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Rotational Fourier tracking of diffusing polygons
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We use optical microscopy to measure the rotational Brownian motion of polygonal platelets that are dispersed
in a liquid and confined by depletion attractions near a wall. The depletion attraction inhibits out-of-plane
translational and rotational Brownian fluctuations, thereby facilitating in-plane imaging and video analysis. By
taking fast Fourier transforms (FFTs) of the images and analyzing the angular position of rays in the FFTs, we
determine an isolated particle’s rotational trajectory, independent of its position. The measured in-plane rotational
diffusion coefficients are significantly smaller than estimates for the bulk; this difference is likely due to the close
proximity of the particles to the wall arising from the depletion attraction.
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I. INTRODUCTION

The common availability of optical microscopes and digital
video hardware in many research laboratories has led to
the widespread use of video particle tracking microscopy
(VPTM). Movies that capture many kinds of interesting and
complex transport phenomena, including instabilities of driven
fluids in microfluidic devices [1,2], Brownian diffusion of
microscopic probe particles in viscoelastic media [3], and
time-lapse dynamics of the division of biological cells [4], have
been recorded. Although movies containing such interesting
microscopic phenomena can be readily made, performing
quantitative image analysis to measure relevant transport
properties can frequently be challenging. Thus opportunities
yet remain for improving the experimental measurement of
microscopic phenomena captured by VPTM.

In particular, the rotational mobilities of nonspherical probe
particles, even in a simple viscous liquid, have not been
accurately measured or predicted for many different kinds of
shapes having reduced symmetry. Although the translational
and rotational Stokes drag, and therefore diffusion coefficients,
have been calculated for circular platelets (i.e., disks) in a bulk
fluid at low Reynolds number [5–7], calculations of the Stokes
drag for more complex shapes, such as polygonal platelets,
have not been made. Since a variety of lithographic methods
now enable production of microscale and nanoscale complex
platelets [8–10], even with such intricate geometries as the
alphabet [9], it is now possible to experimentally observe and
record the diffusion coefficients of platelets having a wide
variety of shapes in two dimensions using optical microscopy.

While significant attention has been given to determining
the center positions of spherical colloidal probe particles
through VPTM [11–13] and more complicated laser deflection
[14] and interferometry methods [15], much less attention has
been given to rotational tracking. Light streak tracking, which
involves detecting focused laser light scattered from a single
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microparticle, has achieved good accuracy in determining
mean-square angular displacements (MSADs) of disks [16];
this method has been used to perform passive rotational
microrheology of polymeric solutions [17]. Although a video
particle tracking routine that determines the center positions
and vertices of polygons at high densities has been developed
and used [18,19], this simple single-vertex identification
approach has somewhat limited precision. Thus it would be
desirable to develop a robust image analysis technique that
more fully utilizes the angular information in digital images
and could therefore more accurately determine the angular
trajectories of a variety of custom-shaped probe particles.

Here we introduce a versatile Fourier method for analyz-
ing video movies that can precisely determine the angular
orientation of an isolated colloidal particle that, when imaged,
has a nontrivial cross-sectional projection. To demonstrate this
method, we use optical VPTM to measure the rotational dif-
fusion of triangular and square-shaped lithographic polygonal
platelets confined in two dimensions near a solid wall by a
depletion attraction. Using the Fourier approach, we obtain
angular trajectories, MSADs, and the rotational diffusion
coefficients without having to locate the center positions of the
particles. Because this Fourier image analysis method does not
inherently depend on the type of microscopy used, in principle,
it could be applied to images or movies made using other forms
of microscopy, such as electron microscopy, x-ray microscopy,
or even time-resolved surface probe microscopy (e.g., atomic
force microscopy).

II. EXPERIMENT

Platelike microscale lithographic particles (e.g., equilateral
triangular and square prisms) composed of an epoxy pho-
toresist polymer SU-8 are prepared using an Ultratech i-line
XLS stepper, according to a protocol established previously
for mass-producing exotic-shaped colloids [9]. This top-down
production process produces about 108 microplatelets per
5 inch diameter wafer; these particles are then lifted off of the
wafer and dispersed in an aqueous surfactant solution (1-mM
sodium dodecyl sulfate) that stabilizes the released particles
against aggregation.
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In order to prevent thermally induced tipping and elevation
of platelets above the flat surface of the confining cuvette’s
glass wall, we restrict their diffusion to two dimensions
utilizing roughness-controlled depletion attractions. These are
generated by adding depletion agents of anionically stabilized
polystyrene spheres that keep the faces of particles near the
surface of a glass coverslip [20]. The concentration and size
of the depletion agent, as well as the area contributing to
the excluded volume of the microscale particle, all strongly
affect the strength of the depletion attraction. Therefore, this
concentration is adjusted to provide a similar strength of
attraction for different surface areas of the flat faces of the
platelets [20]. In particular, a highly dilute aqueous dispersion
of regular triangular particles (platelet volume fraction φ ≈
10−5), having an edge length of 2.7 μm and a thickness of 1.0
μm, is added to an aqueous dispersion of polystyrene spheres
(20 nm in diameter), yielding a final volume fraction φs = 0.5%
for the depletion agent. As fabricated, square platelets have
an edge length of 4.5 μm and a thickness of 1.0 μm, so a
somewhat smaller volume fraction φs = 0.1% of the same
depletion agent can be used in order to achieve a similar degree
of two-dimensional confinement. Separately, these colloidal
mixtures containing either triangles or squares are loaded into
a rectangular glass microcuvette, sealed to inhibit convection,
and imaged using optical microscopy (Nikon TE2000 inverted
microscope, brightfield, 100× objective, 1.40 numerical aper-
ture, PointGrey Flea2 CCD 1024 × 768 pixels, 30 frames per
second) after the particles have sedimented and been restricted
by depletion attractions to diffuse in-plane just above the lower
wall of the cuvette. To simplify the experimental imaging and
inhibit undesired particle aggregation, we restrict our attention
to a highly dilute dispersion of platelets so that only a single
particle is typically observed in a field of view. All measure-
ments have been made at room temperature T = 297 ± 1 K.

III. ANALYSIS

An example of an acquired image of the triangular platelet
is shown in Fig. 1(a). Edge detection is used to create a sharp
high-contrast 8-bit grayscale image of the particle, as shown
in Fig. 1(b) [12]. This high-contrast image is fast Fourier
transformed to the Fourier domain. Because the particle’s
edges are straight and well defined over many pixels, the
resulting (log-scaled, amplitude-squared) transform exhibits
a set of rays, as shown in Fig. 1(c); each ray is perpendicular
to a corresponding edge of the particle [21]. For each frame
of the resulting preprocessed fast Fourier transform (FFT)
video, an automated program (LabView) detects the locations
of each intensity peak as a function of azimuthal angle θ in the
FFT at a particular radius around the center of the image. To
obtain sharp intensity peaks exhibiting a high signal-to-noise
ratio, we set the radius in reciprocal space to be 70 pixels for
triangles and 50 pixels for squares; the ring’s effective width
is 1 pixel [e.g., see the white ring in Fig. 1(c)]. A parabolic
fitting algorithm is used to detect the centers of the peaks (six
for triangles), shown as the vertical dashed lines in Fig. 1(d). By
comparing this set of peak locations with the ideal case of peaks
separated by π/3 for equilateral triangles, we obtain an average
orientation angle θ , modulo 2π . By tracking a particular peak
from frame to frame, the routine corrects for abrupt jumps in

FIG. 1. Fourier transform analysis yields the angular orientation
of an isolated triangular polygon without requiring any identification
of its position. The (a) real-space image obtained from optical video
microscopy is transformed to (b) a grayscale (appearing nearly binary)
image using edge detection and a Fourier transform intensity of the
grayscale image generates (c) a spokelike FFT having six rays with
angles that reflect the triangle’s orientation. The intensity of these rays
is measured azimuthally along a set radius [the white ring in (c) has a
radius of 70 pixels], yielding (d) I(θ ) having six peaks. Peak detection
identifies the maxima in I(θ ) (vertical dashed lines) and these angles
are used to more accurately determine the absolute orientation of the
triangle associated with one vertex. The real-space scale bar in (a) is
3 μm; the reciprocal space scale bar in (c) is 4 μm−1.

any peak locations due to the 2π periodicity, thus providing
the absolute change in angle θ over long periods of time t.
For square particles, four rather than six rays are seen in the
FFTs, corresponding to the reduced number of edges, as shown
in Fig. 2. The rotational tracking process produces absolute
angular positions with a resolution of 20 mrad based upon the
averaging of the detected peaks in each frame. In our digital
videos, triangles have an approximate edge length of 29 pixels
and the squares have an edge length of 37 pixels, so an edge
length of about 30 pixels can provide about 20-mrad resolution.
Whether for triangles or squares, after obtaining the angular
trajectory, the MSAD 〈�θ2 (t)〉 is calculated and the particle’s
in-plane rotational diffusion coefficient Dr is determined from
the slope of a linear least-squares fit of 〈�θ2 (t)〉= 2Drt in the
short-time limit.

IV. RESULTS AND DISCUSSION

A representative angular trajectory θ (t) of a triangular par-
ticle is shown in the bottom right inset of Fig. 3. This trajectory
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FIG. 2. Fourier transform analysis of a square particle, paralleling
the results shown in Fig. 1: (a) optical micrograph, (b) grayscale image
after edge detection, (c) FFT showing four rays corresponding to the
two sets of parallel edges of the square (the white ring has a radius
of 50 pixels), and (d) intensity as a function of angle I(θ ) shown with
peak-detected angles (vertical dashed lines). The real-space scale bar
in (a) is 4 μm; the reciprocal space scale bar in (c) is 1 μm−1.

has the expected characteristics of a one-dimensional random
walk. The top left inset of Fig. 3 shows a sample probability
distribution for an angular step between consecutive frames
p(�θ ); the distribution is Gaussian (the dashed line is a fit),
as expected for rotation driven by Brownian motion. Since the
angular resolution is high enough, the calculated MSADs for
both triangles and squares are linear down to the earliest times
measured, as shown in Fig. 3. The angular Brownian motion
of the platelet particles near the solid wall yields rotational
diffusion coefficients of Dr = 3.3 ± 0.2 × 10−2 rad2/s for
triangles and Dr = 8.3 ± 0.5 × 10−3 rad2/s for squares. The
smaller diffusion coefficient of a square is consistent with its
larger edge length (i.e., greater maximal spatial dimension)
compared to triangles.

It would be interesting to compare these results with a
relevant theory that could account for the rotational diffusion
of triangular and square platelet particles in close proximity
to a wall in the presence of strong depletion interactions;
unfortunately, no theory that incorporates this complexity
has yet been developed. Consequently, we simply compare
the measured diffusion coefficients with the closest available
theory, a calculation in the bulk for thin disks having similar
lateral dimensions. The rotational diffusion coefficient for a
thin disk having radius a diffusing in a bulk fluid having
a viscosity η can be estimated in the low-frequency, low-

FIG. 3. Calculated mean-square angular displacement 〈�θ2 (t)〉
versus time t for square platelets (solid squares) and triangular
platelets (solid triangles). Solid lines are linear least-squares fits
of 〈�θ 2 (t)〉 = 2Drt , where Dr is the in-plane rotational diffusion
coefficient, yielding Dr = 3.3 ± 0.2 × 10−2 rad2/s (triangles) and
Dr = 8.3 ± 0.5 × 10−3 rad2/s (squares). The horizontal dashed line
represents the lower bound of the angular resolution determined for
triangles (0.020 rad). The top left inset shows the measured angular
step-size distribution p(�θ ) from a trajectory set with 1800 frames
for a diffusing triangle, corresponding to a fixed time interval between
frames of 0.033 s (the dashed line is a fit to a Gaussian distribution).
The bottom right inset shows a portion of the rotational trajectory
θ (t) of a triangular platelet determined using the Fourier analysis
technique in Fig. 1.

Reynolds-number limit as Dr = 3kBT /(32ηa3) [6]. Using
the circumscribed radius of the triangle for a, its rotational
diffusion coefficient is estimated to be 3.8×10−1 rad2/s. Our
measured rotational diffusion coefficient for a triangle is about
an order of magnitude smaller than this estimate, likely due to a
combination of effects that arise from additional drag from the
nearby solid wall and the presence of the depletion attraction,
both of which can reduce the rate of rotational diffusion of
the polygon. Although we have not directly measured the
thickness of the lubricating layer of water between the platelets
and the solid wall, we estimate it to be ≈50 nm, somewhat
larger than the average roughness height on the faces of the
particles, which is comparable to the size of the depletion
agent.

Confining platelet particles to two dimensions using a de-
pletion agent is one convenient way to facilitate video imaging;
other realizations of experiments that provide a time sequence
of images of an isolated rotating particle, whether driven
diffusively or convectively, could also be used. Indeed, images
showing the reorientation of complex particles that have at
least one straight edge should be able to take advantage of the
Fourier ray-tracking algorithm, even if only two primary rays
in the FFT are generated from the straight edge. In principle,
the Fourier analysis method we have demonstrated for isolated
particles can be extended to several particles in the same field
of view. However, interpreting the resulting superposition of
rays from different particles may become ill-posed if certain
rays overlap and cannot be uniquely distinguished in the FFT
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intensity (e.g., if two or more particles having the same shapes
are in the field of view). Each additional particle in the field
of view will add another set of rays to the FFT. Nevertheless,
by using phase information of the FFT, it may be possible to
extend the technique we have presented to track the rotations
of multiple particles, for which the contributions to the FFT
intensity of specific rays originating from certain particles can
be uniquely labeled using the FFT phase information. The
FFT phase effectively encodes particle positions, and we have
shown that considering the phase information is not necessary
when determining the angular orientation of an isolated single
particle.

While we have shown that the Fourier method provides a
way to assess the orientation of a particle having a nontrivial
cross-sectional projection in two dimensions, we anticipate
that this method can be readily extended into three dimensions
by taking the three-dimensional Fourier transforms of, for
instance, individual volume frames of confocal microscopy
movies of isolated facetted particles. The Fourier transform
would result in a set of rays (i.e., spokes) in three-dimensional
reciprocal space emanating in directions normal to the facets
of the particle, analogous to the rays we have shown in two
dimensions for polygons. Tracking the spokes would require
adapting the current algorithm into three dimensions using an
approach analogous to the method we have presented here.

Although the rotational diffusion of particles and molecules
has been measured in many other cases, these results cannot
be directly compared with the results of our experiments
due to significant differences in the shapes and sizes of
the diffusing particles and also the differences in boundary
conditions (i.e., proximity to a wall). A system of rotating
prolate ellipsoids, for example, has been made using a thin
glass cell having a thickness of about one micron (over a
localized area) as the method of confinement [22]. In this
case the ellipsoids are near two solids walls, whereas in
our experiments the depletion attraction keeps the polygonal
platelets near only one solid wall. Although measurements
of diffusion coefficients for translating and rotating rods near
a surface have been made [23], the friction coefficients for
these objects (i.e., shape and aspect ratio) are not similar to the
polygons we have examined. More work, whether simulations
or theory, on anisotropic, complex-shaped particles is needed
to fully understand the complicated hydrodynamics of particles
undergoing rotational and translational diffusion in the bulk
and near walls. A suitable theory that could potentially address
our measurements would consider the in-plane rotational
Stokes drag of regular polygonal platelets confined near a
solid wall by a depletion attraction, separated by only a
very thin layer of lubricating viscous liquid, yielding the
in-plane rotational mobility and diffusion coefficient. Such
a calculation would enable a direct quantitative comparison
with our experimental results and would be beneficial in

advancing the understanding of the diffusion of anisotropic,
complex-shaped particles.

We have shown that Fourier analysis of optical micrographs
of isolated polygonal platelets can be used for rotational
tracking, independent of particle position. Although we have
presented detailed results for only two types of regular poly-
gons, triangles and squares, this approach may be extended to
many kinds of platelets. Among the easiest to track, platelets
having well-defined linear edges are especially well suited,
provided the number of edges is not so large that the rays in the
FFT intensity overlap and cannot therefore be distinguished by
peak detection. Furthermore, this technique can be applied in a
straightforward manner for less symmetric shapes, other than
regular polygons, provided there is at least one well-defined
straight edge on the particle that will give rise to a bright
line of intensity in the FFT. Indeed, the technique could be
extended to particle shapes having complex curved edges using
pattern recognition of a complex continuous set of rays in
Fourier space (i.e., by performing a correlation analysis of the
Fourier pattern of an initial frame of the FFT movie with an
angularly rotated version of a Fourier pattern in subsequent
frames). Increasing the particle’s size in pixels in images and
also the frame acquisition rate of the camera could provide
a means of sensitively probing rotational diffusion useful in
microrheology applications of thin layers of materials between
the platelet and solid wall over a wide dynamic range.

V. CONCLUSION

The rotational Brownian motion of complex-shaped parti-
cles can be accurately measured by Fourier transform analysis.
By tracking peaks in I(θ ), one can extract rotational diffusion
coefficients for many different complex particle shapes, as we
have demonstrated with equilateral triangles and squares. Not
surprisingly, the values of the rotational diffusion coefficients
of these platelike particles confined near a solid wall by a
depletion attraction are substantially lower than an estimate of
rotational diffusion coefficients of a thin circumscribed disk
diffusing in the bulk. This points out the need for translational
and rotational Stokes drag calculations of complex shapes in
the bulk and near a wall in the presence of a depletion agent.
In the future, the Fourier analysis technique can potentially
facilitate translational tracking of the particle in a subsequent
analysis, since its orientation has been predetermined. More-
over, this analysis approach for isolated particles may also be
extended to several particles in a field of view if the phase
information of the FFT is appropriately considered.
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