
PHYSICAL REVIEW E 84, 051501 (2011)

Friction contribution to water-bond breakage kinetics
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Based on the trajectories of the separation between water molecule pairs from MD simulations, we investigate
the bond breakage dynamics in bulk water. From the spectrum of mean first-passage times, the Fokker-Planck
equation allows us to derive the diffusivity profile along the separation coordinate and thus to unambiguously
disentangle the effects of free-energy and local friction on the separation kinetics. For tightly coordinated water,
the friction is six times higher than in bulk, which can be interpreted in terms of a dominant reaction path that
involves additional orthogonal coordinates.
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I. INTRODUCTION

The unique properties of liquid water are relevant for a
broad range of processes in biology, chemistry, and physics,
as well as for technological applications [1]. A prominent goal
of recent research has been to relate macroscopic properties
(among those the notable anomalies and singularities) to the
microscopic structure and thus to the hydrogen (H) bonding
pattern between individual water molecules [2]. This goal
has only partly been achieved. Indeed, even for the most
elementary kinetic process of breaking a single H-bond
between two water molecules that are embedded in the bulk
liquid matrix, various viewpoints exist: In an early application
of transition path sampling, it was found that in roughly half of
the cases of an H-bond breaking event a new bond forms right
afterwards [3], supporting Stillinger’s switching-of-allegiance
description of the local water dynamics [2]. In later simulation
works, the water reorientation during this H-bond switching
was shown to occur quite abruptly [4], in line with the pro-
nounced rotational-translational motion coupling of individual
water molecules [5]. The nonexponential H-bond relaxation
was shown to be due to a coupling of bond making/breaking
dynamics and the relative diffusion of water pairs [6] but not
related to the local environment of H-bond forming water
molecules [7], which is surprising in light of the above
mentioned H-bond switching scenario. Clearly, the H-bond
dynamics is intimately related to the kinetics of, e.g., protein
folding [8] or solute dissociation [9], so clarifying the kinetics
of the binding and unbinding of water molecules is, without
doubt, of fundamental importance.

The concept of diffusion along a reaction coordinate (RC)
has been fruitful for gaining insight into the underlying
mechanisms of high-dimensional dynamics, as in the case
of protein folding, for which various approaches to identify
suitable RCs [10,11] and to locate or characterize transition
states [12–14] have been developed. Here, we choose the
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separation between two water molecules as the naive RC and
show that a consistent description of the dynamics along the
separation coordinate can be obtained. In fact, our stochastic
analysis in terms of the Fokker-Planck (FP) equation with
coordinate-dependent free-energy and diffusivity allows us to
quantify to which extent degrees of freedom that are orthogonal
to our chosen RC are involved in the reaction. As a main
result, we find the relative translational friction in the first
coordination shell to be more than sixfold increased compared
to bulk water. Application of transition rate theory without
taking this local friction change into account underestimates
typical bond breakage times by a factor of two.

Our analysis is based on 10-ns-long trajectories of the
separation R between the oxygen atoms of water pairs
provided by molecular dynamics (MD) simulations of the
standard three-point charge water model SPC/E [17]; see
Figs. 1(a) and 1(b) for a snapshot and an example trajectory;
a simulation movie is provided as supplementary material
[16]. We do not check for the presence of H-bonds, which
would introduce an element of arbitrariness due to the H-bond
definition [18], but rather base our discussion solely on the
separation R; strictly speaking, we do not consider H-bond
kinetics but more generally water-bond kinetics.

The paper is organized as follows: we start by reviewing
the FP equation in Sec. II, on which our analysis is based. The
simulation setup is described in Sec. III A; details regarding the
trajectory analysis are given in Sec. III B. Results are presented
in Sec. IV and discussed in Sec. V. A summary of our main
findings is given in Sec. VI, while technical aspects are covered
in the appendices.

II. FOKKER-PLANCK EQUATION
FOR RADIAL DYNAMICS

In the overdamped limit, the FP equation in three dimen-
sions describes the time evolution of the probability density �

of observing a vectorial separation r at time t

∂

∂t
�(r,t) = −∇ · J(r), (1)
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FIG. 1. (Color online) (a) Simulation snapshot visualized using
VMD [15]: the coordinate R in the enlarged section is defined as the
radial separation between the oxygen atoms. (b) Typical time series
of R, the magnification reveals fluctuations on the subpicosecond
scale. A simulation movie is provided as supplementary material [16].
(c) Illustrative typical reaction path involving in addition to the
separation R an orthogonal component R⊥ (cf. text in Sec. V C).

where the probability flux density,

J(r) = −�(r,t)←→μ 3D(r) · ∇U (r) − ←→
D 3D(r) · ∇�(r,t),

has two contributions: (i) the overdamped motion due to an
(effective) potential U and (ii) diffusion with a (possibly)
position-dependent diffusivity tensor

←→
D 3D. Using the Einstein

relation
←→
D 3D = kBT

←→
μ 3D connecting mobility and diffusiv-

ity, Eq. (1) can be rewritten as

∂

∂t
�(r,t) = ∇ · {e−βU (r)←→D 3D(r) · ∇[eβU (r)�(r,t)]}, (2)

where β ≡ 1/(kBT ) denotes the inverse thermal energy.
Within this paper, we concentrate on the relative dynamics
of two water molecules along their radial distance R. Since
the diffusion tensor,

←→
D 3D =

⎛
⎜⎝

D 0 0

0 D� 0

0 0 D�

⎞
⎟⎠, (3)

remains diagonal when introducing spherical coordinates
(R,�,�) and the effective inter-molecular potential U due to
symmetry depends on R only, the angular coordinates can be
integrated out [19]. The time evolution of the radial probability
distribution,

P (R,t) ≡
∫ 2π

0
d�

∫ π

0
d� sin �R2�(R,�,�,t), (4)

specifying the probability of finding a radial distance R at time
t , is described by the simpler equation

∂

∂t
P (R,t) = ∂

∂R

{
R2e−βU (R)D(R)

∂

∂R

[
eβU (R) P (R)

R2

]}
,

(5)

where the pair radial diffusivity D may depend on R. It is useful
to absorb the factors R2 in Eq. (5) by defining a free-energy
F ≡ U − 2kBT log R [19] to recover the usual form of the
one-dimensional FP equation [20,21]

∂

∂t
P (R,t) = ∂

∂R

{
D(R)e−βF (R) ∂

∂R
[P (R,t)eβF (R)]

}
. (6)

The free-energy F (R) = −kBT log 〈P (R)〉 is obtained by
Boltzmann inversion of the equilibrium probability 〈P (R)〉.
Determining D(R) is more subtle: Different procedures have
been proposed in the context of protein folding [22–25] or
interfacial water diffusion [26–28]. Here, we obtain D(R)
directly from measured mean first-passage times (MFPTs);
for diffusive dynamics described by Eq. (6), the MFPT τfp of
first reaching a separation Rt when starting off from R is given
by [29]

τfp(R,Rt) =
∫ Rt

R

dR′ eβF (R′)

D(R′)

∫ R′

Rmin

dR′′e−βF (R′′), (7)

assuming a reflective (zero-flux) boundary condition at Rmin <

R < Rt. By differentiation, one readily gets [24]

D(R) = − eβF (R)

∂τfp(R,Rt)/∂R

∫ R

Rmin

dR′e−βF (R′). (8)

Extracting MFPT curves τfp from simulation data thus allows
us to determine the separation-dependent diffusivity D(R)
governing the dynamics in the free-energy landscape F (R);
resulting diffusivity profiles are presented in Sec. IV.

III. METHODS

A. Simulation setup

MD simulations of the SPC/E [17] water model are
performed with the Gromacs simulation package [30]. Systems
consisting of 895 and 2180 water molecules are simulated in
a cubic box with periodic boundary conditions. At T = 300 K
this corresponds to box sizes of roughly 3.0 × 3.0 × 3.0 nm3

and 4.0 × 4.0 × 4.0 nm3. Most simulations are performed
using 895 molecules; results for target separations Rt = 1.9 nm
stem from simulations involving 2180 molecules. We perform
simulations at temperatures of T = 280, 300, 320, and 340 K
for the small system and at T = 300 K for the large system
at a pressure of P = 1 bar. At each temperature, the system
is equilibrated first in an NVT ensemble (constant particle
number, volume, and temperature) for t = 50 ps and then
in an NPT ensemble (constant particle number, pressure,
and temperature) for 100 ps. Production runs are performed
subsequently for 10 ns and configurations are saved each 10 fs
for the small system and each 100 fs for the large system. A
Berendsen weak-coupling thermostat and barostat [31] with
a relaxation time of τ = 1.0 ps is used for temperature and
pressure control. All nonbonded interactions are cut off at
a radius of Rc = 0.9 nm. Long-range electrostatic interactions
are treated by the particle mesh Ewald method [32] with tinfoil
boundary conditions. An analytic long-range correction for the
Lennard-Jones interaction is applied to energy and pressure.

The simulation movie available as supplementary material
[16] visualizes the relative dynamics of a chosen water pair
in the MD simulation (T = 300 K) and was created using
VMD [15].

B. Molecular dynamics data analysis

The diffusion constant DH2O of a single water molecule is
determined from the long-time limit of the single-molecule
mean-squared displacement (MSD), DH2O = limt→∞〈(r(t) −
r(0))2〉/(6t), as detailed in Appendix A.
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The relative dynamics of all pairs of water molecules within
the 10-ns-long MD trajectory are resolved using their minimal
image distance with a spatial resolution of 	R = 0.002 nm
and a temporal resolution of δt = 20 fs. All paths starting
within a distance 	R/2 from R and crossing Rt − 	R/2
at a time tfp later contribute to the mean first-passage
time (MFPT) τfp = 〈tfp〉 and to the first-passage time (FPT)
distribution ffp. Due to the periodicity of the system, the
relative dynamics along the coordinate R is only meaningful
for R � L/2 with box-size L; we therefore only consider
target distances Rt < L/2. Note that the absolute values of the
MFPT curves τfp(R,Rt) sensibly depend on the time resolution
δt of the underlying trajectory; this sensitivity is discussed in
Appendix B.

The derivative ∂τfp(R,Rt)/∂R in Eq. (8) is determined by
fitting a straight line to τfp within a region of width 0.032 nm
around R (corresponding to 17 data points). The width of the
region was empirically found to smooth out the statistical noise
in the MFPT curves without hiding the relevant variations of
the diffusivity. The integral in Eq. (8) is evaluated numerically,
the equilibrium distribution 〈P (R)〉 is linearly interpolated,
and the reflective boundary set to Rmin = 0.235 nm. Ap-
plying the same kind of procedure based on simulations of
2180 molecules in a cubic box of edge length L ≈ 4 nm allows
us to consider targets Rt up to 1.9 nm without introducing
artifacts due to the periodicity of the simulation box and thus
resolving the diffusivity D over a larger range of separations R;
finite-size effects in the diffusivity profiles were not observed.

We thoroughly checked that for all numerical steps of the
data analysis, varying the spatial and temporal resolutions as
well as the position of the reflective boundary Rmin had no
significant impact on the resulting diffusivity profiles.

IV. RESULTS

A. Mean first-passage times and diffusivity profiles

Figure 2(a) shows the pair-correlation function gOO(R) for
different temperatures, the maxima indicating the positions of
the respective coordination shells. The free-energy,

F (R) = −2kBT log R − kBT log [gOO(R)], (9)

exhibits a barrier of about 1kBT for crossing from the first to the
second coordination shell, as seen in Fig. 5(a). MFPT curves
τfp extracted from the simulation data for targets Rt ranging
from 0.4 to 1.4 nm for T = 300 K are shown in Fig. 2(b).
They are converted, using Eq. (8), into diffusivity profiles
D(R) shown in Fig. 2(c); details of the trajectory analysis are
given in Sec. III B. There is rather good agreement between
the curves for different target separations Rt , which is strictly
expected only for a pure Markovian process as described by
a one-dimensional FP equation. As will be discussed later on,
this suggests that water-bond breakage, defined as the passage
from the first to the second coordination shell, is to a good
approximation Markovian. The deviations seen when R → Rt

are expected, since on the short spatial scales associated with
those first-passage events water motion is not diffusive; in fact,
the crossover between ballistic and diffusive motion of single
water molecules occurs at length scales of around 0.1 nm (cf.
Fig. 6 in Appendix A). For increasing separation, all curves
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FIG. 2. (Color online) (a) Pair correlation function gOO from MD
simulations for various temperatures. (b) MFPT curves τfp from MD
data for T = 300 K and several target separations Rt. (c) Diffusivity
profiles D at 300 K from the distribution in (a), the MFPTs in (b)
and Eqs. (8) and (9) [same colors as in (b)]. (d) Diffusivity profiles
rescaled by the bulk diffusivity 2DH2O for various temperatures.

saturate at a value equal to twice the diffusion constant of a
single water molecule, D(R → ∞) = 2DH2O ≈ 5.1 nm2/ns
(denoted by a broken line), as expected.

As our main finding, the diffusivity profile exhibits a
pronounced drop within the first coordination shell and reaches
a minimum value of D ≈ 0.79 nm2/ns about six times smaller
than in bulk, while factors of around two were previously
observed in simpler systems [33]. The thin, black line in
Fig. 2(c) was obtained by evaluating MFPTs to a target
separation Rt = 1.9 nm, based on simulation data of the larger
box with edge length L ≈ 4.0 nm.

Diffusivity profiles corresponding to distinct target sep-
arations Rt deviate from each other in two respects:
(i) non-Markovian dynamics on short time and length scales
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FIG. 3. (Color online) Left: Enlarged view of the MFPT curves τfp from MD simulation data at small separations [same data as in Fig. 2(b)].
Right: Average oxygen-oxygen separations 〈R(t)〉R0 for water pairs with defined initial separation R0 at time t = 0.

lead to modifications for |R − Rt| � 0.25 nm as discussed
above, and (ii) the statistical uncertainty increases with increas-
ing |R − Rt| due to a decreasing number of recorded transition
events contributing to the corresponding MFPTs. Smooth and
reliable diffusivity profiles are thus obtained by joining the
regions Rt − 0.45 nm � R < Rt − 0.35 nm of the diffusivity
profiles corresponding to targets Rt = 0.6,0.7, . . . ,1.4 nm.
The resulting diffusivity profiles rescaled by twice the bulk
diffusion constant DH2O are shown in Fig. 2(d) for various
temperatures; the values of DH2O at different temperatures are
in good agreement with previous simulation estimates and
experiments as seen in Table I.

Interestingly, deviations over a temperature span of 80 K
are very small; the main features of the profile, including
the sixfold decrease within the first coordination shell, are
accurately described by the heuristic formula

D(R) ≈ 2DH2O{10.76 − 0.68 e−9R̃/4 − 0.1 e− 1
5 (27−50R̃)2

+ 10 tanh[50(1 − 4R̃)] − 0.34 tanh(13.2 − 40R̃)

+ 0.1 tanh(4.1 − 10R̃)}, (10)

where R̃ ≡ R/nm; Eq. (10) is shown as thin black line in
Fig. 2(d). From the Arrhenius-like temperature dependence of

TABLE I. Temperature dependence of the diffusion coefficient
DH2O of a single water molecule in bulk water. Simulation results for
the SPC/E water model obtained by evaluation of the long-time MSD
(cf. Appendix A) are compared to results from previous simulation
studies and to experimental findings (both with references).

DH2O [nm2/ns]

T [K] Simulations (SPC/E) Experiments

278 – 1.313 [34]
280 1.60 ± 0.02 1.44 [35]
298 2.75 [36], 2.70 [37] 2.22 − 2.61 [34,35,38]
300 2.55 ± 0.05 –
318 – 3.575 [34]
320 3.70 ± 0.05 –
340 5.08 ± 0.05 –
360 6.60 ± 0.05 –

the bulk diffusion coefficient (cf. Fig. 7 in Appendix A), it
follows that the entire diffusivity profile obeys an Arrhenius
law.

B. Maxima in the MFPT-curves at small separations

According to Eq. (7), the MFPT-curve τfp(R,Rt) is a strictly
decreasing function of R; in contrast, as can be seen in the
left panel of Fig. 3, which shows a close-up of the MFPTs
of Fig. 2(b) at small separations, the MFPT curves obtained
from MD simulation data show a maximum at separations
R ≈ 0.26 nm.

Since according to Eq. (8) a vanishing/positive slope
of a MFPT-curve implies a diverging/negative diffusiv-
ity, the concept of Markovian dynamics obviously breaks
down at such small separations. The diffusivity profiles in
Figs. 2(c) and 2(d) are therefore only resolved for separations
R � 0.265 nm.

Though being counterintuitive at first sight, these maxima
in the MFPTs can easily be understood by considering the
average oxygen-oxygen separation 〈R(t)〉R0 of an ensemble
of water pairs starting with defined initial separation R0 at
time t = 0. SPC/E-water molecules interact via Coulomb and
via Lennard-Jones (LJ) interactions: for small separations
the repulsive part of the LJ-potential significantly contributes
to the total energy of a water pair (for R = 0.25 nm and
T = 300 K: ULJ ≈ 13.5kBT ). The corresponding water pair is
thus expected to be quickly driven apart due to the repulsive LJ-
force. The right panel of Fig. 3 indeed reveals that the average
distance between water molecules starting at separations R0 �
0.25 nm increases strongly within fractions of picoseconds.
The oscillations seen in the trace for R0 ≈ 0.245 nm nicely
match the time scale of interoxygen vibrations, which was
found to be on the order of 0.1 − 0.2 ps [7]. Due to
the repulsive LJ-interaction for R � 0.25 nm, the average
separations of water pairs starting out at R0 ≈ 0.245 nm and
at R0 ≈ 0.282 nm are very similar on time scales t � 1 ps and
exceed the average separation of pairs starting in the range
0.255 nm < R0 < 0.275 nm; the maxima observed in the
MFPT curves of Fig. 3 are a direct consequence of this mutual
water repulsion and the induced under-damped motion.
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V. DISCUSSION

A. Fokker-Planck kinetics with and without diffusivity profile

To what extent is this local friction increase relevant for
the water-bond breakage kinetics? To quantify the relevance
of the change in local friction, we compare in Fig. 4(a) MFPT
curves from MD data already shown in Fig. 2(b) (colored lines)
with analytical predictions resulting from Eq. (7) using the
diffusivity profiles D(R) (solid lines) shown in Fig. 2(c) as well
as calculations employing a constant diffusivity D = 2DH2O

(broken lines). The solid lines by construction match the
MD data nicely, the vertical shift being caused by the 20-fs
time discretization of the underlying MD trajectory, while
the analytical predictions are calculated in the continuum
(cf. Appendix B). It is seen that the assumption of a constant
diffusivity leads to a considerable underestimate of the MFPTs.
The time to reach the target separation Rt = 0.4 nm from the
first coordination shell (R � 0.28 nm) is underestimated by a
factor of roughly one half.

The accuracy of the FP approach involving the diffusivity
profile is demonstrated when comparing first-passage time
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FIG. 4. (Color online) (a) MFPTs from MD simulations [solid
color lines, same data as in Fig. 2(b)], and from the FP description
of Eq. (7) with constant diffusivity 2DH2O (dashed) and with
diffusivity profile D(R) from Fig. 2(c) (solid black lines) for several
target separations Rt. (b) FPT distribution ffp to reach a separation
Rt = 0.4 nm for water pairs starting within the first coordination
shell at R = 0.281 ± 0.001 nm. Histograms from MD simulations
at T = 300 K (blue dots) are compared to the numerical solution
of Eq. (6) with constant diffusivity 2DH2O (dashed black line) and
with diffusivity profile D(R) from Fig. 2(c) (solid black line). Data
are shown on both linear and logarithmic vertical scales; vertical
arrows indicate the mean of the corresponding distributions. FPT
distributions for other target separations Rt and numerical details are
found in Appendix C.

(FPT) distributions: Fig. 4(b) contrasts the FPT histogram
from MD data for Rt = 0.4 nm with FPT distributions from the
numerical solution of the FP equation (numerical details are
given in Appendix C), again using the flat diffusivity 2DH2O

and the actual diffusivity profile D(R). Only the FP approach
including the D(R) profile correctly reproduces the entire FPT
distribution from MD simulations and in particular also the
exponential tail of the distribution, as shown by the plot using
the logarithmic scale on the right. Systematic discrepancies are
observed on short time scales �1 ps, where the MD data show
more “fast” transitions than the FP description. These effects
are caused by ballistic motion of water molecules and cannot
be captured by a Markovian description. FPT distributions
corresponding to other target separations are shown in Fig. 10
in Appendix C.

B. Testing the quality of the reaction coordinate

Although our procedure does not strictly depend on the fact
that the separation R is a “good” RC, the whole mapping on
a one-dimensional FP equation is certainly more meaningful
if it is. To check the quality of our RC, we divide R into a
bound region A for R < RA = 0.275 nm, an unbound region
B for R � RB = 0.47 nm and the intermediate region for
0.275 nm � R < 0.47 nm, which roughly encompasses the
free-energy barrier [see Fig. 5(a)].

For a diffusive process described by the FP equation (6), the
committor πX(R) specifying the probability of first reaching
region X ∈ {A,B} when starting from R is a solution of the
stationary backward FP equation [21]

eβF (R) ∂

∂R

[
e−βF (R)D(R)

∂πX(R)

∂R

]
= 0. (11)

The committor in addition fulfills boundary conditions
πX(RX) = 1 and πX(RY) = 0, with Y =X. The solutions are
given by

πA(R) = 1

N

∫ RB

R

dR′ eβF (R′)

D(R′)
,

(12)

πB(R) = 1 − πA(R) = 1

N

∫ R

RA

dR′ eβF (R′)

D(R′)
,

with the normalization factor

N ≡
∫ RB

RA

dR′ eβF (R′)

D(R′)
. (13)

In Fig. 5(b) we show the committors πA(R) and πB(R),
which specify the probability of first reaching region A and
B, respectively, from MD data (circles) and from the exact
solution of the FP equation (12) and (13), employing constant
bulk (broken line) or true diffusivity profile (solid line).
Agreement between solid lines and MD data is quite good,
although deviations close to region A are discernible and
might point to residual barrier-crossing events orthogonal to
the coordinate R [3].

For a one-dimensional diffusive system, the probability
P (TP|R) that a path passing through R is a transition path
(TP), i.e., a path directly connecting the regions A and B, is
given by [13]

P (TP|R) = 2πA(R)πB(R) = 2πA(R)[1 − πA(R)], (14)
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FIG. 5. (Color online) (a) Free-energy and diffusivity profiles in
the range of separations between the first and second coordination
shell for T = 300 K. (b) Commitment probabilities πA and πB .
(c) Transition path probability P (TP|R). Simulation data (circles)
are compared to FP estimates based on the diffusivity profile D(R)
(solid lines) and a constant diffusivity 2DH2O (broken lines).

where the factor 2 takes into account that a TP can start
in A and reach B or vice versa. The probability P (TP|R)
reaches its maximum value 0.5 at the transition state denoted
by R‡ [39], where πA(R‡) = πB(R‡) = 0.5. A “good” RC is
characterized by a maximum value of the TP probability near
this one-dimensional diffusive limit of 0.5 [13]. In contrast, for
“poor” RCs, which do not single out the transition states, this
maximum is considerably lower; the reason is that for “poor”
RCs excursions from and to A and excursions from and to
B dominate all along the coordinate such that TPs are rare
everywhere between A and B [9,12].

Committor and TP probabilities are estimated by analyz-
ing all simulation paths within the region R ∈ [RA,RB] =
[0.275 nm,0.47 nm] within a time window of 100 ps (time
resolution δt = 0.01 ps). P (TP|R) from MD data in Fig. 5(c)
reaches a maximal value of P (TP|R‡) ≈ 0.38, the position R‡

being slightly displaced from the FP prediction employing the
D(R) profile (solid line) and a constant D = 2DH2O (broken
line) by about 0.02 nm; though caution is recommended in
interpreting the TP probability test [40], we conclude that the
separation R is an acceptable RC unlike in the similar problem
of ion unbinding [9].

C. Interpretation of diffusivity profiles

Based on these findings, it is possible to give a quite
intuitive interpretation of the diffusivity profile. Assuming
that the relative dynamics of two water molecules can be
described as a diffusive process along a single path R in the full
high-dimensional configuration space, the projection onto one
single coordinate, in this case the oxygen-oxygen separation
R, generally leads to considerable changes in free-energy and
diffusivity.

For convenience, we assume the path R(s), s ∈ [0,l] of
total contour length l being arc-length parametrized, i.e.,
|dR(s)/ds| = 1 ∀s, and the reactive flux being tube quite
narrow such that the idea of a single, dominating path makes
sense [11]. The vector R ≡ (R,R⊥) is split up into the
coordinate R and an orthogonal, vectorial component R⊥,
implying ∣∣∣∣dR

ds

∣∣∣∣ =
√∣∣∣∣dR⊥

ds

∣∣∣∣
2

+
(

dR

ds

)2

= 1 ∀s. (15)

We assume a one-to-one correspondence between the arc-
length variable s and the relative separation R, i.e., a path that
does not take any value of R more than once; in this case, the
coordinate R is just a reparametrization of s. As is well-known
[24,29], such a reparametrization can sensibly alter free-energy
and diffusivity; more precisely the corresponding profiles
along the coordinates R and s are connected via

F (R) = F̃ (s) + kBT log

(
dR

ds

)
,

(16)

D(R) = D̃(s)

(
dR

ds

)2

.

Combining Eqs. (15) and (16) one deduces∣∣∣∣dR⊥
ds

∣∣∣∣ =
√

1 −
(

dR

ds

)2

=
√

1 − D(R(s))

D̃(s)
, (17)

meaning that the knowledge of the diffusivity profile D(R)
along the coordinate R allows us to draw conclusions on the
shape of the path R(s); that is, a reduction of the diffusivity
D(R) along a chosen RC R is a signature of pronounced
contributions to the reaction path that are orthogonal to the RC.
Deviations of the diffusivity from the value D̃(s) thus indicate
a nonnegligible component of the path perpendicular to R.
Since only the magnitude of this perpendicular component can
be accessed, while the direction remains uncertain, the path R
cannot be completely reconstructed from the knowledge of
D(R). Defining

R⊥ ≡
∫ R

R0

dR′
∣∣∣∣dR⊥

dR′

∣∣∣∣ =
∫ R

R0

dR′
√

D̃(s)

D(R′)
− 1, (18)

and using the relations in Eqs. (16) and (17) however allows us
to visualize the path in the (R,R⊥) plane. Choosing a constant
D̃(s) = 2DH2O for illustrative purposes, we show in Fig. 1(c)
a fictitious path in the plane (R,R⊥) that would be consistent
with the diffusivity profile D(R) actually extracted from MD
simulations. We observe that the pictorial reaction path has a
large contribution orthogonal to R within the first coordination
shell, where the diffusivity profile shows its prominent drop,
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i.e., for relative separations 0.26 nm � R � 0.34 nm. Previous
simulation results suggest that the orthogonal degree of
freedom involved in water-bond breakage is in fact of angular
nature [4,5].

VI. CONCLUSIONS

Summarizing, we have resolved the diffusivity profile for
relative water dynamics based on a MFPT analysis of the
stochastic trajectories obtained from MD simulations of SPC/E
water. Over a wide range of temperatures, the diffusivity within
the first coordination shell drops by a factor of more than six
compared to large separations, where both partners diffuse
independently. The form of the diffusivity profile is necessary
to reproduce dynamic properties, such as FPT distributions
observed in the simulations, and can be interpreted in terms
of a reaction path that is distorted with respect to the resolved
separation coordinate R.

We cautiously remark that a distorted reaction path is
only one of a few mechanisms that would modify the local
diffusivity; orthogonal energetic barriers (which are, based on
our results shown in Fig. 5, presumably small in the present
case but dominate in related problems [9]) and competing
reaction paths [14] or flux-tube width variations [11,41] are
additional complications. An understanding of the precise
mechanisms at work when water molecules separate from each
other is desirable but requires the applications of more complex
concepts, which we have not pursued in this paper; among
others, transition path theory [11] or Markov-state modeling
in full configuration space [42] may prove useful. The charm
of our approach is that it allows for a consistent description of
the kinetics of water-bond breakage, even without a detailed
knowledge of the transition path and the involved degrees of
freedom.
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sults obtained through fits (see text) to the MSD data shown
in Fig. 6; the line shows that within the studied range of tem-
peratures, this dependence is well approximated by DH2O(T ) ≈
956 exp (−1783.6 K/T ) nm2/ns.

APPENDIX A: SINGLE WATER MOLECULE
DIFFUSION COEFFICIENTS

Figure 6 shows the MSD of single SPC/E molecules
extracted from MD simulations at various temperatures; while
the MSDs show a quadratic dependence on time characteristic
for ballistic motion on the femtosecond time scale, a smooth
crossover to a diffusive scaling is observed for t ≈O (ps). The
diffusion constant of a single water molecule,

DH2O = lim
t→∞

〈[r(t) − r(0)]2〉
6t

, (A1)

is obtained through linear fits to the data in the time range
10 ps < t < 103 ps. In Table I, our results for the SPC/E
diffusion coefficients are compared to results from experiments
and other simulation studies. As can be seen in Fig. 7,
the diffusion coefficient shows an Arrhenius-like temperature
dependence within the investigated range of temperatures in
agreement with experimental findings [35].

APPENDIX B: MEAN FIRST-PASSAGE TIMES FROM
TRAJECTORIES WITH FINITE TIME RESOLUTION

In Fig. 8, we show several MFPT curves, which were
obtained from the same simulation run by only varying the
time resolution δt employed for the MFPT analysis described
in Sec. III B. The reason for the differences between the MFPT
curves are excursions beyond Rt and back, which are not
registered due to the finite-time resolution δt , and thereby
affect the estimate of the mean. Note that the curves in Fig. 8
are mainly shifted vertically with respect to each other; we
found that within the statistical uncertainty, the choice of a
specific time resolution had no visible effect on the form of
the resulting diffusivity profile, which according to Eq. (8)
only depends on the slope of the MFPT curves (comparison
not shown).

Note that the vertical shifts in Fig. 8 are in fact much
larger than the resolution δt of the trajectories. To demonstrate
the influence of δt on the observed MFPT curves, we use
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FIG. 8. (Color online) Dependence of the MFPT curves τfp on the
time resolution δt of the underlying trajectories. Results for several
target separations Rt = 1.2 nm (orange), Rt = 0.8 nm (green) and
Rt = 0.4 nm (blue) determined from MD simulation data at T =
300 K are shown.

a simple model system: free diffusion of a particle along the
coordinate x with diffusion constant Dp. A reflecting boundary
at x = 0 restricts the particle position to the positive part of the
coordinate axis; the corresponding Green’s function is given by

G(x|x0; t) = 1√
4πDpt

[
e− (x−x0)2

4Dp t + e− (x+x0)2

4Dp t

]
�(x). (B1)

Since the process is Markovian, the probability distribution
of finding the particle at position x at time t + δt is related to
the probability distribution at time t by

P (x; t + δt) =
∫ ∞

0
dx ′ G(x|x ′; δt)P (x ′; t). (B2)

According to Eq. (7), the MFPT of reaching xt when starting
out from x for a flat diffusivity D(x) = Dp and free-energy
profiles F (x) = const. is given by

τfp(x,xt) = τd

[
1 −

(
x

xt

)2]
, (B3)

where the characteristic time τd ≡ x2
t /(2Dp) for diffusion

over the length xt was defined.
We show in Fig. 9 that MFPTs obtained from a trajectory

with finite time resolution differ from the MFPT calculated
in the continuum, because paths will eventually cross the
target and come back many times before a position x � xt

is first recorded in the trajectory with finite time resolution.
A lower bound for MFPT estimates based on trajectories with
finite-time resolution is obtained by the following numeric
procedure:

(1) At time t = 0, the particle is located at x0, thus
the probability distribution reads P (x; t = 0) = δ(x − x0).
Consequently, the probability of finding the particle left of the
target is Pleft = 1. Since no transitions beyond the target have
been observed yet, the current MFPT estimate is τ̃fp = 0. The
probability distribution at time t = δt , according to Eq. (B2),
is P (x) = G(x|x0; δt), which is evaluated along x with a
resolution δx = 0.03xt.

The following steps are repeated until the exit condition
is met:

0.0 0.2 0.4 0.6 0.8 1.0

x/xt

0.0

0.5

1.0

1.5

2.0

2.5

τ̃ f
p

[τ
d
]

δt = 1 τd

δt = 0.3 τd

δt = 0.1 τd

δt = 0.03 τd

δt = 0

FIG. 9. (Color online) MFPT curves for reaching xt in the case
of free diffusion next to a reflecting wall at x = 0 for different time
resolution δt of the underlying trajectory (see text for details). Solid
colored lines are obtained by the numeric procedure described in the
text in Appendix B, the dashed black line denotes continuum MFPTs
Eq. (B3). Times are given in units of the characteristic diffusion time
τd ≡ x2

t /(2Dp).

(2) Linearly interpolate the discrete values of P (x) to obtain
a continuous function P̃ (x). The probability of still finding
the particle left of the target is determined numerically by
integration:

P new
left =

∫ xt

0
dx ′ P̃ (x). (B4)

The fraction χ = Pleft − P new
left of particles is, thus, found on

the right of the target (x > xt) for the first time.
(3) The fraction χ must have crossed the target between

time t − δt and time t and contributes to the observed MFPT,
which is updated accordingly: τ̃fp = τ̃fp + χ (t − δt).

(4) If P new
left < 0.001, i.e., if less than 0.1% of the particles

have not been observed right of the target at least once, then
exit the loop and return the MFPT estimate τ̃fp. Else:

(a) Numerically calculate the probability distribution at
time t + δt using Eq. (B2) on a discrete grid with δx =
0.03xt; therefore, start off with the interpolated version
P (x; t) = P̃ (x) and choose xt as upper integration
limit in Eq. (B2), thereby neglecting the fraction of
particles that reached separations x � xt in the last
iteration.

(b) Set Pleft = P new
left and t = t + δt .

(c) Go back to step (2).
MFPT curves resulting from the procedure described above

are shown in Fig. 9; they show the same characteristics as the
MFPT curves from MD simulation data in Fig. 8, namely
increasing δt shifts up vertically the curves; distortions of the
curves are only observed for δt � τfp.

As is clearly seen, one has τ̃fp > τfp + δt for the smaller
values of δt : the deviations are thus not caused because the
first passage time is recorded with an uncertainty on the order
of the time resolution, but because the first observed passage
time in the discretely sampled trajectory can exceed by far the
FPT in the continuous trajectory.
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FIG. 10. (Color online) First-passage time distributions ffp for water pairs starting within the first coordination shell (R0 = 0.281 nm):
Histograms from MD simulations at T = 300 K (colored dots) are compared to the numerical solution of the FP equation (C9) with flat
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APPENDIX C: NUMERICAL SOLUTION
OF THE FOKKER-PLANCK EQUATION

When discretizing the spatial coordinate R into N bins of
width 	R, the FP equation (6) takes the form of a master
equation [43]

∂Pi(t)

∂t
= Wi,i−1Pi−1(t) + Wi,i+1Pi+1(t) + Wi,iPi(t),

(C1)
Wi,i ≡ −Wi−1,i − Wi+1,i .

Bin indices are denoted by i ∈ {1,2, . . . ,N}, and the probabil-
ity Pi(t) of observing a relative separation R within bin i, i.e.,
a separation R ∈ [Ri − 	R/2,Ri + 	R/2), at time t as well
as the transition rates Wi,j from bin j to bin i depend on both
free-energy F and diffusivity D

Wi,i+1 = Di + Di+1

2(	R)2
exp

(
− Fi − Fi+1

2kBT

)
, (C2)

where Fi ≡ F (Ri) and Di ≡ D(Ri). Due to detailed balance,
the transition rates between neighboring bins are not indepen-
dent

Wi+1,i = exp

(
− Fi+1 − Fi

kBT

)
Wi,i+1. (C3)

The linear transformation P̃i(t) = exp (βFi/2)Pi(t) with β ≡
(kBT )−1 converts Eq. (C1) into a simple differential equation
involving a tridiagonal, symmetric matrix with entries W̃ij

∂P̃i(t)

∂t
=

N∑
j=1

W̃ij P̃j (t) with W̃ij ≡ eβFi/2 Wij e−βFj /2,

(C4)

which is readily solved in terms of a matrix exponential

P̃i(t) =
N∑

j=1

(eW̃t )ij P̃j (0) ⇔
(C5)

Pi(t) =
N∑

j=1

e−βFi/2(eW̃t )ij eβFj /2Pj (0) ≡
N∑

j=1

Gij (t)Pj (0),

where in the last equality the Green’s function Gij specifying
the probability of landing in bin i a time t after the given start
in bin j was defined. The matrix exponential in Eq. (C5) is
computed numerically by diagonalization of the symmetric
matrix W̃ = Q�Q−1, with Q being the matrix of eigenvectors
and � being the diagonal matrix of eigenvalues of W̃. The
matrix exponential is then simply given by

eW̃t = Q e�t Q−1, (e�t )ij = δij eλi t . (C6)

For the case of relative SPC/E water dynamics, a bin width
	R = 0.002 nm was used; a reflective boundary condition
(W0,1 = W1,0 = 0) was imposed at Rmin = 0.235 nm, corre-
sponding to a value of the free-energy F ≈ 18kBT .

FPT distributions are obtained by imposing an absorbing
boundary condition at the target position Rt, thus disregarding
paths in the time evolution of Gij , which have already reached
the target beforehand: the total number N of bins is chosen
such that the target Rt is part of bin N + 1 and the absorbing
boundary condition is implemented by setting

WN,N = −WN−1,N − WN+1,N (C7)

but neglecting the backward flux WN,N+1PN+1(t) since
PN+1(t) = 0 ∀t . The survival probability P

j
surv for a start in

bin j is

P j
surv(t) =

N∑
i=1

Gij (t) =
N∑

i=1

e−βFi/2(eW̃t )ij eβFj /2, (C8)

which is evaluated numerically at times t ∈ [0,200 ps] with
time resolution δt = 0.1 ps. The first-passage time (FPT)
distribution is approximated by the finite difference

ffp(t + δt/2; j ) ≈ P
j
surv(t) − P

j
surv(t + δt)

δt
. (C9)
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The MFPT is obtained by taking the first moment of the
FPT distribution,

τfp =
∫ ∞

0
dt tffp(t) =

∫ ∞

0
dt Psurv(t)

≈ δt

(
1 + P

j
surv(M δt)

2
+

M−1∑
n=1

P j
surv(n δt)

)
, (C10)

where in our case M = 2000.

FPT histograms from MD data and from the numerical
solution of the FP equation described in this section for other
target separations than the one shown in Fig. 4(b) are found
in Fig. 10. No significant impact on the FPT distributions
was observed when refining the discretization in space and/or
time.
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