversible aggregates, which
complicate matters considerably, we have studied mainly
small permanent dipole moments and polarizabilities. Our
mean-field description for small polar molecules including
induced polarization is in good accord with the simulation
results, except for the critical parameter ratios when E = 0 and
α 
= 0. The shift of the critical point as function of electric field
strength is obtained for the case of fixed external charge density
or fixed potential. As before, for the nonpolarizable ST [5], we
observe a decrease of Tc in the former case and an increase
in the latter. Increasing the polarizability is analogous to
increasing the permanent dipole moment. The critical density
behaves more subtly. This is seen in the case of vanishing
field strength. Depending on the size of the permanent dipole
moment, there may be a shift, increasing with increasing
polarizability, in both directions. Via analysis of the isochoric
heat capacity using simple finite-size scaling, we estimate the
exponent ratio α/ν at vanishing field strength. The resulting
value is in accord with the expected Ising behavior. In the
two cases of non-zero-field strength we observe apparent
deviations. For fixed external charge density α/ν is increased,
whereas in the fixed potential case it is decreased.
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[16] M. Valiskó, D. Boda, J. Liszi, and I. Szalai, Mol. Phys. 101,

2309 (2003).
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